Основные понятия физики плазмы
Характеристика понятия ионизованного газа, представляющего собой электрически нейтральную среду. Основное свойство плазмы при распределении плотности частиц. Величина их кинетической энергии. Анализ отклонений при разделении зарядов в пространстве.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 10.08.2013 |
Размер файла | 25,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Основные понятия физики плазмы
1. Определение плазмы и ее основные свойства
Плазмой называют ионизованный газ, содержащий свободные положительно и отрицательно заряженные частицы, в котором суммарный заряд в каждой единице объема стремится к нулю, то есть плазма представляет собой электрически нейтральную среду.
В общем случае плазма может состоять из положительно заряженных ионов, отрицательно заряженных частиц - электронов и отрицательных ионов - и нейтральных частиц.
Отношение числа электронов nе (или ионов) в единице объема плазмы к полному числу частиц n в этом же объеме:
m = nе / n
- называют степенью ионизации плазмы. В предельном случае, когда число нейтральных частиц в плазме стремится к нулю, плазма называется полностью ионизованной, для которой m1. В технических устройствах, как правило, имеют дело с не полностью или частично ионизованной плазмой, для которой m1.
Степень ионизации плазмы в зависимости от условий ее образования и существования может изменяться в широких пределах. Столб тлеющего разряда - это слабоионизованный газ со степенью ионизации порядка 10-810-6. Положительный столб дугового разряда при атмосферном и более высоких давлениях имеет степень ионизации порядка 10-310-1.
В соответствии с величиной концентрацией частиц может быть разреженная плазма, примером которой служит ионосфера Земли, в которой концентрация электронов составляет 105 1/см3, или плазма в столбе тлеющего разряда при низких давлениях газа, и плотная плазма, например, в канале лидера при разряде в длинных воздушных промежутках или в канале молнии, в котором концентрация электронов может достигать (15)1017 1/см3.
В зависимости от условий, в которых образована и находится плазма, различают низкотемпературную и высокотемпературную плазму. В низкотемпературной плазме температура близка к температуре окружающей среды и составляет порядка 300 400 К. В высокотемпературной плазме температура может достигать тысяч и сотен тысяч Кельвинов.
Основное свойство плазмы - стремление к электрической нейтральности - является следствием взаимодействия полей отдельных заряженных частиц. В плазме, являющейся смесью заряженных частиц разного знака, силы притяжения, действующие между разноименно заряженными частицами, уравновешиваются силами отталкивания одноименно заряженных частиц. Учитывая статистический характер распределения частиц в плазме, говорят не о полной электрической нейтральности, а о квазинейтральности плазмы. Квазинейтральность означает, что суммарный заряд каждой единицы объема плазмы:
q = n+ + n + ne 0
В нейтральном газе мерой средней кинетической энергии хаотического движения частиц является температура газа Т, определяемая из соотношения:
1/2 mw 2 = 3/2 kT
Где:
m - масса частиц газа,
w - средняя скорость их хаотического движения,
k - постоянная Больцмана.
Таким же образом характеризуют и среднюю энергию частиц плазмы.
В этом случае средняя энергия электронов и ионов может характеризоваться температурой соответственно Te и Ти.
В слабых электрических полях и в установившемся режиме средние энергии электронной и ионной составляющих плазмы равны между собой и равны средней энергии нейтральных частиц, что соответствует:
Te = Tи = Тгаза
Такое состояние означает полное термодинамическое равновесие, и плазма называется равновесной.
В сильных электрических полях энергия, приобретаемая электронами от поля, оказывается существенно больше энергии ионов из-за сильного различия в скоростях частиц. Энергия электронов при ограниченном времени взаимодействия не успевает выровняться с энергией ионов. Поэтому в такой плазме:
Te Tи = Тгаза
Такое состояние характеризует неравновесную плазму.
Даже в неравновесной плазме, образующейся, например, в канале лидера, из-за отклонений в распределении плотности частиц могут образоваться области, в которых плазма близка равновесной.
Такие области называют областями локального (местного) термодинамического равновесия.
2. Дебаевский радиус экранирования
Как уже сказано выше, основным свойством плазмы является стремление к электрической нейтральности. Однако в процессе хаотического движения частиц в плазме возможно временное отклонение от нейтральности в отдельных областях, то есть происходит временное разделение зарядов в пространстве. Так же следует иметь в виду, что в общем случае заряды различного знака расположены на некотором расстоянии друг от друга.
