Физика нефтегазового пласта

Коллекторские, механические и тепловые свойства горных пород. Состав и физические свойства газа, нефти и пластовых вод. Фазовые состояния углеводородных систем. Свойства системы пласт-вода. Основы вытеснения нефти, конденсата и газа из пористой среды.

Рубрика Физика и энергетика
Вид курс лекций
Язык русский
Дата добавления 25.09.2013
Размер файла 1,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Гетероатомные соединения - углеводороды, в состав молекул которых входят кислород, азот, сера, металлы. К ним относятся: смолы, асфальтены, меркаптаны, сульфиды, дисульфиды, тиофены, порфирины, фенолы, нафтеновые кислоты. Подавляющая часть гетероатомных соединений содержится в наиболее высокомолекулярных фракциях нефти, которые обычно называют "смолисто-асфальтеновыми веществами". На их долю приходится до 15 %.

В нефти также содержатся в малых количествах неорганическая сера, различные металлы и т.д.

Фракционный состав нефти отражает содержание соединений, выкипающих в различных интервалах температур. Нефти выкипают в очень широком интервале температур - 28-550С и выше. Различают следующие фракции нефти:

- 28-180 С - широкая бензиновая фракция;

- 120-240 С - керосиновая фракция (150-240 С - осветительный керосин; 140-200 С - уайт-спирт);

- 140-340 С - дизельная фракция (180-360С - летнее топливо);

- 350-500 С - широкая масляная фракция;

- 380-540 С - вакуумный газойль.

3.3.1 Физико-химические свойства нефти

Плотность пластовой нефти зависит от состава нефти, давления, температуры, количества растворённого газа (рис. 3.1). Чем меньше плотность нефти, тем выше выход светлых фракций. Не все газы, растворяясь в нефти, одинаково влияют на её плотность. С повышением давления плотность нефти значительно уменьшается при насыщении её углеводородными газами. Плотность нефтей при насыщении азотом или углекислым газом несколько возрастает с увеличением давления. Обычно плотность нефтей колеблется в пределах 820-950 кг/м3.

Рис. 3.1. Изменение плотности пластовой нефти в зависимости от давления

Вязкость - сила трения (внутреннего сопротивления), возникающая между двумя смежными слоями внутри жидкости или газа на единицу поверхности при их взаимном перемещении (рис. 3.2).

Динамическая вязкость определяется через закон Ньютона:

, (3.37)

где А - площадь перемещающихся слоёв жидкости (газа) - см. рис. 3.2;

F - сила, требующаяся для поддержания разницы скоростей движения между слоями на величину dv;

dy - расстояние между движущимися слоями жидкости (газа);

dv - разность скоростей движущихся слоёв жидкости (газа).

Рис. 3.2. Движение двух слоёв жидкости относительно друг друга

Размерность вязкости определяется из уравнения Ньютона:

- система СИ - [Пас]

- система СГС - [Пуаз]= [г/(смс)].

Вязкость пластовой нефти всегда значительно отличается от вязкости сепарированной вследствие большого количества растворённого газа, повышенного давления и температуры (рис. 3.3). При этом вязкость уменьшается с повышением количества газа в нефти и с увеличением температуры; повышение давления вызывает увеличение вязкости.

Рис. 3.3. Изменение вязкости пластовой нефти в зависимости от давления и температуры

Вязкость нефти в пластовых условиях различных месторождений изменяется от сотен мПас до десятых долей мПас. В пластовых условиях вязкость нефти может быть в десятки раз меньше вязкости сепарированной нефти.

С вязкостью связан ещё один параметр - текучесть - величина обратная вязкости:

. (3.38)

Кроме динамической вязкости для расчётов используют также кинематическую вязкость - свойство жидкости оказывать сопротивление перемещению одной части жидкости относительно другой с учётом силы тяжести.

. (3.39)

Единицы измерения кинематической вязкости:

- система СИ - [м 2/с]

- система СГС - [Стокс].

Нефть, как и все жидкости, обладает упругостью, т.е. способностью изменять свой объём под действием внешнего давления. Уменьшение объёма характеризуется коэффициентом сжимаемости (или объёмной упругости) :

. (3.40)

Коэффициент сжимаемости зависит от давления, температуры, состава нефти и газового фактора. Нефти, не содержащие растворённого газа, обладают сравнительно низким коэффициентом сжимаемости (0,4-0,7 ГПа-1), а лёгкие нефти со значительным содержанием растворённого газа - повышенным коэффициентом сжимаемости (до 14 ГПа-1). Высокие коэффициенты сжимаемости свойственны нефтям, находящимся в пластовых условиях, близких к критическим.

С количеством растворённого газа в нефти также связан объёмный коэффициент b, характеризующий соотношение объёмов нефти в пластовых условиях и после отделения газа на поверхности:

, (3.41)

где Vпл - объём нефти в пластовых условиях;

Vдег - объём нефти при атмосферном давлении и температуре 20 С после дегазации.

Используя объёмный коэффициент, можно определить усадку нефти (U), т.е. уменьшение объёма пластовой нефти при извлечении её на поверхность (в %):

. (3.42)

4. Фазовые состояния углеводородных систем

В процессе разработки месторождений в пластах непрерывно изменяются давление, температура, количественное соотношение нефти и газа. Это сопровождается непрерывным изменением состава газовой и жидкой фаз и переходом различных углеводородов из одной фазы в другую. Особенно быстро такие превращения происходят при движении нефти по стволу скважины от забоя к устью.

