Кавитация – что это такое? Новый взгляд. Теория кавитации

Физический процесс кавитации. Причина образования мелких пузырьков и их исчезновения. Барботирование - перемешивание жидкостей, эмульсий и суспензий путем пропускания газа или воздуха. Кавитация как образование в жидкости полостей, заполненных паром.

Рубрика Физика и энергетика
Вид статья
Язык русский
Дата добавления 23.08.2013
Размер файла 13,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Кавитация - что это такое? Новый взгляд. Теория кавитации

Кратко как понимают кавитацию различные источники физики можно представить по информации, например из Википедии.

Кавитация (от лат. cavitas -- пустота) -- образование в жидкости полостей (кавитационных пузырьков, или каверн), заполненных паром. Кавитация возникает в результате местного понижения давления в жидкости, которое может происходить либо при увеличении её скорости (гидродинамическая кавитация), либо при прохождении акустической волны большой интенсивности во время полупериода разрежения (акустическая кавитация), существуют и другие причины возникновения эффекта. Перемещаясь с потоком в область с более высоким давлением или во время полупериода сжатия, кавитационный пузырёк захлопывается, излучая при этом ударную волну.

Кавитация разрушает поверхность гребных винтов, гидротурбин, акустических излучателей и др.

Согласно определению Кристофера Бреннена: «Когда жидкость подвергается давлению ниже порогового (напряжению растяжения), тогда целостность ее потока нарушается, и образуются парообразные полости. Это явление называется кавитацией. Когда местное давление жидкости в некоторой точке падает ниже величины, соответствующей давлению насыщения при данной окружающей температуре, тогда жидкость переходит в другое состояние, образуя, в основном, фазовые пустоты, которые называются кавитационными пузырями. Возможно и другое образование кавитационных пузырей путем местной подачи энергии. Это может быть достигнуто фокусировкой интенсивного лазерного импульса (оптическая кавитация) или искрой электрического разряда».

Во многих источниках физика этого явления объясняется следующим образом. Физический процесс кавитации близок процессу закипания жидкости. Основное различие между ними заключено в том, что при закипании изменение фазового состояния жидкости происходит при среднем по объёму жидкости давлении равном давлению насыщенного пара, тогда как при кавитации среднее давление жидкости выше давления насыщенного пара, а падение давления носит локальный характер.

Однако более поздние исследования показали, что ведущую роль в образовании пузырьков при кавитации играют газы, выделяющиеся внутрь образовывающихся пузырьков. Эти газы всегда содержатся в жидкости, и при местном снижении давления начинают интенсивно выделяться внутрь указанных пузырьков. кавитация пузырек барботирование жидкость

Поскольку под воздействием переменного местного давления жидкости пузырьки могут резко сжиматься и расширяться, то температура газа внутри пузырьков колеблется в широких пределах, и может достигать нескольких сот градусов по Цельсию. Имеются расчётные данные, что температура внутри пузырьков может достигать 1500 градусов Цельсия [1]. Следует также учитывать, что в растворённых в жидкости газах содержится больше кислорода в процентном отношении, чем в воздухе, и поэтому газы в пузырьках при кавитации химически более агрессивны, чем атмосферный воздух.

Можно сделать вывод, что разрушительная сила образуется при захлопывании пузырька, с образованием ударной волны, которая якобы приводит к разрушению. Откуда взято такое представление о кавитационной силе. Естественно пузырек имел определенный объем, который за малый промежуток времени исчез. Современный ученый рассчитал, скорей всего с помощью компьютерной программы, что произошло сжатие этого количества газа и привело к давлению, необходимой для создания ударной волны.

Мое мнение не соответствует такой картины события. Нет в этом явлений такой силы, которая привела бы к сжатию. Значит причину, вызывающую разрушение надо искать в другом месте.

