Гидравлика как предмет
Гидравлика как отрасль гидромеханики, которая изучает законы покоя и движения жидкостей и разрабатывает методы применения этих законов в практической деятельности. Жидкость как объект изучения гидравлики. Температурный коэффициент объемного расширения.
Рубрика | Физика и энергетика |
Вид | лекция |
Язык | русский |
Дата добавления | 29.09.2013 |
Размер файла | 75,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Гидравлика как предмет
гидравлика гидромеханика жидкость
История развития теорий и вопросов, связанных с движением жидкости, в частности воды, берет свое начало в глубокой древности. Еще древние вавилоняне, египтяне и индусы считали воду началом всех начал и затрачивали огромные усилия, чтобы получить воду. Построенные в до античный период водопроводы в Древних Афинах и Риме, каналы в долинах Нила, Тигра и Евфрата, плотины в Индии до сих пор выглядят грандиозно. Но эти сооружения, видимо, строились на основе опыта, передававшегося из поколения в поколение, и гидравлика являлась ремеслом без каких-либо научных обобщений.
Одним из первых научных трудов по гидравлике считается трактат Архимеда «О плавающих телах» (287--212 гг. до н. э.), в котором был впервые сформулирован гидравлический закон о равновесии тела, погруженного в жидкость.
Гидравлика (греч. hydor -- вода и aulos -- труба) -- отрасль гидромеханики, которая изучает законы покоя и движения жидкостей и разрабатывает методы применения этих законов в практической деятельности. Первоначально название «гидравлика» обозначало движение воды по трубам. Наиболее существенные области приложения законов гидравлики -- водоснабжение и канализация, осушение и орошение земель, а также проектирование гидравлических турбин, насосов, гидроприводов, водяного отопления, гидромеханизация и т. д. Почти во всех областях техники применяются гидравлические устройства, основанные на использовании законов гидравлики.
2. Методы исследования
При решении практических вопросов гидравлика оперирует всеми известными методами исследований: методом анализа бесконечно малых величин, методом средних величин, методом анализа размерностей, методом аналогий, экспериментальным методом.
Метод анализа бесконечно малых величин - наиболее удобный из всех методов для количественного описания процессов равновесия и движения жидкостей и газов. Этот метод наиболее эффективен в тех случаях, когда приходится рассматривать движение объектов на атомно-молекулярном уровне, т.е. в тех случаях, когда для вывода уравнений движения приходится рассматривать жидкость (или газ) с молекулярно-кинетической теории строения вещества. Основной недостаток метода - довольно высокий уровень абстракции, что требует от читателя обширных знаний в области теоретической физики и умение пользоваться различными методами математического анализа, включая векторный анализ.
Метод средних величин - является более доступным методом, поскольку его основные положения базируется на простых (близких к обыденным) представлениях о строении вещества. При этом выводы основных уравнений в большинстве случаев не требуют знаний молекулярно-кинетической теории, а результаты, полученные при исследованиях, этим методом не противоречат «здравому смыслу» и кажутся обоснованными. Недостаток этого метода исследований связан с необходимостью иметь некоторые априорные представления о предмете исследований.
Метод анализа размерностей может рассматриваться в качестве одного из дополнительных методов исследований и предполагает всестороннее знания изучаемых физических процессов.
Методом аналогий - используется в тех случаях, кода имеются в наличии детально изученные процессы, относящиеся к тому же типу взаимодействия вещества, что и изучаемый процесс.
Экспериментальный метод - является основным методом изучения, если другие методы по каким- либо причинам не могут быть применены. Этот метод также часто используется как критерий для подтверждения правильности результатов полученных другими методами.
В конечном счёте, метод изучения движения жидкости, а также уровень изучения (макро или микро) выбирается из условий практической постановки задач и соотношения характерных размеров.
3. Жидкость как объект изучения гидравлики
Передачу энергии в гидравлических системах обеспечивают рабочие жидкости, поэтому чтобы эффективно их применять, надо знать какими свойствами они обладают.