Дальнейшее движение нефти и газа к потребителю также сопровождается непрерывными фазовыми превращениями. Закономерности фазовых переходов и фазовое состояние газонефтяных смесей при различных условиях необходимо знать для решения многих задач.

Интенсивность выделения газовой фазы из нефти зависит от многих факторов, основными из которых являются:

- темп снижения давления и температуры при движении нефтяного потока;

- наличие в составе нефти лёгких углеводородов (С26);

- молекулярная масса нефти;

- вязкость нефти.

4.1 Схема фазовых превращений однокомпонентных систем

Углеводородные газы, подобно всем индивидуальным веществам, изменяют свой объём при изменении давления и температуры. На рис. 4.1 представлена диаграмма фазового состояния для чистого этана. Каждая из кривых соответствует фазовым изменениям при постоянной температуре и имеет три участка. Слева от пунктирной линии отрезок соответствует газовой фазе, горизонтальный участок - двухфазной газожидкостной области, левый участок - жидкой фазе. Отрезок пунктирной линии вправо от максимума в точке С называется кривой точек конденсации (или точек росы), а влево от максимума - кривой точек парообразования (кипения). В точке С пунктирной линии кривые парообразования и конденсации сливаются. Эта точка называется критической.

С приближением температуры и давления к критическим значениям свойства газовой и жидкой фаз становятся одинаковыми, поверхность раздела между ними исчезает, и плотности их уравниваются. Следовательно, с приближением к критической точке по кривой начала кипения плотность жидкой фазы будет непрерывно убывать. Если же к ней приближаться по линии точек конденсации, то плотность пара будет непрерывно возрастать.

Рис. 4.1. Диаграмма фазового состояния чистого этана

Для индивидуальных углеводородов граничным давлением между жидкой и газовой фазой является давление упругости паров (при данной температуре), при котором происходит конденсация или испарение. Обе фазы (жидкость и пар) при данной температуре присутствуют в системе только в том случае, если давление равно упругости насыщенного пара над жидкостью.

Фазовые превращения углеводородов можно также представить в координатах давление-температура (рис. 4.2). Для однокомпонентной системы кривая давления насыщенного пара на графике давление-температура является одновременно кривой точек начала кипения и линией точек росы. При всех других давлениях и температурах вещество находится в однофазном состоянии.

Фазовая диаграмма индивидуальных углеводородов ограничивается критической точкой С (рис. 4.2). Для однокомпонентных систем эта точка определяется наивысшими значениями давления и температуры, при которых ещё могут существовать две фазы одновременно.

Рис. 4.2. Диаграмма фазового состояния чистого этана в координатах Т-Р

Из рисунка 4.2 следует, что путём соответствующих изменений давления и температуры углеводороды можно перевести из парообразного состояния в жидкое, минуя двухфазную область. Газ, характеризующийся параметрами точки А (рис. 4.2), можно изобарически нагреть до температуры точки В, а затем, повысив давление в системе при постоянной температуре, перевести вещество в область точки D, расположенную выше критической точки С, и далее в область точки Е. Свойства системы при этом изменяются непрерывно, и разделения углеводорода на фазы не произойдёт. При дальнейшем охлаждении системы (от точки D до точки Е), а затем при снижении давления до точки F вещество приобретёт свойства жидкости, минуя область двухфазного состояния.

Значительно сложнее закономерности фазовых переходов двух- и многокомпонентных систем.

В смеси углеводородов каждый компонент имеет собственные значения упругости насыщенных паров, поэтому процессы конденсации и испарения не будут проходить при конкретных значениях давления и температуры, а в определённом диапазоне значений давления и температуры. Границы диапазона будут тем больше, чем больше разница между критическими значениями давления и температуры индивидуальных компонентов, входящих в систему. Более подробную информацию по фазовым переходам многокомпонентных систем можно найти в литературе [3, 4].

4.2 Фазовые переходы в нефти, воде и газе

Фазовые переходы подчиняются определённым закономерностям, в основе которых лежит понятие равновесия фаз. Равновесие фаз характеризуется константой равновесия, которая зависит от температуры и давления.

Константа фазового равновесия i-го компонента характеризуется отношением мольной доли компонента в газовой фазе (уi или Nyi) к мольной доле этого компонента в жидкой фазе (хi или Nxi), находящейся в равновесном состоянии с газовой фазой:

. (4.1)

Для определения равновесного состояния газожидкостных смесей используются законы Дальтона и Рауля.

Согласно закону Дальтона каждый компонент, входящий в газовую фазу имеет своё парциальное давление Pi, а общее давление в газовой системе равно сумме парциальных давлений:

(4.2)

Согласно закону Рауля, парциальное давление компонента над жидкостью (нефтью) равно давлению насыщенного пара (Рнас. пара) или упругости пара (Qi) и этого компонента, умноженному на его мольную долю в нефти:

или (4.3)

где Qi - упругость паров компонента;

Nxi - мольная доля компонента

piнас. пара - давление насыщенного пара i-го компонента.

В момент равновесия парциальное давление i-го компонента в газовой фазе равно парциальному давлению компонента над жидкостью. Отсюда следует закон Дальтона-Рауля для равновесного состояния газовой и нефтяной фазы:

; (4.4)

, (4.5)

где Кi - константа равновесия i-го компонента при данной температуре и давлении смеси.

Уравнение материального баланса для одного моля нефтегазовой смеси:

, (4.6)

где L - мольная доля жидкой фазы;

V - мольная доля паровой фазы

Nzi - мольные доли компонентов в нефтегазовой смеси.

