Элементарная теория гироскопа

Природа сил, которые препятствуют вращению гироскопа вокруг оси момента. Результирующий момент кориолисовых сил инерции всех элементов маховика. Момент инерции маховика относительно оси собственного вращения. Общие сведения о лазерных гироскопах.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 22.09.2013
Размер файла 124,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

План

1. Элементарная теория гироскопа

2. Общие сведения о лазерных гироскопах

1. Элементарная теория гироскопа

Выясним природу сил которые препятствуют вращению гироскопа вокруг оси момента . Предположим, что гироскоп (рис.4) прецессирует под действием момента внешних сил . Этот момент создаётся силами и , проложенными со стороны опор к валу маховика.

Рис.4.

На основании третьего закона Ньютона можно утверждать, что со стороны гироскопа на подшипники будут действовать силы и , равные по модулю и направленные противоположно силам и . Момент этих сил относительно точки 0 равен по величине и противоположен по направлению моменту . Такой момент называется моментом гироскопической реакции или просто гироскопическим моментом. Гироскопический момент

(5.7)

Направление гироскопического момента таково, что он стремится совместить вектор кинетического момента гироскопа с вектором угловой скорости прецессии. По модулю

В рассмотренном случае .

Выделим на периферийной части маховика (рис.5.маховик показан пунктиром) четыре элементарных объёма массой .

Рис.5.

Центры масс этих объёмов сосредоточены в точках 1,2,3,4. При равномерном вращении маховика вокруг оси все рассматриваемые точки движутся с одинаковой по величине линейной скоростью , пропорциональной скорости собственного вращения маховика и расстоянию точки от оси . Если маховику сообщить дополнительную угловую скорость вокруг оси, перпендикулярной к оси собственного вращения (переносную угловую скорость для каждой точки вращающегося маховика), то каждой точке маховика будет сообщено кориолисово ускорение

(5.8)

Если , то величина и направление кориолисова ускорения каждой точки маховика будут зависеть от величины и направления линейной скорости точки при её вращении вокруг оси :

, (5.9)

где - угол между векторами и .

На рис.5 для точек 1,2,3,4 показаны направления векторов скорости и кориолисова ускорения . Кориолисово ускорение точек 2 и 4 равно нулю, поскольку в точке 2 , а в точке 4 . Кориолисовы ускорения в точках 1 и 3 равны по величине, но направлены противоположно, так как в точке , а в точке 3 . С изменением угла кориолисово ускорение изменяется по синусоидальному закону (см.равенство (5.9)). На рис.5 показаны эпюра ускорения и соответствующая ей эпюра кориолисовой силы инерции

в зависимости от положения точки маховика. Из рис.5 следует, что результирующий момент кориолисовых сил инерции всех элементов маховика направлен противоположно моменту внешних сил , действие которого привело к прецессии маховика. Можно показать, что указанный момент кориолисовых сил инерции равен моменту внешних сил. Результирующий момент кориолисовых сил инерции является моментом гироскопической реакции маховика. Следовательно, гироскопический момент по своей природе не что иное, как момент кориолисовых сил инерции.

Пример. Маховик массой и радиусом инерции м вращается с угловой скоростью рад/с; расстояние между подшипниками м (см. рис.4). Определить максимальное давление на подшипники, если корпус, в котором установлен маховик, вращается вокруг оси, перпендикулярной к оси собственного вращения маховика, со скоростью рад/с.

Момент инерции маховика относительно оси собственного вращения

кгмІ.

Гироскопический момент маховика

Нм.

Макcимальное давление на подшипники

3000H.

Из приведенного примера следует, что давление на опоры обусловленное гироскопической реакцией, может значительно превышать статическое давление.

2. Общие сведения о лазерных гироскопах

гироскоп кориолисовый маховик инерция

Требования, предъявляемые к точности, надежности, и стоимости гироскопов в последние годы увеличились до такой степени, что удовлетворить их за счет усовершенствования обычных гироскопов (гироскопов в кардановом подвесе) не представляется возможным. Наибольшие успехи достигнуты в развитии вибрационных, лазерных, гидродинамических, волоконно-оптических гироскопов, которые все более широко применяются в технике.