Жидкости, как и все вещества, имеют молекулярное строение. Они занимают промежуточное положение между газами и твердыми телами. Это определяется величинами межмолекулярных сил и характером движений составляющих их молекул. В газах расстояния между молекулами больше, а силы межмолекулярного взаимодействия меньше, чем в жидкостях и твердых телах, поэтому газы отличаются от жидкостей и твердых тел большей сжимаемостью. По сравнению с газами жидкости и твердые тела малосжимаемы.
Молекулы жидкости находятся в непрерывном хаотическом тепловом движении, отличающемся от хаотического теплового движения газов и твердых тел. В жидкостях это движение осуществляется в виде колебаний (1013 колебаний в секунду) относительно мгновенных центров и скачкообразных переходов от одного центра к другому. Тепловое движение молекул твердых тел состоит в колебаниях относительно стабильных центров. Тепловое движение молекул газа выглядит, как непрерывные скачкообразные перемены мест.
При этом надо заметить, что изменение температуры и давления приводят к изменениям свойств жидкостей. Установлено, что при повышении температуры и уменьшении давления свойства жидкостей приближаются к свойствам газов, а при понижении температуры и увеличении давления - к свойствам твердых тел.
Термин «жидкость» применяется для обозначения и собственно жидкости, которую рассматривают как несжимаемую или мало сжимаемую среду, и газа, который можно рассматривать как «сжимаемую жидкость».
Гипотеза сплошности
Рассматривать и математически описывать жидкость как совокупность огромного количества отдельных частиц, находящихся в постоянном непрогнозируемом движении, на современном уровне науки не представляется возможным. По этой причине жидкость рассматривается как некая сплошная деформируемая среда, имеющая возможность непрерывно заполнять пространство, в котором она заключена. Другими словами, под жидкостями понимают все тела, для которых характерно свойство текучести, основанное на явлении диффузии. Текучестью можно назвать способность тела как угодно сильно менять свой объём под действием сколь угодно малых сил. Таким образом, в гидравлике жидкость понимают как абстрактную среду - континуум, который является основой гипотезы сплошности. Континуум считается непрерывной средой без пустот и промежутков, свойства которой одинаковы во всех направлениях. Это означает, что все характеристики жидкости являются непрерывными функциями и все частные производные по всем переменным также непрерывны.
По-другому такие тела (среды) называют капельными жидкостями. Капельные жидкости - это такие, которые в малых количествах стремятся принять шарообразную форму, а в больших образуют свободную поверхность.
Очень часто в математических описаниях гидравлических закономерностей используются понятия «частица жидкости» или «элементарный объём жидкости». К ним можно относиться как к бесконечно малому объёму, в котором находится достаточно много молекул жидкости. Например, если рассмотреть кубик воды со сторонами размером 0,001 см, то в объеме будет находиться 3,3•1013 молекул. Частица жидкости полагается достаточно малой по сравнению с размерами области, занятой движущейся или покоящейся жидкостью.
Сплошная среда представляет собой модель, которая успешно используется при исследовании закономерностей покоя и движения жидкости. Правомерность применения такой модели жидкости подтверждена всей практикой гидравлики.
Изучение реальных жидкостей и газов связано со значительными трудностями, т.к. физические свойства реальных жидкостей зависят от их состава, от различных компонентов, которые могут образовывать с жидкостью различные смеси как гомогенные (растворы) так и гетерогенные (эмульсии, суспензии и др.) По этой причине для вывода основных уравнений движения жидкости приходится пользоваться некоторыми абстрактными моделями жидкостей и газов, которые наделяются свойствами неприсущими природным жидкостям и газам.
Идеальная жидкость - модель природной жидкости, характеризующаяся изотропностью всех физических свойств и, кроме того, характеризуется абсолютной несжимаемостью, абсолютной текучестью (отсутствие сил внутреннего трения), отсутствием процессов теплопроводности и теплопереноса.