По условию сумма мольной доли жидкой и паровой фаз равна единице. Отсюда:

V=1-L. (4.7)

Используя уравнения (4.6) и (4.7) получим выражение для мольной доли компонента жидкой фазы:

, (4.8)

Или

, (4.9)

и для мольной доли компонента газовой фазы:

. (4.10)

5. Поверхностно-молекулярные свойства системы пласт-вода

Нефтяной пласт представляет собой залежь осадочных пород в виде тела с огромным скоплением капиллярных каналов и трещин, поверхность которых очень велика. Поэтому закономерности движения нефти в пласте и её вытеснения из пористой среды зависят также и от свойств пограничных слоёв соприкасающихся фаз и процессов, происходящих на поверхности контакта нефти, газа и воды с породой.

На формирование залежей углеводородов оказывает влияние количество остаточной воды в залежи (остаточная водонасыщенность, SB), которая в свою очередь зависит от свойств воды и углеводородов и от природы поверхности горной породы. Под природой поверхности понимаются гидрофильность - способность вещества смачиваться водой и гидрофобность - способность вещества не смачиваться водой.

Физико-химические свойства поверхностей раздела фаз и закономерности их взаимодействия характеризуются рядом показателей - поверхностным натяжением на границе раздела фаз, явлениями смачиваемости и растекания, работой адгезии и когезии, теплотой смачивания.

Поверхностное натяжение - избыток свободной энергии сосредоточенной на одном квадратном сантиметре площади поверхностного слоя на границе раздела двух фаз. По поверхностному натяжению пластовых жидкостей на различных поверхностях раздела можно судить о свойствах соприкасающихся фаз, закономерностях взаимодействия жидких и твёрдых тел, процессах адсорбции, количественном и качественном составе полярных компонентов в жидкости, интенсивности проявления капиллярных сил и т.д.

Поверхностное натяжение связано с такими понятиями как свободная энергия поверхностного слоя жидкости и сила поверхностного натяжения.

Свободная энергия поверхности:

Е = s, (5.1)

где - поверхностное натяжение;

s - суммарная поверхность двух фаз.

Сила поверхностного натяжения - сила, действующая на единицу длины периметра взаимодействия двух фаз (линию смачивания):

, (5.2)

где - линия смачиваемости.

Коэффициент поверхностного натяжения зависит от давления, температуры, газового фактора, свойств флюидов.

Если поверхностное натяжение между двумя жидкостями, газом и жидкостью можно измерить, то на поверхности раздела породы-жидкости и породы-газа измерить трудно. Поэтому для изучения поверхностных явлений на границе порода-жидкость пользуются косвенными методами изучения поверхностных явлений: измерением работы адгезии и когезии, исследованием явлений смачиваемости и растекаемости, изучением теплоты смачивания.

Смачиванием называется совокупность явлений на границе соприкосновения трёх фаз, одна из которых обычно является твёрдым телом и две другие - не смешиваемые жидкости или жидкость и газ.

Капля жидкости может растекаться по поверхности, если поверхность хорошо смачивается, а если поверхность плохо смачивается, то капля растекаться не будет.

Интенсивность смачивания характеризуется величиной краевого угла смачивания , образованного поверхностью твёрдого тела с касательной, проведённой к поверхности жидкости из точки её соприкосновения с поверхностью (рис. 5.1).

Рис. 5.1. Форма капли, обусловленная поверхностными натяжениями на различных границах соприкасающихся фаз

Краевой угол измеряется в сторону более полярной фазы (в данном случае в сторону воды). Принято условно обозначать цифрой 1 водную фазу, цифрой 2 - углеводородную жидкость или газ, цифрой 3 - твёрдое тело.

Предполагая, что краевой угол отвечает термодинамическому равновесию, получим уравнение, впервые выведенное Юнгом:

2,3 = 3,1 +1,2 cos, (5.3)

откуда получим выражение для краевого угла :

. (5.4)

Если 23 > 13, то 0<cos<1, из чего следует, что угол - острый (наступающий), а поверхность - гидрофильная.

Если 23 > 13, то -1<cos<0, из чего следует, что угол - тупой (отступающий), а поверхность - гидрофобная.

Существуют также переходные поверхности (т.н. амфотерные), которые хорошо смачиваются как полярными, так и неполярными системами.

К гидрофильным поверхностям относятся силикаты, карбонаты, окислы железа. К гидрофобным поверхностям - парафины, жиры, воск, чистые металлы.

Краевой угол смачивания зависит от строения поверхности, адсорбции жидкостей и газов, наличия ПАВ, температуры, давления, электрического заряда.

Поверхностные явления описываются также работой адгезии.

Адгезия - прилипание (сцепление поверхностей) разнородных тел. Когезия - явление сцепления поверхностей разнородных тел, обусловленной межмолекулярным или химическим взаимодействием.

Работа адгезии оценивается уравнением Дюпре:

Wa = 1,2 + 2,3+ 1,3.. (5.5)

Используя соотношения (5.3) и (5.5), мы получим уравнение Дюпре-Юнга:

Wa = 1,2(1+cos). (5.6)

Из соотношения:

2,3 - 1,3= 1,2cos (5.7)

следует, что при смачивании свободная энергия единицы поверхности твёрдого тела уменьшается на величину 1,2cos, которую принято называть натяжением смачивания.

Работа когезии Wк характеризует энергетические изменения поверхностей раздела при взаимодействии частиц одной фазы.

