Конвективные течения в водоемах

Конвективное перемешивание жидкости при охлаждении её сверху. Конвекция при слабом ветре. Ветровое перемешивание воды. Конвективные течения при охлаждении водоема. Процесс охлаждения воды сверху до момента ледообразования и конвективные ячейки Бенара.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 27.08.2013
Размер файла 84,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1

6. Конвективные течения в водоемах

Конвективные течения в водоемах обусловлены распределением плотности жидкости (разницей плотности), которое в свою очередь определяется температурой, соленостью и давлением. Известно, что плотность воды существенно зависит от температуры и солености и очень слабо от давления.

Рис. 6.1. Схема конвективного перемешивания жидкости при охлаждении ее сверху [8]

1 -- активная струя, 2 -- реактивная струя.

При подогреве жидкости снизу, нагретые ее частицы под действием сил плавучести поднимаются, а более холодные, а, следовательно, и более тяжелые частицы, расположенные наверху, опускаются. Нагретые частицы, поднимаясь, перемешиваются с более холодными и постепенно охлаждаются за счет теплопроводности. Это обстоятельство приводит к увеличению их плотности. Одновременно плотность поднимающейся жидкости увеличивается и за счет диффузии. Возникшая конвекция может распространиться до свободной поверхности жидкости или не дойти до нее, что зависит от первоначального (исходного) плотностного состояния жидкости и от степени нагрева придонных частиц.

При охлаждении жидкости сверху (наиболее часто встречающийся случай в практике гидролога) конвективный процесс протекает в обратном порядке: охладившиеся, а, следовательно, более тяжелые частицы жидкости начнут опускаться и вытеснять вверх более теплые, легкие частицы. В этом случае, так же как и в первом, конвективный процесс может распространиться на всю глубину или погаситься на некоторой глубине. Разница между обоими процессами заключается в том, что в первом случае активные ветви конвективных токов направлены вверх, а во втором -- вниз. Реактивные ветви конвекции в обоих случаях также будут иметь направление, обратное активным (рис. 6.1.).

Изложенная схема конвективного перемещения жидкости при охлаждении сверху в применении к воде нарушается одной из ее аномалий, а именно: аномалией температуры наибольшей плотности -- наибольшая плотность пресной воды наблюдается при температуре 4°С (см. Лекцию №2). При дальнейшем охлаждении воды сверху (ниже 4°С) конвекция прекращается и более холодные частицы жидкости (но более легкие) остаются на поверхности (рис. 6.2.).

Состояние воды водоемов описывается уравнением

с = f (t, S, P), (6.1)

Рис. 6.2. Процесс охлаждения воды сверху до момента ледообразования [8]

tн.п -- температура наибольшей плотности; tз -- температура замерзания; t1, t2 ... -- последовательные значения температуры ниже 4°С.

которое с достаточной точностью можно представить в следующем виде:

с = с0 [1 - б(t - t0) + в(S - S0)], (6.2)

где с0 -- равновесное (характерное) значение плотности, которому соответствует температура t0, соленость S0

,

а также эти параметры принимаются при давлении, равном атмосферному. Коэффициенты б и в в диапазоне наблюдающихся в водоемах суши температуры и солености можно считать постоянными. Однако уравнение (6.2) нельзя использовать при рассмотрении конвекции в пресной воде, развивающейся вблизи ее максимальной плотности. В этом случае уравнение состояния воды (6.1) существенно нелинейно.

Из изложенного выше следует, что в зависимости от распределения температуры и солености по глубине водоема наблюдается плотностная стратификация:

1) устойчивая при dс/dz > 0 -- плотность слоев воды увеличивается с глубиной;

2) равновесная при dс/dz = 0 -- плотность слоев воды не меняется по глубине;

3) неустойчивая при dс/dz < 0 -- плотность слоев воды убывает с ростом глубины.