Рассмотрим элемент структуры поля состоящий из некоторой заряженной частицы и объемного заряда, например, ионов противоположного знака, расположенных на некотором расстоянии (рис.).
Рисунок:
В целом система нейтральна и на удалении поле стремится к нулю. Однако вблизи заряженной частицы электростатическое поле от этой частицы преобладает. Только начиная с некоторого расстояния начинает проявляться действие зарядов противоположного знака, стремящихся уменьшить суммарное поле.
Характерное расстояние, на котором перестают проявляться неоднородности структуры поля квазинейтральной плазмы носит название дебаевского радиуса экранирования.
В равновесной плазме, где температуры электронной и ионной составляющих плазмы одинаковы:
Те = Т+ = Тгаза
- характерный радиус экранирования заряда равен:
В неравновесной плазме при:
Те >> Т+ = Тгаза
Дебаевский радиус связан с расстоянием, на которое возможно сильное разделение зарядов в плазме. Например, при Те = 1эВ и ne = 1014 1/м3 дебаевский радиус d = 5,210-4 м. Часто ионизованный газ называют плазмой, если дебаевский радиус экранирования много меньше других характерных расстояний области, занятой плазмой.
3. Плазма в электрическом поле
Выше было рассмотрено движение в электрическом поле отдельных заряженных частиц.
В отличие от такого случая движение заряженных частиц в плазме во внешнем электрическом поле существенно усложняется, так как напряженность электрического поля, действующего на каждую отдельно взятую частицу, складывается из напряженности внешнего поля и напряженности полей всех остальных частиц.
Учесть при анализе все эти поля практически невозможно, в особенности при наличии столкновений между частицами, поэтому переходят к макроскопическому рассмотрению, основанному на статистическом осреднении индивидуальных взаимодействий полей частиц.
Пусть в полностью ионизованной плазме, находящейся в электрическом поле, все столкновения частиц носят только упругий характер. Движение частиц плазмы можно представить как сумму направленного движения со скоростью u и хаотического движения со скоростью w. Если через v обозначить вектор полной скорости частиц, то для каждого момента времени:
v = u + w
Среднее значение скорости хаотического движения равно нулю (<w> = 0), и во внешнем поле <v> = <u>. Для однотипных частиц с одинаковой массой <v> = u, так как скорости u всех однотипных частиц одинаковы.
Рассчитаем энергию частиц участвующих в направленном и хаотическом движении. Энергия частиц определяется квадратом скорости. Среднее значение квадрата полной скорости:
<v2> = <v2> =<(u +w)2> = <u2> + <2u w> + < w2>
Так как направления скорости хаотического движения равновероятны, то среднее значение произведения:
<2u * w> = 0
Среднее значение полной энергии частиц в плазме:
1/2<(mv2)> = 1/2(mu2 + m<w2>)
Где: ионизованный газ кинетический
1/2<(mv2) - есть средняя энергия хаотического движения.
Таким образом наложение внешнего электрического поля приводит к увеличению средней энергии частиц плазмы на величину кинетической энергии движения частиц в этом поле.
Размещено на Allbest.ru
...Подобные документы
Механизм функционирования Солнца. Плазма: определение и свойства. Особенности возникновения плазмы. Условие квазинейтральности плазмы. Движение заряженных частиц плазмы. Применение плазмы в науке и технике. Сущность понятия "циклотронное вращение".
реферат [29,2 K], добавлен 19.05.2010Применение методов ряда фундаментальных физических наук для диагностики плазмы. Направления исследований, пассивные и активные, контактные и бесконтактные методы исследования свойств плазмы. Воздействие плазмы на внешние источники излучения и частиц.
реферат [855,2 K], добавлен 11.08.2014Возникновение плазмы. Квазинейтральность плазмы. Движение частиц плазмы. Применение плазмы в науке и технике. Плазма - ещё мало изученный объект не только в физике, но и в химии (плазмохимии), астрономии и многих других науках.
реферат [43,8 K], добавлен 08.12.2003Изучение понятия неоднородности плазмы. Определение напряженности поля, необходимой для поддержания стационарной плазмы. Кинетика распыления активных частиц ионной бомбардировкой. Взаимодействие ионов с поверхностью. Гетерогенные химические реакции.
презентация [723,6 K], добавлен 02.10.2013Содержание молекулярно-кинетической теории газов. Химический состав жидкости. Особенности межмолекулярного взаимодействия в данном агрегатном состоянии. Механические и тепловые свойства твердых тел. Практическое применение плазмы - ионизованного газа.