В отличие от рассмотренных ранее гироскопов в основу работы лазерного гироскопа (ЛГ) положены качественно новые физические явления и принципы. В них носителем информации о вращательном движении являются электромагнитные колебания (волны).

Идея о принципиальной возможности измерения абсолютной угловой скорости с помощью оптических средств впервые была высказана еще в начале XX столетия Майкельсоном и затем практически подтверждена в 1913 г. Саньяком. Эффект, лежащий в основе работы рассматриваемых гироскопов, состоит в том, что на вращающемся теле время прохождения луча света по замкнутому контуру отличается от времени его прохождения по тому же контуру на покоящемся теле.

Центральным функциональным узлом (собственно источником информации) ЛГ является оптическое устройство - кольцевой оптический квантовый генератор (КОКГ), содержащий оптический замкнутый контур, образованный тремя или более зеркалами, в котором циркулируют два встречных световых луча, представляющих собой индуцированное излучение, порождаемое в резонаторе активной газовой (например, гелий-неоновой) смесью. Эти лучи выводятся из резонатора и интерферируют. При вращении основания, на котором установлен контур, каждый из лучей проходит пути разной длины, что приводит к смещению интерференционной картины, частота которого содержит информацию о величине угловой скорости вращения основания Выбор в качестве излучателя оптического квантового генератора (лазера) обусловлен тем, что его излучение обладает высокой монохроматичностью,

когерентностью, направленностью и большой плотностью мощности (понятие "когерентность" означает связь или согласованность между фазами колебаний в различных точках пространства в один и тот же момент времени или между фазами колебаний в одной и той же точке в различные моменты времени). Когерентность электромагнитных колебаний позволяет получить высоконаправленный световой пучок с чрезвычайно малыми поперечными сечениями и обеспечить практическую реализацию интерференционной картины.

Размещено на Allbest.ru

...

Подобные документы

  • Методика определения момента инерции тела относительно оси, проходящей через центр масс. Экспериментальная проверка аддитивности момента инерции и теоремы Штейнера. Зависимость момента инерции от массы тела и ее распределения относительно оси вращения.

    контрольная работа [160,2 K], добавлен 17.11.2010

  • Общее понятие гироскопа, его важнейшие свойства. Основное допущение элементарной теории. Реакция гироскопа на внешние силы. Момент гироскопической реакции, сущность теоремы Резаля. Оценка воздействия мгновенной силы на направление оси гироскопа.

    презентация [415,9 K], добавлен 30.07.2013

  • Определение момента инерции тела относительно оси, проходящей через центр его масс, экспериментальная проверка аддитивности момента инерции и теоремы Штейнера методом трифилярного подвеса. Момент инерции тела как мера инерции при вращательном движении.

    лабораторная работа [157,2 K], добавлен 23.01.2011

  • Исследование момента инерции системы физических тел с помощью маятника Обербека. Скорость падения физического тела. Направление вектора вращения крестовины маятника Обербека. Момент инерции крестовины с грузами. Значения абсолютных погрешностей.

    доклад [23,1 K], добавлен 20.09.2011

  • Изучение зависимости момента инерции от расстояния масс от оси вращения. Момент инерции сплошного цилиндра, полого цилиндра, материальной точки, шара, тонкого стержня, вращающегося тела. Проверка теоремы Штейнера. Абсолютные погрешности прямых измерений.

    лабораторная работа [143,8 K], добавлен 08.12.2014

  • Понятие и главное свойство гироскопа (волчка). Основное допущение элементарной теории. Сущность теоремы Резаля. Особенности движения волчка при воздействии внешних сил. Изучение закона прецессии гироскопа. Определение момента гироскопической реакции.

    презентация [554,7 K], добавлен 02.10.2013

  • Определение момента инерции тела относительно оси, проходящей через центр массы тела. Расчет инерции ненагруженной платформы. Проверка теоремы Штейнера. Экспериментальное определение момента энерции методом крутильных колебаний, оценка погрешностей.