Я считаю, вся причина образования мелких пузырьков и их исчезновения происходит из-за перехода фаз: перехода из жидкого состояния в газ и наоборот. И именно переход в газ вызывает разрушительный эффект. Растворимый газ в жидкости находиться в жидком состоянии.

На поверхности жидкости постоянно и интенсивно происходят процессы смен фаз. Изучение пропускания газов через жидкость выяснилось, что пузырек газа приводит к интенсивному процессу смены фаз, и пары жидкости устремляются в газ, а часть газа, превращаясь в жидкую фазу, поступает в нее. Растворимость газов в жидкости или как его принято называть барботирование - перемешивание жидкостей, эмульсий и суспензий путем пропускания газа или воздуха несет в себе кавитацинные процессы. Это можно использовать, например, для очистки предметов от загрязнения. Рассмотрим стирку. Пусть мы попали в условия, где нет стиральной машины. Без стиральной машины можно постирать белье, используя любой источник сжатого воздуха. Помещаете белье в открытую емкость с водой, добавляете стиральный порошок и опускаете шланг в емкость. Шланг подсоединяете к насосу, например для надува матраса или к пылесосу, если есть патрубок выхода воздуха, в крайнем случае, можно воспользоваться и автомобильным электронасосом. В зависимости от расхода подаваемого воздуха будет меняться время стирки. Так же можно полоскать белье. На мой взгляд, качество стирки намного выше, чем у обычных стиральных машин. Правда есть существенный недостаток: обильное пеновыделение в процессе стирке. Поэтому емкость надо устанавливать, так чтобы пена удалялась. На даче это не проблема.

Область применения этого явления, связанного с пропусканием воздуха (газа) через жидкость можно значительно расширить.

Размещено на Allbest.ru

...

Подобные документы

  • Кавитация - образование в жидкости полостей, заполненных паром; причины, основные места возникновения: лопастные и центробежные насосы, винты судов, сосудистые растения; вредные последствия, их предотвращение. Полезное применение кавитации в биомедицине.

    реферат [2,8 M], добавлен 21.12.2010

  • Описание физических свойств пузырей в жидкости и физических явлений, в которых пузыри принимают участие. Модельный опыт по флотации. "Мягкий" и "твердый" пузырек в жидкости. Газовый пузырек у границы между жидкостями. Закономерности процесса кавитации.

    реферат [3,7 M], добавлен 18.01.2011

  • В реальных жидкостях присутствует не один, а множество пузырьков и свойства жидкостей зависят от особенностей взаимодействия между пузырьками. Взаимодействия двух радиально пульсирующих пузырьков газа в жидкости ранние выведенной математической модели.

    курсовая работа [608,7 K], добавлен 05.03.2008

  • Классификация центробежных насосов, принцип их действия. Способы повышения их всасывающей способности. Понятие кавитации. Влияние кавитационных явлений на КПД, напор и производительность насоса, действие на поверхности деталей. Пути их устранения.

    реферат [762,2 K], добавлен 11.12.2014

  • Способ создания дополнительной подъёмной силы. Проявление свойств физического вакуума в процессах, происходящих в космосе. Исследование явления кавитации. Принцип действия элементарного гравитационного генератора. Рождение света из вакуума в макромире.

    статья [8,2 M], добавлен 09.05.2014

  • Кавитация как явление, её положительные и отрицательные свойства, пути предотвращения. Анализ ее воздействия на жидкость. Пример зависимости качественных параметров насосов российских и зарубежных аналогов от кавитационного коэффициента быстроходности.

    реферат [360,6 K], добавлен 10.01.2015

  • Основное свойство жидкости: изменение формы под действием механического воздействия. Идеальные и реальные жидкости. Понятие ньютоновских жидкостей. Методика определения свойств жидкости. Образование свободной поверхности и поверхностное натяжение.

    лабораторная работа [860,4 K], добавлен 07.12.2010

  • Потенциальная энергия жидкости. Определение теоретической скорости и теоретического расхода (идеальная жидкость). Сравнение истечения через отверстие и внешний цилиндрический насадок. Кавитация в цилиндрическом насадке. Гидравлический удар в трубопроводе.