Из уравнения (5.6) следует, что на отрыв жидкости от поверхности твёрдого тела при полном смачивании (когда cos=0) затрачивается работа, необходимая для образования двух жидких поверхностей - 2жг, т.е. Wк = 2ж г, где 2жг - поверхностное натяжение жидкости на границе с газом.

Это значит, что при полном смачивании жидкость не отрывается от поверхности твёрдого тела, а происходит разрыв самой жидкости, т.е. при полном смачивании 1,2 1,3.

Подставив в уравнение Юнга значения работ адгезии и когезии, получим:

. (5.8)

Из этого уравнения следует, что смачиваемость жидкостью твёрдого тела тем лучше, чем меньше работа когезии (и поверхностное натяжение жидкости на границе с газом).

Для характеристики смачивающих свойств жидкости используют также относительную работу адгезии:

z=Wа/Wк.

Ещё одна характеристика, используемая для описания поверхностных явлений - теплота смачивания.

Установлено, что при смачивании твёрдого тела жидкостью наблюдается выделение тепла, так как разность полярностей на границе твёрдое тело-жидкость меньше, чем на границе с воздухом. Для пористых и порошкообразных тел теплота смачивания обычно имеет значение от 1 до 125 кДж/кг и зависит от степени дисперсности твёрдого тела и полярности жидкости.

Теплота смачивания характеризует степень дисперсности твёрдого тела и природу его поверхности. Большее количество теплоты выделяется при смачивании той жидкостью, которая лучше смачивает твёрдую поверхность.

6. Физические основы вытеснения нефти, конденсата и газа из пористой среды

6.1 Источники пластовой энергии

Приток жидкости и газа из пласта в скважины происходит под действием сил, на природу и величину которых влияют виды и запасы пластовой энергии. В зависимости от геологического строения района и залежи приток нефти, воды и газа к скважинам обусловливается:

1) напором краевых вод;

2) напором газа, сжатого в газовой шапке;

3) энергией газа, растворенного в нефти и в воде и выделяющегося из них при снижении давления;

4) упругостью сжатых пород;

5) гравитационной энергией.

В зависимости от вида преимущественно проявляющейся энергии вводят понятия режимов работы залежи: водонапорный, режим газовой шапки (газонапорный), растворенного газа, упругий или упруговодонапорный, гравитационный и смешанный.

Водонапорный режим газовых месторождений, так же как и нефтяных залежей, возникает при наличии активных краевых вод или при искусственном заводнении пласта. Газовый режим залежи (или режим расширяющегося газа) возникает при условии, когда единственным источником является энергия сжатого газа, т. е. когда пластовые воды не активны.

Запасы пластовой энергии расходуются на преодоление сил вязкого трения при перемещении жидкостей и газов к забоям скважин, на преодоление капиллярных и адгезионных сил.

6.2 Силы, действующие в залежи

Гидравлические сопротивления во время движения жидкости в пористой среде пропорциональны скорости потока и вязкости жидкостей. Эти сопротивления аналогичны сопротивлению трения при движении жидкости в трубах. Но в отличие от движения жидкости в трубах характер ее течения в микронеоднородной пористой среде имеет свои особенности. По результатам наблюдений за движением воды и нефти в пористой среде установлено, что в области водонефтяного контакта вместо раздельного фронтового движения фаз перемещается смесь воды и нефти. Жидкости в капиллярных каналах разбиваются на столбики и шарики, которые на время закупоривают поры пласта вследствие проявления капиллярных сил. Подобное образование смеси наблюдалось и в единичных капиллярах.

Чтобы представить механизм проявления капиллярных сил при движении водонефтяной смеси, остающейся позади водонефтяного контакта, рассмотрим условия перемещения столбика нефти в цилиндрическом капилляре, заполненном и смоченном водой (рис. 6.1).

Рис. 6.1. Схема деформации капли нефти при её сдвиге в капилляре

Под действием капиллярных сил столбик нефти будет стремиться принять шарообразную форму, оказывая при это давление Р на пленку воды между стенками капилляра и столбиком нефти:

, (6.1)

где - поверхностное натяжение на границе нефть-вода;

R - радиус сферической поверхности столбика нефти;

r - радиус ее цилиндрической поверхности.

Под действием давления, развиваемого менисками, происходит отток жидкости из слоя, отделяющего столбик нефти от стенок капилляра, продолжающийся до тех пор, пока пленка не достигнет равновесного состояния. Эти пленки обладают аномальными свойствами, в частности повышенной вязкостью, и поэтому они неподвижны. Следовательно, с началом движения столбика нефти в капилляре возникнет сила трения, обусловленная давлением нефти на стенки капилляра. Кроме того, прежде чем столбик нефти сдвинется с места, мениски на границах фаз деформируются и займут положение, изображенное пунктирными линиями.

Разность давлений, созданных менисками, будет создавать силу, противодействующую внешнему перепаду давлений:

. (6.2)

Описанное явление, сопровождающееся действием дополнительных сопротивлений при движении пузырьков газа и несмешивающихся жидкостей в капиллярных каналах, впервые исследовано Жаменом и названо его именем. Многочисленные эффекты Жамена возникают также при движении газоводонефтяных смесей в пористой среде. Дополнительное сопротивление и капиллярное давление для единичных столбиков могут быть невелики. Но в пористой среде столбики образуются в больших количествах, и на преодоление капиллярных сил затрачивается значительная часть пластовой энергии. Капиллярные силы способствуют уменьшению проницаемости фаз.

В пористой среде водонефтяная смесь движется в капиллярах переменного сечения, при этом происходит деформация капель. При переходе глобул и шариков нефти, воды или газа из широкой части канала в суженную. Вследствие неравенства радиусов кривизны менисков возникает дополнительное противодавление.