В океанологии в качестве показателя степени устойчивости плотностной стратификации вод океана принимают частоту вертикальных колебаний частиц воды N (N2 > 0 -- устойчивая, N2 = 0 -- равновесная, N2 < 0 -- неустойчивая стратификация). Ее обычно называют частотой Вяйсяля и определяют по следующей формуле:

(6.3)

или

(6.4)

где g -- ускорение свободного падения; c -- скорость звука; cp и cх -- удельная теплоемкость воды соответственно при постоянном давлении и объеме; (dс/dz)P -- вертикальный градиент плотности при постоянном давлении.

В уравнении (6.4) обычно пренебрегают последним слагаемым, поскольку cp ? cх.

Возникшие в водоеме плотностные конвективные течения могут быть описаны с учетом уравнения (6.2) уравнениями термодинамики жидкости:

уравнением движения (уравнение Навье--Стокса)

(6.5)

уравнением теплопроводности

(6.6)

конвективная ячейка охлаждение вода

уравнением диффузии

(6.7)

где Z -- проекция ускорения свободного падения на ось z; Wт (z, ф) и WS (z, ф) -- соответственно заданное поле источников теплоты и вещества в растворе; н -- кинематический коэффициент вязкости; a и D -- коэффициенты температуро-проводности и диффузии.

Уравнения (6.2), (6.5) - (6.7) носят название системы уравнений в приближении Обербека-Буссинеска. Они получены на основании следующих упрощающих предположений: 1) изменение плотности вызывается только изменением температуры и солености, причем происходит по линейному закону; 2) жидкость принимается несжимаемой (div V = 0), но изменение плотности все же учитывается массовыми силами; 3) коэффициенты вязкости м и температуропроводности a = л/(с0cp) принимаются постоянными.

Наблюдениями установлено, что плотностные конвективные течения воды в водоемах осуществляются в форме ячеистой конвекции: на поверхности воды ячеистая конвекция проявляется в виде шестиугольников (рис. 6.3). Эту форму конвекции в лабораторном эксперименте впервые наблюдал Бенар в 1900 г. (Бенар наблюдал ячеистую конвекцию в жидкости при ее подогреве снизу. Так как слой жидкости в эксперименте был очень тонким, а градиент температуры мал, поэтому предполагают, что ее движение (ячеистая структура) было вызвано не разностью значений температуры (силами плавучести), а силами поверхностного натяжения.), отсюда термин "ячейки Бенара".

При развитой конвекции конвективные ячейки имеют пространственный характер в форме шестигранных призм, у периферии которых конвективные токи направлены вниз -- реактивная струя, а в центре конвективные токи направлены вверх -- активная струя. Активная струя несет большую энергию -- она теплее, поэтому поднимается.

Рис. 6.3. Конвективные ячейки Бенара [8]

Примерно такой же характер конвективных ячеек обнаружен Е.Г. Архиповой и Г.В. Ржеплинским при наблюдениях на Клязьминском водохранилище. По их наблюдениям, размер ячеек был равен 10--15 см.

Описанный выше характер конвекции при наличии ветра резко изменяется, причем слабый ветер ее организует, а сильный -- разрушает. Данные первых визуальных исследований конвекции в натурных условиях при ветре И. Ленгмюра (1938г.), В.А. Цикунова (1950г.) и других можно истолковать так: слабый ветер над водной поверхностью приводит беспорядочную столбчатую конвекцию к спиралеобразной в виде соленоидов с горизонтальными осями, вытянутыми вдоль ветра (рис. 6.4). Эта гипотеза находит подтверждение в том, что на поверхности при ветре наблюдаются полосы пены, мелких плавающих предметов, пыли, которые располагаются примерно на равных расстояниях одна от другой и направлены по ветру. Эти полосы называют линиями схождения, предполагая, что они ограничивают ячейки конвекции. Выполненные в последнее время на Ладожском озере подробные исследования показали, что при глубине воды 8 м расстояние между линиями схождения d ? 13 м, а при глубине 60 м d ? 35 м, т. е. расстояние d увеличивается с глубиной водоема. Глубина же проникновения циркуляции растет со скоростью ветра. По имени ученого, впервые описавшего этот вид конвективного течения, в литературе закрепился термин "циркуляция Ленгмюра".

