Гармонические колебания и их характеристики

Изучение движения или процесса, характеризующегося определенной повторяемостью во времени. Определение основных фаз и периодов колебаний. Проведение расчета вращающегося вектора амплитуды, с учетом угловой скорости при циклической частоте колебаний.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 28.09.2013
Размер файла 146,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНЖЕНЕНРНОЙ ЭКОЛОГИИ

Реферат

по физике на тему:

Гармонические колебания и их характеристики

Выполнил:

Тарасов Алексей

Преподаватель:

Маштакова В.А.

Москва, 1998 год

Гармонические колебания и их характеристики.

Колебаниями называются движения или процессы, которые характеризуются определенной повторяемостью во времени. Колебательные процесс широко распространены в природе и технике, например качания маятника часов, переменный электрический ток и т. д.

При колебательном движении маятника изменяется координата его центра масс, в случае переменного тока колеблются напряжение и ток в цепи. Физическая природа колебаний может быть разной поэтому различают колебания механические, электромагнитные и другие. Однако различные колебательные процессы описываются одинаковыми характеристиками и одинаковыми уравнениями. Отсюда следует целесообразность единого подхода к изучению колебаний различной физической природы. Например, единый подход к изучению механических и электромагнитных колебаний применялся английским физиком Д.У. Релеем (1842-1919), а А.Г. Столетовым, русским инженером-экспериментатором П.Н. Лебедевым (1866-1912). Большой вклад в развитие теории колебаний внесли: Л.И. Мандельштам (1879-1944) и его ученики.

Рисунок 1:

Колебания называются свободными (или собственными), если они совершаются за счет первоначально совершенной энергии при последующем отсутствии внешних воздействий на колебательную систему (систему, совершающую колебания). Простейшим типом колебаний являются гармонические колебания - колебания, при которых колеблющаяся величина изменятся со временем по закону синуса (косинуса). Рассмотрение гармонических колебаний важно по двум причинам:

1. Колебания встречающиеся в природе и технике, часто имеют характер, близкий к гармоническому;

2. Различные периодические процессы можно представить как наложение гармонических колебаний.

Гармонические колебания величины s описываются уравнением типа

s =A cos (0 t +) (1)

Где:

А - максимальное значение колеблющейся величины, называемое амплитудой колебания;

0 - круговая (циклическая) частота;

- начальная фаза колебания в момент времени t=0.

Фаза колебания определяет значения колеблющейся величины в данный момент времени. Так как косинус изменяется в пределах от 1 до -1, то s может принимать значения от +А до -А. Определенные состояния системы, совершающей гармонические колебания, повторяются через промежуток времени Т, называемый периодом колебания, за который фаза колебания получает приращение равное 2, т. е.:

0(t+T)+ =(0t+ )+2

Откуда:

T=2/0 (2)

Величина, обратная периоду колебаний:

= 1 / T (3)

Т. е., число полных колебаний, совершаемых в единицу времени, называется частотой колебаний. Сравнивая (2) и (3), получим:

0=2 *

Единица частоты - герц (Гц): 1 Гц - частота периодического процесса, при которой за 1 секунду совершается 1 цикл процесса.

Запишем первую и вторую производные по времени от гармонически колеблющейся величины s:

(4)

(5)

Т. е. имеем гармонические колебания с той же циклической частотой. Амплитуды величин (5) и (4) соответственно равны и .Фаза величины (4) отличается от фазы величины (1) на /2, а фаза величины (5) отличается от фазы величины (1) на . Следовательно, в моменты времени, когда s=0, приобретает наибольшие значения; когда же s достигает максимального отрицательного значения, приобретает наибольшее положительное значение. Из выражения (5) следует дифференциальное уравнение гармонических колебаний:

(6)

Где:

s =A cos (0 t + )

Решением этого уравнения является выражение (1).

Гармонические колебания изображаются графически методом вращающегося вектора амплитуды, или методом векторных диаграмм.