6.3 Поверхностные явления при фильтрации пластовых жидкостей и причины нарушения закона Дарси

На закономерности фильтрации жидкостей и газов в пористой среде влияют не только границы раздела между нефтью, газом и водой, но и поверхностные явления, происходящие на границах твёрдое тело-жидкость. Понижение скорости фильтрации может быть вызвано химической фиксацией адсорбционных слоёв поверхностно-активных компонентов нефти, например кислотного типа, на активных местах поверхности минеральных зёрен.

В таких случаях может наблюдался непрерывное замедление фильтрации со временем до полной закупорки перовых каналов вследствие возрастания толщины коллоидных пленок.

Установлено, что эффект затухания фильтрации нефтей исчезает с увеличением перепадов давлении и повышением температуры до 60-б 5°С. С повышением депрессии до некоторого предела происходит срыв (размыв) образованных ранее адсорбционно-сольватных слоев. Это одна из причин нарушения закона Дарси (нелинейный характер зависимости расхода от депрессии) при изменении режима фильтрации углеводородных жидкостей в пористой среде.

Дебиты скважин вследствие образования в пласте смоло-парафиновых отложений в ряде случаев уменьшаются, и для борьбы с этим прогревают призабойную зону или обрабатывай забой какими-либо средствами.

Другой причиной нарушения закона Дарси могут быть аномальные свойства жидкостей, связанные с отклонением от закона трения Ньютона.

6.4 Общая схема вытеснения из пласта нефти водой и газом

В природных условиях наиболее распространены залежи, разрабатываемые на напорных режимах (или эти режимы работы воспроизводятся и поддерживаются искусственно путем нагнетания в залежь воды или газа). Нефть из таких залежей вытесняется внешними агентами - краевой или нагнетаемой водой, свободным газом газовой шапки или газом, нагнетаемым в пласт с поверхности. Несмотря на существенные различия в отдельных деталях процесса, общая качественная схема вытеснения нефти водой и газом имеет много общего.

Нефть и вытесняющий ее агент движутся одновременно в пористой среде. Однако полного вытеснения нефти замещающими ее агентами никогда не происходит, так как ни газ, ни вода не действуют на нефть как "поршни". Вследствие неоднородности размеров пор в процессе замещения вытесняющая жидкость или газ с меньшей вязкостью неизбежно опережает нефть. При этом насыщение породы различными фазами, а следовательно, и эффективная проницаемость для нефти и вытесняющих агентов непрерывно изменяются. С увеличением водонасыщенности, например до 50-60 %, увеличивается количество воды в потоке в связи с возрастанием эффективной проницаемости породы для воды. При этом нефть уже не вытесняется из пор, а скорее увлекается струёй воды. Таким образом, по длине пласта образуется несколько зон с различной водонефтенасыщенностью. Типичная картина изменения водонасыщенности по длине пласта в один из моментов времени при вытеснении нефти водой приведена на рис. 6.2. Эта схема процесса представляется всеми исследователями как суммарный результат проявления капиллярных и гидродинамических сил.

Водонасыщенность пласта уменьшается от максимального значения Smax, соответствующего конечной нефтеотдаче на начальной линии нагнетания воды, до значения насыщенности погребённой воды Sп. При этом в пласте можно отметить три зоны. В первой из них, где водонасыщенность изменяется от Smax до Sф, на условном контуре вытеснения она плавно понижается по направлению к нефтенасыщенной части пласта. Этот участок характеризует зону водонефтяной смеси, в которой постепенно вымывается нефть.

Рис. 6.2. Изменение нефтеводонасыщенности по длине пласта при вытеснении нефти водой

Второй участок (зона II) с большим уклоном кривой представляет собой переходную зону от вымывания нефти (зона I) к зоне III движения чистой нефти. Эту зону принято называть стабилизированной. Длина ее в естественных условиях может достигать нескольких метров.

Аналогичное распределение газа и нефти в пласте образуется при вытеснении нефти газом. Разница главным образом количественная в связи с различной вязкостью воды и газа.

Кроме свободного газа газовой шапки, нефть из пласта может вытесняться также газом, выделяющимся из раствора. Иногда растворенный газ является единственным источником энергии в залежи. Энергия растворенного в нефти газа проявляется в тех случаях, когда давление в залежи падает ниже давления насыщения нефти газом.

Свободный газ со снижением давления вначале выделяется у твердой поверхности, так как затрачиваемая работа, необходимая для образования пузырька у стенки (за исключением случая полного смачивания поверхности твердого тела жидкостью), меньше, чем необходимо для его образования в свободном пространстве жидкости. После образования пузырька газонасыщенность структуры увеличивается.

Вначале газовые пузырьки находятся далеко друг от друга, но, постепенно расширяясь, газонасыщенные участки соединяются друг с другом. После образования пузырьков газа они вытесняют нефть из пласта в том объеме, который занимают в поровом пространстве. Такой эффективный процесс вытеснения продолжается до тех пор, пока газонасыщенные участки перемежаются с нефтью (т. е. до образования сплошных газонасыщенных участков). С этого момента эффективность вытеснения нефти газом понижается по мере увеличения газонасыщенности пор пласта, так как малая вязкость газа позволяет ему быстрее нефти перемещаться к скважинам, в зоны пониженного давления (к забоям), по газонасыщенным участкам.

6.5 Нефтеотдача пластов при различных условиях дренирования залежи

Коэффициентом нефтеотдачи пласта принято называть разность между начальной и остаточной (конечной) нефтенасыщенностью, отнесенную к начальной.