Рис.6.4. Схема конвекции при слабом ветре [8]

1 -- конвективные токи, 2 -- линии схождения.

Таким образом, циркуляция Ленгмюра -- это результат плотностной неустойчивости, возникающей при охлаждении поверхностного слоя воды под действием ветра.

Рис. 6.5. Схема ветрового перемешивания воды [8]

1 -- распределение температуры воды до воздействия ветра, 2 -- распределение температуры воды после ветрового воздействия, 3 -- распределение плотности воды до воздействия ветра, 4 -- распределение плотности воды после ветрового воздействии

Плотностная конвекция и ветровое перемешивание в стоячих водоемах являются причинами образования на некоторой глубине слоя температурного скачка и расслоения их водных масс на три зоны (рис.6.5): эпилимнион (верхняя зона), металимнион (средняя зона, или слой температурного скачка) и гиполимнион (нижняя застойная зона).

Размещено на Allbest.ru

Рис. 6.6. Схема конвективных течений при охлаждении водоема [8]

Описанный процесс конвекции в чистом виде наблюдается в водоемах больших размеров в плане при относительно постоянной глубине. Реальные же водоемы ограничены в плане, а глубина их уменьшается до нуля у берегов. В этих водоемах при развитии конвекции возникают конвективные течения, схематически показанные на рис.6.6. При охлаждении водоема наблюдаются поверхностные конвективные течения от середины водоема к его берегам, а при нагревании -- от берегов к средней его части. Придонные течения имеют обратное направление. В этом случае конвективные течения обусловлены разностью температуры воды в горизонтальном направлении.

Размещено на Allbest.ru

...

Подобные документы

  • Теория неустойчивых колебаний и методы борьбы с ними. Процесс возникновения турбулентности. Равновесный и неравновесный порядок. Конвективные ячейки Бенара. Переходы от порядка к хаосу на примере явления Бенара. Лазер как пример перехода "хаос – порядок".

    контрольная работа [149,0 K], добавлен 09.11.2010

  • Технические способы получения жидких и газовых неоднородных систем. Характеристика основных видов процесса перемешивания в жидких средах. Эффективность и интенсивность перемешивания, методы их оценки. Расчет мощности на механическое перемешивание.

    презентация [444,9 K], добавлен 28.09.2013

  • Расчёт объёма и энтальпий воздуха и продуктов сгорания топлива. Составление теплового баланса. Геометрические размеры топки. Температура дымовых газов за фестоном. Конвективные поверхности нагрева водогрейных котлов. Сопротивление воздушного тракта.

    курсовая работа [1,1 M], добавлен 17.04.2019

  • Расчет теплоты на сушку влажного материала. Конвективная установка непрерывного действия для сушки ленточных и листовых материалов. Схема одноступенчатой аэрофонтанной установки, ее преимущества. Сушильная установка с кипящим слоем, ее теплообмен.

    учебное пособие [9,3 M], добавлен 22.09.2015

  • Расчет объемов и энтальпии воздуха и продуктов сгорания. Расчетный тепловой баланс и расход топлива котельного агрегата. Проверочный расчет топочной камеры. Конвективные поверхности нагрева. Расчет водяного экономайзера. Расход продуктов сгорания.

    курсовая работа [1,9 M], добавлен 11.04.2012

  • Ламинарный и турбулентный режимы движения жидкости. Локальный критерий Нуссельта. Влияние физических свойств жидкости на теплоотдачу. Плотности потоков теплоты и импульса при турбулентном режиме течения вдоль плоской стенки. Конвективный теплообмен шара.

    лекция [3,1 M], добавлен 15.03.2014

  • Градирни для охлаждения воды: назначение и область применения. Конструктивные решения, исключающие опасность обмерзания. Классификация градирен по способу подачи воздуха. Особенности конструкций и процесса охлаждения эжекционных градирен, виды тяги.