Для этого из произвольной точки О, выбранной на оси x под углом , равным начальной фазе колебания, откладывается вектор А, модуль которого равен амплитуде А рассматриваемого колебания (см. рисунок 2).

Рисунок 2:

Рисунок 3:

Если этот вектор привести во вращение с угловой скоростью 0, равной циклической частоте колебаний, то проекция конца вектора будет перемещаться по оси x и принимать значения от -А до +А, а колеблющаяся величина будет изменяться со временем по закону:

s = A cos (0 t + )

Таким образом, гармоническое колебание можно представить проекцией на некоторую произвольно выбранную ось вектора амплитуды А, отложенного из произвольной точки оси под углом , равным начальной фазе, и вращающегося с угловой скоростью 0 вокруг этой точки.

В физике часто применяется другой метод, который отличается от метода вращающегося вектора амплитуды лишь по форме. В этом методе колеблющуюся величину представляют комплексным числом. Согласно формуле Эйлера, для комплексных чисел:

(7)

Где:

- мнимая единица.

Поэтому уравнение гармонического колебания (1) можно записать в комплексной форме:

(8)

- вещественная часть выражения (8)

- представляет собой гармоническое колебание. Обозначение Re вещественной части опускают и записывают в виде:

Задача

колебание вектор амплитуда

1. Амплитуда гармонических колебаний материальной точки равна 5 см. Масса материальной точки 10 г и полная энергия колебаний Дж. Написать уравнение гармонических колебаний этой точки (с числовыми коэффициентами), если начальная фаза колебаний равна .

Решение: колебания вектор амплитуда

Общее уравнение гармонических колебаний имеет вид:

У нас А=5 см.:

Период Т колебаний неизвестен, но его можно найти из условия:

Отсюда:

У нас м, m= кг и . Подставляя эти данные в (2), получим Т=4 сек.

Тогда:

И уравнение примет вид:

Отметим, что так как:

- величина безразмерная, то А не обязательно подставлять в метрах; наименование x будет соответствовать наименованию А.

Размещено на Allbest.ru

...

Подобные документы

  • Исследование понятия колебательных процессов. Классификация колебаний по физической природе и по характеру взаимодействия с окружающей средой. Определение амплитуды и начальной фазы результирующего колебания. Сложение одинаково направленных колебаний.

    контрольная работа [1,6 M], добавлен 24.03.2013

  • Определения и классификация колебаний. Способы описания гармонических колебаний. Кинематические и динамические характеристики. Определение параметров гармонических колебаний по начальным условиям сопротивления. Энергия и сложение гармонических колебаний.

    презентация [801,8 K], добавлен 09.02.2017

  • Единый подход к изучению колебаний различной физической природы. Характеристика гармонических колебаний. Понятие периода колебаний, за который фаза колебания получает приращение. Механические гармонические колебания. Физический и математический маятники.

    презентация [222,7 K], добавлен 28.06.2013

  • Колебания как один из самых распространенных процессов в природе и технике. График затухающих колебаний. Математический и пружинный маятники. Резонанс как резкое возрастание амплитуды колебаний. Вывод формулы для расчета периода пружинного маятника.

    презентация [515,1 K], добавлен 19.10.2013

  • Свободные, гармонические, упругие, крутильные и вынужденные колебания, их основные свойства. Энергия колебательного движения. Определение координаты в любой момент времени. Явления резонанса, примеры резонансных явлений. Механизмы колебаний маятника.

    реферат [706,7 K], добавлен 20.01.2012

  • Понятие и физическая характеристика значений колебаний, определение их периодического значения. Параметры частоты, фазы и амплитуды свободных и вынужденных колебаний. Гармонический осциллятор и состав дифференциального уравнения гармонических колебаний.

    презентация [364,2 K], добавлен 29.09.2013

  • Гармонические колебания и их характеристики. Скорость и ускорение колеблющейся материальной точки, ее кинетическая и потенциальная энергии. Понятие колебательных систем. Примеры гармонических осцилляторов (математический, физический и пружинный маятники).