При современном уровне развития технологии и техники нефтедобычи физически возможный коэффициент нефтеотдачи значительно меньше единицы. Даже если сетка расположения скважин плотная, а водные факторы значительные, нефтеотдача редко достигает 70-80 %.

Нефтеотдача зависит от вида используемой энергии. Наибольшее ее значение отмечается в условиях вытеснения нефти водой, что связано обычно с большими запасами энергии краевых вод, которые могут быть даже неограниченными по сравнению с запасами энергии свободного газа, сжатого в газовой шапке и растворённого в нефти. Это объясняется также большой эффективностью промывки пор водой, так как соотношение вязкостей нефти и воды более благоприятно при вытеснении нефти водой, чем газом. Наконец, увеличению нефтеотдачи при вытеснении нефти водой может благоприятствовать физико-химическое взаимодействие воды с породой и нефтью. Вода обладает лучшей отмывающей и вытесняющей способностью, чем газ.

Эффективность вытеснения нефти газом, выделяющимся из раствора, ниже эффективности при других источниках пластовой энергии. Это объясняется ограниченным объёмом газа, который имеется в пласте, и небольшим соотношением вязкостей газа и нефти, что способствует быстрому прорыву газа в скважины вследствие его большой подвижности. Газ, кроме того, является фазой, не смачивающей породы пласта, что способствует увеличению количества остаточной нефти.

Значительно эффективнее проявляется энергия газа из газовой шапки. В процессе расширения газа нефть перемещается к забою, и первоначально происходит эффективное вытеснение нефти из пласта при сравнительно небольшой его газонасыщенности. Дальнейшее снижение эффективности расширения газовой шапки обусловлено в основном несмачиваемостью твердой фазы газом и небольшой его вязкостью, что приводит к прорыву газа к скважинам через крупные каналы и более проницаемые зоны пласта.

Значительное влияние на нефтеотдачу залежей с газовой шапкой оказывает угол наклона пластов. При крутых углах падения пластов условия гравитационного отделения газа от нефти улучшаются, и эффективность вытеснения нефти газом повышается.

Низкая нефтеотдача естественных коллекторов объясняется микро- и макронеоднородным характером их строения. Микронеоднородный и сложный характер строения перового пространства - причина прорыва вод и газа по отдельным каналам и образования водонефтегазовых смесей в пористой среде. Совместное движение различных несмешивающихся фаз в пласте представляет собой сложный процесс, в котором капиллярные силы проявляются во много раз больше, чем при "поршневом" вытеснении нефти водой.

Известно, что вытеснение взаимно растворимых жидкостей характеризуется высокой нефтеотдачей, близкой к 95-100 %.

Высокая вязкость нефти по сравнению с вязкостью воды способствует уменьшению нефтеотдачи. По результатам исследований с увеличением вязкости нефти значительнее проявляются различные местные неоднородности физических свойств пород, приводящие к возникновению небольших, но многочисленных участков, обойденных фронтом воды и плохо ею промываемых.

На нефтеотдачу пластов в значительной степени влияет удельная поверхность пород. Нефть гидрофобизует поверхность твердой фазы, и часть нефти, находящейся в пленочном состоянии, может быть удалена из пласта лишь специальными методами воздействия.

Макронеоднородное строение пластов - наиболее существенная причина неполной отдачи нефти пластом. Неоднородностью строения, свойств и состава пород объясняется появление зон, не промываемых водой и слабо дренируемых газом. Оказалось также, что нефтеотдача зависит от свойств пористой среды и условий вытеснения нефти водой и газом (количество и состав связанной воды, состав и физико-химические свойства нефти и горных пород, скорость вытеснения и др.).

Исходя из причин, вызывающих неполную отдачу пластом нефти, можно отметить следующие пластовые формы существования остаточной нефти:

1) капиллярно удержанная нефть;

2) нефть в пленочном состоянии, покрывающая поверхность твердой фазы;

3) нефть, оставшаяся в малопроницаемых участках, обойденных и плохо промытых водой;

4) нефть в линзах, отделенных от пласта непроницаемыми перемычками и не вскрытых скважинами;

5) нефть, задержавшаяся у местных непроницаемых экранов (сбросы и другие непроницаемые перемычки).

Пленочная нефть покрывает тонкой смачивающей пленкой поверхность твердой фазы пласта. Количество этой нефти определяется радиусом действия молекулярных сил твердой и жидкой фаз, строением поверхности минерала и размером удельной поверхности пород.

Измерения тонких слоев жидкости, а также исследования распределения остаточной воды в пористой среде показывают, что объем остаточной нефти, находящейся в пленочном состоянии, в реальных условиях во много раз меньше, чем капиллярно удержанной.

Кроме пленочной и капиллярно удержанной нефти, значительные ее количества могут оставаться в обойденных и плохо промытых водой участках, а также в изолированных линзах, тупиках и местных непроницаемых экранах и перемычках.

Небольшие значения коэффициентов нефтеотдачи естественных коллекторов свидетельствуют о значительном количестве нефти, остающейся пласте в виде мелких и больших ее целиков вследствие неоднородности строения пород и пластов.

Как уже упоминалось, наиболее эффективен водонапорный режим, и поэтому для повышения нефтеотдачи пластов при разработке залежей нефти следует стремиться к сохранению естественного или воспроизведению искусственного режима вытеснения нефти водой. Технология заводнения может быть улучшена выбором таких параметров процесса, которые обеспечивают наилучшие условия вытеснения нефти водой. При заводнении залежей можно изменять режим (скорость) закачки воды в пласт, поверхностное ее натяжение на границе с нефтью и смачивающие свойства (обработкой воды специальными веществами), вязкость и температуру.