    презентация [337,3 K], добавлен 29.01.2014

  • Понятие кипения как интенсивного парообразования при нагревании жидкости. Поглощение теплоты при кипении, расчет ее количества, необходимого для перевода жидкости в пар. Удельная теплота парообразования. Непрерывное образование и рост пузырьков пара.

    презентация [124,4 K], добавлен 26.11.2012

  • Сущность ньютоновской жидкости, ее относительная, удельная, приведённая и характеристическая вязкость. Движение жидкости по трубам. Уравнение, описывающее силы вязкости. Способность реальных жидкостей оказывать сопротивление собственному течению.

    презентация [445,9 K], добавлен 25.11.2013

  • Создание физической модели деформации материала. Система кластеров структурированных частиц. Описание механики процесса пластической деформации металла при обработке давлением и разрушения материала при гидрорезке на основе кавитации, резонансных явлений.

    статья [794,6 K], добавлен 07.02.2014

  • Механика жидкостей, физическое обоснование их главных свойств и характеристик в различных условиях, принцип движения. Уравнение Бернулли. Механизм истечения жидкости из отверстий и насадков и методика определения коэффициентов скорости истечения.

    реферат [175,5 K], добавлен 19.05.2014

  • Уравнение неразрывности потока жидкости. Дифференциальные уравнения движения Эйлера для идеальной жидкости. Силы, возникающие при движении реальной жидкости. Уравнение Навье - Стокса. Использование уравнения Бернулли для идеальных и реальных жидкостей.

    презентация [220,4 K], добавлен 28.09.2013

  • Причина возникновения сил вязкого трения в жидкостях. Движение твердого тела в жидкости. Определение вязкости жидкости по методу Стокса. Экспериментальная установка. Вязкость газов. Механизм возникновения внутреннего трения в газах.

    лабораторная работа [61,1 K], добавлен 19.07.2007

  • Методы наблюдения и регистрации элементарных частиц. Образование пузырьков пара в перегретой жидкости на ионах. Преимущество пузырьковой камеры перед камерой Вильсона. Метод толстослойных фотоэмульсий. Химические свойства и радиоактивность изотопов.

    презентация [259,4 K], добавлен 28.03.2011

  • Исследование устройства и принципов работы приборов для измерения влажности и скорости движения воздуха, плотности жидкостей. Абсолютная и относительная влажность воздуха, их отличительные особенности. Оценка преимуществ и недостатков гигрометра.

    лабораторная работа [232,2 K], добавлен 09.05.2011

  • Реальное течение капельных жидкостей и газов на удалении от омываемых твердых поверхностей. Уравнение движения идеальной жидкости. Уравнение Бернулли для несжимаемой жидкости. Истечение жидкости через отверстия. Геометрические характеристики карбюратора.

    презентация [224,8 K], добавлен 14.10.2013

  • Поле вектора скорости: определение. Теорема о неразрывности струн. Уравнение Бернулли. Стационарное течение несжимаемой идеальной жидкости. Полная энергия рассматриваемого объема жидкости. Истечение жидкости из отверстия.

    реферат [1,8 M], добавлен 18.06.2007

  • Изучение основного закона и физического смысла теплопроводности. Исследование теплопроводности жидкости, основанной на вычислении кинетических коэффициентов средствами статистической физики или использовании теплового движения и механизмов переноса.

    курсовая работа [64,6 K], добавлен 01.12.2010

  • Силы и коэффициент внутреннего трения жидкости, использование формулы Ньютона. Описание динамики с помощью формулы Пуазейля. Уравнение Эйлера - одно из основных уравнений гидродинамики идеальной жидкости. Течение вязкой жидкости. Уравнение Навье-Стокса.

    курсовая работа [531,8 K], добавлен 24.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.