    презентация [185,7 K], добавлен 24.09.2013

  • Графическое изображение колебаний в виде векторов и в комплексной форме. Построение результирующего вектора по правилам сложения векторов. Биения и периодический закон изменения амплитуды колебаний. Уравнение и построение простейших фигур Лиссажу.

    презентация [124,6 K], добавлен 18.04.2013

  • Особенности колебаний, имеющих физическую природу. Характеристика схемы пружинного маятника. Исследование колебаний физических маятников. Волновой фронт как геометрическое место точек, до которых доходят колебания к рассматриваемому моменту времени.

    курсовая работа [1,7 M], добавлен 01.11.2013

  • Колебания - один из самых распространенных процессов в природе и технике. Процесс распространения колебаний среди множества взаимосвязанных колебательных систем называют волновым движением. Свойства свободных колебаний. Понятие волнового движения.

    презентация [5,0 M], добавлен 13.05.2010

  • Источники колебаний линейного электропривода с упругими связями. Выбор встроенного фильтра электропривода для подавления колебаний из-за понижения эффективной массы. Компенсация роста амплитуды логарифмической амплитудной частотной характеристики.

    статья [578,2 K], добавлен 18.01.2013

  • Одномерные и гармонические колебания. Сложение двух гармонических колебаний с одинаковыми амплитудами, частотами. Распространение колебаний в материальной среде. Электромагнитные волны и рентгеновские лучи. Дифракция и интерференция волн. Атомный фактор.

    реферат [2,8 M], добавлен 07.03.2009

  • Изучение сущности механических колебаний. Характерные черты и механизм происхождения гармонических, затухающих и вынужденных колебаний. Разложение колебаний в гармонический спектр. Применение гармонического анализа для обработки диагностических данных.

    реферат [209,3 K], добавлен 25.02.2011

  • Сложение взаимно перпендикулярных механических гармонических колебаний. Дифференциальное уравнение свободных затухающих колебаний и его решение; автоколебания. Дифференциальное уравнение вынужденных колебаний. Амплитуда и фаза колебаний; резонанс.

    презентация [308,2 K], добавлен 28.06.2013

  • Повышение динамического качества станков с помощью возмущений подшипников качения. Колебания при отсутствии вынуждающей силы и сил вязкого сопротивления. Незатухающие гармонические вынужденные колебания. Нарастание амплитуды во времени при резонансе.

    реферат [236,6 K], добавлен 24.06.2011

  • Свободные и линейные колебания, понятие их частоты и периода. Расчет свободных и вынужденных колебаний с вязким сопротивлением среды. Амплитуда затухающего движения. Определение гармонической вынуждающей силы. Явление резонанса и формулы его расчета.

    презентация [962,1 K], добавлен 28.09.2013

  • Общие характеристики колебаний, их виды, декремент затухания, добротность колебательной системы. Уравнение собственных затухающих колебаний физического и пружинного маятников. Сущность периодического и непериодического механизма затухающих колебаний.

    курсовая работа [190,0 K], добавлен 13.11.2009

  • Условия возникновения колебаний. Гармонические колебания и их характеристики. Скорость и ускорение. Затухающие, вынужденные колебания, резонанс. Период математического и пружинного маятников. Волны в упругой среде. Длина, интенсивность и скорость волны.

    шпаргалка [62,5 K], добавлен 08.05.2009

  • Законы изменения параметров свободных затухающих колебаний. Описание линейных систем дифференциальными уравнениями. Уравнение движения пружинного маятника. Графическое представление вынужденных колебаний. Резонанс и уравнение резонансной частоты.

    презентация [95,6 K], добавлен 18.04.2013

  • Векторная диаграмма одночастотных колебаний, происходящих вдоль одной прямой. Нахождение графически амплитуды колебаний, которые возникают при сложении двух колебаний одного направления. Сложение двух гармонических колебаний одного направления.

    курсовая работа [565,3 K], добавлен 15.11.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.