6.6 Роль капиллярных процессов при вытеснении нефти водой из пористых сред

Поровое пространство нефтесодержащих пород представляет собой огромна скопление капиллярных каналов, в которых движутся несмешивающиеся жидкости, образующие мениски на разделах фаз. Поэтому капиллярные силы влияют на процессы вытеснения нефти.

За водонефтяным контактом мениски создают многочисленные эффекты Жамена и препятствуют вытеснению нефти. Если среда гидрофильна, в области водонефтяного контакта давление, развиваемое менисками, способствует возникновению процессов капиллярного пропитывания и перераспределения жидкостей. Это связано с неоднородностью пор по размерам. Капиллярное давление, развиваемое в каналах небольшого сечения, больше, чем в крупных порах. В результате этого на водонефтяном контакте возникают процессы противоточной капиллярной пропитки - вода по мелким порам проникает в нефтяную часть пласта, по крупным порам нефть вытесняется в водоносную часть. Поэтому необходимо решить, какие воды следует выбирать для заводнения залежей: интенсивно впитывающиеся в нефтяную часть залежи под действием капиллярных сил или слабо проникающие в пласт. Изменяя качества нагнетаемых в залежь вод, можно воздействовать на поверхностное натяжение на границе с нефтью, смачивающие характеристики, а также вязкостные свойства.

Необходимо отметить, что вопрос об увеличении или уменьшении капиллярных сил, так же как и многие другие задачи физики вытеснения нефти водой, не имеет однозначного решения. В условиях зернистых неоднородных коллекторов процессы перераспределения нефти и воды под действием капиллярных сил могут способствовать преждевременным нарушениям сплошности нефти в нефтеподводящих системах капилляров в зоне совместного движения нефти и воды, помогая формированию водонефтяных смесей в поровом пространстве, что сопровождается значительным уменьшением нефтеотдачи. В трещиноватых коллекторах нефтеотдача блоков повышается при нагнетании в залежь воды, способной интенсивно впитываться в породу под влиянием капиллярных сил.

6.7 Зависимость нефтеотдачи от скорости вытеснения нефти водой

Анализ результатов большого числа исследований, посвященных этой проблеме, позволяет сделать вывод о связи между капиллярными свойствами пластовой системы и характером зависимости нефтеотдачи от скорости вытеснения нефти водой. Во всех случаях, когда пласт гидрофобен и капиллярные силы противодействуют вытеснению нефти из пористой среды водой, нефтеотдача возрастает с увеличением скорости продвижения водонефтяного контакта (т. е. увеличивается с ростом градиентов давлении). Когда капиллярные силы ослаблены (вследствие низких значений поверхностного натяжения, проницаемости пород > 1-2 мкм 2 и др.), скорость вытеснения нефти водой не влияет на нефтеотдачу.

На практике часто встречаются залежи нефти, чрезвычайно разнообразные по степени неоднородности пород и строению пластов. В этом случае на зависимость нефтеотдачи от перепада давлений (от скорости вытеснения) оказывают влияние, кроме физико-химических свойств пластовой системы, многие другие факторы. Например, в ряде случаев известны факты включения в работу с увеличением депрессии дополнительных пропластков, которые раньше (при меньших перепадах давлений) не участвовали в притоке нефти. С возрастанием депрессии перераспределяются давления в пласте при соответствующих изменениях геометрии потока, охватывающего дополнительные участки пласта, ранее мало отдававшие нефть. Существуют и другие факторы, влияющие на результаты вытеснения нефти водой из естественных пластов и на зависимость нефтеотдачи от величины депрессии. Поэтому в реальных условиях возможны различные коэффициенты нефтеотдачи независимо от физико-химических свойств пласта.

По результатам наблюдений многих исследователей, повышение градиентов давлений в пласте оказывает благоприятное влияние на нефтеотдачу залежей нефти, приуроченных к неоднородным коллекторам.

Литература

1. Гиматудинов Ш.К. и др. Физика нефтяного и газового пласта. - М.: Недра, 1982. - 312 с.

2. Оркин Г.К., Кучинский П.К. Физика нефтяного пласта. - М.: Гостоптехиздат, 1955. - 299 с.

3. Амикс Дж. и др. Физика нефтяного пласта. - М.: Гостоптехиздат, 1962. - 572 с.

4. Ермилов О.М., Ремизов В.В., Ширковский Л.И., Чугунов Л.С. Физика пласта, добыча и подземное хранение газа. - М.: Наука, 1996. - 541 с.

5. Варфоломеев Д.Ф., Хамаев В.Х. Химия нефти и газа. - Уфа, 1977. - 61 с.

Размещено на Allbest.ru

...

Подобные документы

  • Изучение особенностей структуры жидкости. Классификация пластовых вод по условиям залегания. Исследование макроскопических гидрофизических эффектов при малых энергетических воздействиях на водные среды. Разработка месторождения по добыче нефти и газа.

    контрольная работа [234,5 K], добавлен 03.04.2015

  • Содержание молекулярно-кинетической теории газов. Химический состав жидкости. Особенности межмолекулярного взаимодействия в данном агрегатном состоянии. Механические и тепловые свойства твердых тел. Практическое применение плазмы - ионизованного газа.