    лабораторная работа [39,3 K], добавлен 01.10.2014

  • Кинетическая энергия вращения твердого тела и момент инерции тела относительно нецентральной оси. Основной закон динамики вращения твердого тела. Вычисление моментов инерции некоторых тел правильной формы. Главные оси и главные моменты инерции.

    реферат [287,6 K], добавлен 18.07.2013

  • Главные оси инерции. Вычисление момента инерции однородного стержня относительно оси, проходящей через центр масс. Вычисление момента инерции тонкого диска или цилиндра относительно геометрической оси. Теорема Штейнера и главные моменты инерции.

    лекция [718,0 K], добавлен 21.03.2014

  • Этапы нахождения момента инерции электропривода. Технические данные машины. Построение графика зависимости момента сопротивления от скорости вращения. Оценка ошибок во время измерения, полученных в связи с неравномерностью значений момента инерции.

    лабораторная работа [3,6 M], добавлен 28.08.2015

  • Момент силы относительно центра как вектор, приложенный к центру О, направленный перпендикулярно плоскости, образованной векторами по правилу правого винта. Порядок вычисления момента силы относительно оси. Свойства момента пары сил, их сложение.

    презентация [74,0 K], добавлен 08.04.2015

  • Различие силы тяжести и веса. Момент инерции относительно оси вращения. Уравнение моментов для материальной точки. Абсолютно твердое тело. Условия равновесия, инерция в природе. Механика поступательного и вращательно движения относительно неподвижной оси.

    презентация [155,5 K], добавлен 29.09.2013

  • Элементарное представление о гироскопе, его основные свойства, принцип работы и применение в технике. Теорема Резаля. Направление оси свободного гироскопа в инерциальной системе отсчета. Регулярная прецессия тяжелого гироскопа, правило Жуковского.

    презентация [310,0 K], добавлен 09.11.2013

  • Магнитоэлектрические датчики момента. Исследование математической модели динамически настраиваемого гироскопа с газодинамической опорой ротора, учитывающей угловую податливость скоростной опоры. Уравнения движения динамически настраиваемого гироскопа.

    дипломная работа [2,0 M], добавлен 12.04.2014

  • Построение графиков скорости, ускорения. Моменты, приложенные к вращающемуся звену. Степень неравномерности, момент инерции маховика. Индикаторная диаграмма определения давления пара в цилиндре. Закон сохранения энергии. Определение индикаторной мощности.

    контрольная работа [551,8 K], добавлен 18.11.2013

  • Методы определения моментов инерции тел правильной геометрической формы. Принципиальная схема установки. Момент инерции оси. Основное уравнение динамики вращательного движения. Измерение полных колебаний с эталонным телом. Расчёт погрешностей измерений.

    лабораторная работа [65,1 K], добавлен 01.10.2015

  • Момент инерции тела относительно неподвижной оси в случае непрерывного распределения масс однородных тел. Теорема Штейнера. Кинетическая энергия вращающегося твердого тела. Плоское движение твердого тела. Уравнение динамики вращательного движения.

    презентация [163,8 K], добавлен 28.07.2015

  • Основы динамики вращений: движение центра масс твердого тела, свойства моментов импульса и силы, условия равновесия. Изучение момента инерции тел, суть теоремы Штейнера. Расчет кинетической энергии вращающегося тела. Устройство и принцип работы гироскопа.

    презентация [3,4 M], добавлен 23.10.2013

  • Анализ режимов работы гироскопа при малой угловой скорости основания. Составление уравнений движения с помощью принципа Гамильтона-Остроградского и Эйлера. Характеристика свободных колебаний гироскопа на подвижном основании с учетом и без учета трения.

    дипломная работа [5,3 M], добавлен 08.07.2012

  • Виды систем: неизменяемая, с идеальными связями. Дифференциальные уравнения движения твердого тела. Принцип Даламбера для механической системы. Главный вектор и главный момент сил инерции системы. Динамические реакции, действующие на ось вращения тела.

    презентация [1,6 M], добавлен 26.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.