Реальная жидкость - модель природной жидкости, характеризующаяся изотропностью всех физических свойств, но в отличие от идеальной модели, обладает внутренним трением при движении.
Идеальный газ - модель, характеризующаяся изотропностью всех физических свойств и абсолютной сжимаемостью.
Реальный газ - модель, при которой на сжимаемость газа при условиях близких к нормальным условиям существенно влияют силы взаимодействия между молекулами.
4. Основные свойства жидкости
Плотность
Плотность жидкости , так же как любых других тел, представляет собой массу единицы объёма, и для бесконечно малого объёма жидкости dV массой dM может быть определена по формуле:
Для однородных жидкостей можно считать, что
где M - масса жидкости,
V - объём жидкости.
Единицы измерения:
[кг/м3], [кг/дм3], [кг/л], [г/см3].
Плотность жидкости зависит от температуры и давления. Все жидкости, кроме воды, характеризуются уменьшением плотности с ростом температуры. Плотность воды имеет максимум при t = 4 оC и уменьшается при любых других температурах. В этом проявляется одно из аномальных свойств воды. Температура, при которой плотность воды максимальная, с увеличением давления уменьшается. Так, при давлении 14 МПа вода имеет максимальную плотность при 0,6 оC.
Плотность пресной воды равна 1000 кг/м3, солёной морской воды - 1020 ч 1030, нефти и нефтепродуктов - 650 ч 900 кг/м3, ртути - 13596 кг/м3.
При изменении давления плотность жидкостей изменяется незначительно. В большинстве случаев плотность жидкости в расчётах можно принимать постоянной. Однако встречаются случаи, когда изменением плотности пренебрегать нельзя, т.к. это может привести к значительным ошибкам.
Удельный вес
Удельным весом жидкости - называется вес единицы её объёма. Эта величина выражается формулой для бесконечно малого объёма жидкости dV с весом dG:
Для однородных жидкостей можно считать:
,
где G - вес жидкости.
Удельный вес жидкости и плотность связаны соотношением:
,
где g - ускорение свободного падения.
Единицы измерения: [Н/м3], [Н/дм3], [Н/л], [Н/см3], 1Н=1кг*м/с2.
Значение ускорения свободного падения g на земле изменяется от 9,831 м/с2 на полюсах до 9,781 м/с2 на экваторе.
Относительный удельный вес
Иногда удобно использовать такую характеристику жидкости, которая называется «относительный удельный вес». Это отношение удельного веса жидкости к удельному весу пресной воды
Единицы измерения: Относительный удельный вес - величина безразмерная.
Сжимаемость жидкости
Сжимаемость жидкости это свойство жидкостей изменять свой объём при изменении давления.
Сжимаемость характеризуется коэффициентом объёмного сжатия (сжимаемости) вP, представляющим собой относительное изменение объёма жидкости V при изменении давления P на единицу.
Знак минус в формуле указывает, что при увеличении давления объём жидкости уменьшается.
Единицы измерения: Па-1 (Паскаль. 1Па=1Н/м2).
Отсутствие знака минус в этом выражении означает, что увеличение давления приводит к увеличению плотности.
Величина, обратная коэффициенту сжимаемости, или, по-другому, коэффициенту объёмного сжатия , обозначается
и называется объёмным модулем упругости жидкости.
Тогда предыдущая формула примет вид
.
Это выражение называется законом Гука для жидкости.
Единицы измерения: [Па], [МПа], [кГс/ см2].
Модуль упругости Еж зависит от температуры и давления. Поэтому различают два модуля упругости: адиабатический и изотермический. Первый имеет место при быстротекущих процессах без теплообмена. Процессы, происходящие в большинстве гидросистем, происходят с теплообменом, поэтому чаще используется изотермический модуль упругости. Примерная форма зависимостей Eж от P и t0 представлена на графиках. Всё это говорит о том, что жидкости не вполне точно следуют закону Гука.
Приведём несколько примеров значений модулей упругости.