    контрольная работа [26,0 K], добавлен 27.10.2010

  • Понятие и история происхождения сланцевого газа, его главные физические и химические свойства. Способы добычи, используемое оборудование и материалы, оценка степени влияние на экологию. Перспективы применения данного типа газа в будущем в энергетике.

    контрольная работа [28,7 K], добавлен 11.12.2014

  • Свойства материалов: механические, физические, химические. Виды деформаций: растяжение, сжатие, сдвиг, кручение и изгиб. Расчет плотности, теплопроводности и теплоемкости материалов. Огнестойкость материалов: несгораемые, трудносгораемые, сгораемые.

    презентация [32,0 M], добавлен 10.10.2015

  • Вывод первого начала термодинамики через энергию. Уравнение состояния идеального газа, уравнение Менделеева-Клапейрона. Определение термодинамического потенциала. Свободная энергия Гельмгольца. Термодинамика сплошных сред. Тепловые свойства среды.

    практическая работа [248,7 K], добавлен 30.05.2013

  • Определение коэффициента теплопроводности из уравнения Фурье. Механизмы теплопередачи: кондуктивный, конвективный перенос, радиационный теплообмен. Теплофизические явления в горных породах. Зависимости тепловых свойств минералов от температуры и давления.

    презентация [440,5 K], добавлен 15.10.2013

  • Физика явлений, происходящих в газовых разрядах с непрерывным и импульсным подводом электрической энергии, как основа лазерных технологий. Виды, свойства и характеристики разрядов. Разряд униполярного пробоя газа, его вольт-амперные характеристики.

    дипломная работа [1,9 M], добавлен 25.02.2013

  • Тепловые явления в молекулярной физике. Силы взаимодействия молекул, их масса и размер. Причина броуновского движения частицы. Давление идеального газа. Понятие теплового равновесия. Идеальная газовая шкала температур. Тепловые двигатели и охрана природы.

    конспект урока [81,2 K], добавлен 14.11.2010

  • Физические свойства природного газа. Описание газопотребляющих приборов. Определение расчетных расходов газа. Гидравлический расчет газораспределительной сети низкого давления. Принцип работы газорегуляторных пунктов и регуляторов газового давления.

    курсовая работа [222,5 K], добавлен 04.07.2014

  • Содержание основных газовых законов. Свойства классического идеального газа, реальных газов и жидкостей. Понятие и принципы создания тепловой машины. Распределение Максвелла и распределение Больцмана. Сущность вероятности состояния. Перенос в газах.

    учебное пособие [569,9 K], добавлен 20.01.2011

  • Типология и молекулярная структура полиэтилена низкой плотности. Физические и фазовые состояния, термомеханическая кривая и релаксацинные процессы полиэтилена. Фазовые переходы, кристаллизация и стеклование. Теплофизические и электрические свойства.

    курсовая работа [1,8 M], добавлен 11.06.2014

  • История нефтедобывающего предприятия "Сургут-нефтегаз". Методы добычи нефти и газа. Технические мероприятия для воздействия на призабойную зону пласта. Состав оборудования и способы бурения. Виды подземного ремонта скважин. Повышение нефтеотдачи пластов.

    отчет по практике [5,2 M], добавлен 26.04.2015

  • Классификация материалов по электропроводности. Сегнетоэлектрические материалы, их физические свойства и особенности применения в технике. Кристаллическая структура и физические свойства титаната бария. Зонная структура и электропроводность.

    дипломная работа [6,6 M], добавлен 26.03.2012

  • Определение водородной связи. Поверхностное натяжение. Использование модели капли жидкости для описания ядра в ядерной физике. Процессы, происходящие в туче. Вода - квантовый объект. Датчик внутриглазного давления. Динамика идеальной несжимаемой жидкости.

    презентация [299,5 K], добавлен 29.09.2013

  • Структура и типы квазикристаллов, методы их получения, области применения, физические свойства: оптические, механические и поверхностные, сверхпроводимость, магнетизм, теплопроводность. Электронный спектр и структурная стабильность. Возбуждения решетки.

    курсовая работа [942,4 K], добавлен 14.01.2015

  • Изучение корпускулярной концепции описания природы, сущность которой в том, что все вещества состоят из молекул - минимальных частиц вещества, сохраняющих его химические свойства. Анализ молекулярно-кинетической теории газа. Законы для идеальных газов.

    контрольная работа [112,2 K], добавлен 19.10.2010

  • Концепция фазовых проницаемостей, ее сущность и содержание, методы определения. Определение главных факторов, влияющих на фазовые проницаемости коллекторов нефти и газа, направления использования полученных в результате исследований данных веществ.

    курсовая работа [344,0 K], добавлен 04.05.2014

  • Описание реальных газов в модели идеального газа. Особенности расположения молекул в газах. Описание идеального газа уравнением Клапейрона-Менделеева. Анализ уравнения Ван-дер-Ваальса. Строение твердых тел. Фазовые превращения. Диаграмма состояния.

    реферат [1,1 M], добавлен 21.03.2014

  • Оценка вязкостно-температурных свойств (масел). Зависимость температуры вспышки от давления. Дисперсия, оптическая активность. Лабораторные методы перегонки нефти и нефтепродуктов. Теплота плавления и сублимации. Удельная и молекулярная рефракция.

    презентация [1,1 M], добавлен 26.06.2014

  • Описание нелинейных диэлектриков и их основная классификация. Физические свойства сегнетоэлектриков и их сфера применения. Характеристика и свойства пьезоэлектриков: прямой и обратный пьезоэффект, объяснение этого эффекта. Особенности электретов.

    контрольная работа [22,4 K], добавлен 23.04.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.