    курсовая работа [1,1 M], добавлен 25.11.2015

  • История развития гидравлики. Жидкости и их основные физические свойства. Расчет напорных и безнапорных потоков. Методы измерения расхода воды. Течения в руслах, в канализационных и сливных системах ливнёвки, в водопроводах жилых помещений, трубопроводах.

    реферат [1,0 M], добавлен 30.03.2015

  • Элементарные виды теплообмена (теплопроводность, конвекция теплоты и тепловое излучение). Переход жидкости в пар (кипение). Пример распределения температуры в объеме кипящей воды. Процесс теплоотдачи при кипении. Уравнение и коэффициент теплоотдачи.

    научная работа [531,6 K], добавлен 22.04.2015

  • Конструкция теплообменного аппарата водно-воздушного теплообменника. Использование аппарата в системе охлаждения контура охлаждающей воды системы аварийного охлаждения контура охлаждающей воды теплового двигателя. Выбор моделей вентиляторов и насосов.

    курсовая работа [177,5 K], добавлен 15.12.2013

  • Расходы воды в промышленности, в быту и сельском хозяйстве. Использование воды в промышленности для охлаждения и нагревания жидкостей, приготовления и очистки растворов, транспортировки материалов и сырья по трубам. Водопотребление на орошение.

    презентация [1,5 M], добавлен 08.04.2013

  • Рассмотрение и нахождение основных характеристик плоского стационарного ламинарного течения вязкой несжимаемой жидкости при параболическом распределении скоростей (течение Пуазейля и течение Куэтта). Общий случай течения между параллельными стенками.

    курсовая работа [1,5 M], добавлен 28.12.2010

  • Физические и химические свойства воды. Распространенность воды на Земле. Вода и живые организмы. Экспериментальное исследование зависимости времени закипания воды от ее качества. Определение наиболее экономически выгодного способа нагревания воды.

    курсовая работа [1,4 M], добавлен 18.01.2011

  • Конвекция как перенос энергии струями жидкости или газа, ее закономерности и значение. Сферы и направления практического применения данного явления, и основные факторы, влияющие на его интенсивность. Классификация, разновидности и механизмы конвекции.

    презентация [294,8 K], добавлен 14.04.2011

  • Исторические сведения о воде. Круговорот воды в природе. Виды образования от разных изменений. Скорость обновления воды, ее типы и свойства. Вода как диполь и растворитель. Вязкость, теплоемкость, электропроводность воды. Влияние музыки на кристаллы воды.

    реферат [4,6 M], добавлен 13.11.2014

  • Определение диаметра трубы сифона. Определение режима движения жидкости в коротком трубопроводе и нахождение области сопротивления. Построение напорной и пьезометрической линии при принятом диаметре трубы. Нахождение разности уровней воды в водоемах.

    контрольная работа [189,5 K], добавлен 19.08.2013

  • Принцип работы тахометрического счетчика воды. Коллективный, общий и индивидуальный прибор учета. Счетчики воды мокрого типа. Как остановить, отмотать и обмануть счетчик воды. Тарифы на холодную и горячую воду для населения. Нормативы потребления воды.

    контрольная работа [22,0 K], добавлен 17.03.2017

  • Распространенность, физическая характеристика и свойства воды, ее агрегатные состояния, поверхностное натяжение. Схема образования молекулы воды. Теплоёмкость водоёмов и их роль в природе. Фотографии замороженной воды. Преломление изображения в ней.

    презентация [2,7 M], добавлен 28.02.2011

  • Определение массы и объёма воды, вытекающей из крана за разные промежутки времени. Расчет количества теплоты, необходимого для нагрева воды с использованием различных энергоресурсов. Оценка материальных потерь частного потребителя воды и электроэнергии.

    научная работа [130,8 K], добавлен 01.12.2015

  • Демонстрация режимов течения жидкости и экспериментальное определение критических чисел Рейнольдса для труб круглого сечения. Структура и основные элементы установки Рейнольдса, ее функциональные особенности и назначение, определение параметров.

    лабораторная работа [29,2 K], добавлен 19.05.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.