контрольная работа [26,0 K], добавлен 27.10.2010Электродинамические параметры плазмы как материальной среды, в которой распространение электромагнитных волн сопровождается частотной дисперсией. Характеристика взаимодействия частиц плазмы между собой кулоновскими силами притяжения и отталкивания.
курсовая работа [67,4 K], добавлен 28.10.2011Изменение свободной энергии, энтропии, плотности и других физических свойств вещества. Плазма - частично или полностью ионизированный газ. Свойства плазмы: степень ионизации, плотность, квазинейтральность. Получение и использование плазмы.
доклад [10,5 K], добавлен 28.11.2006Рассмотрение основных особенностей изменения поверхности зонда в химически активных газах. Знакомство с процессами образования и гибели активных частиц плазмы. Анализ кинетического уравнения Больцмана. Общая характеристика гетерогенной рекомбинации.
презентация [971,2 K], добавлен 02.10.2013Понятие плазмы тлеющего разряда. Определение концентрации и зависимости температуры электронов от давления газа и радиуса разрядной трубки. Баланс образования и рекомбинации зарядов. Сущность зондового метода определения зависимости параметров плазмы.
реферат [109,9 K], добавлен 30.11.2011Состав газоразрядной плазмы. Восстановление плазмой нейтральности. Энергетический спектр тяжелых частиц (атомов и молекул). Столкновения частиц в плазме. Диффузия и амбиполярная диффузия в плазме. Механизмы эмиссии электронов из катода в газовом разряде.
контрольная работа [66,6 K], добавлен 25.03.2016Исследование газообразного состояния вещества, в котором частицы не связаны или весьма слабо связаны силами взаимодействия. Изучение плазмы, частично или полностью ионизированного газа, в котором плотности отрицательных и положительных зарядов одинаковы.
презентация [477,5 K], добавлен 19.12.2011Расчет основных параметров низкотемпературной газоразрядной плазмы. Расчет аналитических выражений для концентрации и поля пространственного ограниченной плазмы в отсутствие магнитного поля и при наличии магнитного поля. Простейшая модель плазмы.
курсовая работа [651,1 K], добавлен 20.12.2012Основные понятия и определения молекулярной физики и термодинамики. Основное уравнение молекулярно-кинетической теории. Температура и средняя кинетическая энергия теплового движения молекул. Состояние идеального газа (уравнение Менделеева-Клапейрона).
презентация [1,1 M], добавлен 13.02.2016Определение импульса, полной и кинетической энергии электрона. Расчет плотности и молярной массы смеси. Уравнение состояния Менделеева-Клапейрона, описывающее поведение идеального газа. Коэффициент внутреннего трения воздуха (динамической вязкости).
контрольная работа [405,8 K], добавлен 22.07.2012Агрегатные состояния вещества. Что такое плазма? Свойства плазмы: степень ионизации, плотность, квазинейтральность. Получение плазмы. Использование плазмы. Плазма как негативное явление. Возникновение плазменной дуги.
доклад [10,9 K], добавлен 09.11.2006Физические основы диагностики плазмы. Методы излучения, поглощения и рассеяния для определения плотностей частиц в дискретных энергетических состояниях. Лазерный резонатор, спектроскопия поглощения с частотно-перестраиваемыми и широкополосными лазерами.
реферат [677,7 K], добавлен 22.12.2011Уравнения для поперечных компонент смещения плазмы, минимизация функционал Крускала-Обермана потенциальной энергии МГД-возмущения. Невозмущенное состояние, потенциальная энергия возмущения. Преобразование кинетического слагаемого, условие устойчивости.
реферат [567,9 K], добавлен 22.07.2011Определение работы равнодействующей силы. Исследование свойств кинетической энергии. Доказательство теоремы о кинетической энергии. Импульс тела. Изучение понятия силового физического поля. Консервативные силы. Закон сохранения механической энергии.
презентация [1,6 M], добавлен 23.10.2013Работа идеального газа. Определение внутренней энергии системы тел. Работа газа при изопроцессах. Первое начало термодинамики. Зависимость внутренней энергии газа от температуры и объема. Основные способы ее изменения. Сущность адиабатического процесса.
презентация [1,2 M], добавлен 23.10.2013Направления применения плазмы в технике и технологии. Управляемые термоядерные реакции, основные пути их осуществления. Принцип извлечения энергии из ядер легких элементов. Лазерный термояд. Получение электроэнергии из тепловой энергии плазменного потока.
реферат [90,4 K], добавлен 15.07.2014