Минеральные масла, используемые в технологических машинах с гидравлическим приводом, при t0 = 20 оC имеют объёмные модули упругости 1,35·103 ч 1,75·103 МПа (меньшее значение относится к более легкому маслу), бензин и керосин - приблизительно 1,3·103 МПа, глицерин - 4,4·103 МПа, ртуть - в среднем 3,2·103 МПа.
В практике эксплуатации гидравлических систем имеются случаи, когда вследствие действия того или иного возмущения в жидкости может значительно изменяться давление. В таких случаях пренебрежение сжимаемостью приводит к существенным погрешностям.
Температурное расширение жидкости
Температурное расширение жидкости состоит в том, что она может изменять свой объем при изменении температуры. Это свойство характеризуется температурным коэффициентом объемного расширения, представляющим относительное изменение объема жидкости при изменении температуры на единицу (на 1оC) и при постоянном давлении:
По аналогии со свойством сжимаемости жидкости можно записать
или через плотность
Изменение объёма при изменении температуры происходит за счёт изменения плотности.
Для большинства жидкостей коэффициент t с увеличением давления уменьшается. Коэффициент t с уменьшением плотности нефтепродуктов от 920 до 700 кг/м3 увеличивается от 0,0006 до 0,0008; для рабочих жидкостей гидросистем t обычно принимают не зависящим от температуры. Для этих жидкостей увеличение давления от атмосферного до 60 МПа приводит к росту t примерно на 10 - 20 %. При этом, чем выше температура рабочей жидкости, тем больше увеличение t. Для воды с увеличением давления при температуре до 50 оC t растёт, а при температуре выше 50 оC уменьшается.
Растворение газов
Растворение газов - способность жидкости поглощать (растворять) газы, находящиеся в соприкосновении с ней. Все жидкости в той или иной степени поглощают и растворяют газы. Это свойство характеризуется коэффициентом растворимости kр.
Если в закрытом сосуде жидкость находится в контакте с газом при давлении P1, то газ начнёт растворяться в жидкости. Через какое-то время произойдёт насыщение жидкости газом и давление в сосуде изменится. Коэффициент растворимости связывает изменение давления в сосуде с объёмом растворённого газа и объёмом жидкости следующим соотношением
где VГ - объём растворённого газа при нормальных условиях,
Vж - объём жидкости,
P1 и P2 - начальное и конечное давление газа.
Коэффициент растворимости зависит от типа жидкости, газа и температуры.
При температуре 20 єС и атмосферном давлении в воде содержится около 1,6% растворенного воздуха по объему (kp = 0,016). С увеличением температуры от 0 до 30 єС коэффициент растворимости воздуха в воде уменьшается. Коэффициент растворимости воздуха в маслах при температуре 20 єС равен примерно 0,08 - 0,1. Кислород отличается более высокой растворимостью, чем воздух, поэтому содержание кислорода в воздухе, растворенном в жидкости, примерно на 50% выше, чем в атмосферном. При уменьшении давления газ из жидкости выделяется. Процесс выделения газа протекает интенсивнее, чем растворение.
Кипение
Кипение - способность жидкости переходить в газообразное состояние. Иначе это свойство жидкостей называют испаряемостью.
Жидкость можно довести до кипения повышением температуры до значений, больших температуры кипения при данном давлении, или понижением давления до значений, меньших давления насыщенных паров pнп жидкости при данной температуре. Образование пузырьков при понижении давления до давления насыщенных паров называется холодным кипением.
Жидкость, из которой удален растворенный в ней газ, называется дегазированной. В такой жидкости, кипение не возникает и при температуре, большей температуры кипения при данном давлении.
Сопротивление растяжению жидкостей
Сопротивление растяжению жидкостей заключается в способности жидкости противостоять растягивающим силам.
Сопротивление растяжению жидкостей может возникать только в дегазированных жидкостях. В опытах удавалось при центрифугировании дегазированной дистиллированной воды получить на очень короткое время напряжения растяжения в воде, доходившие приблизительно до 25 МПа. Технические жидкости не сопротивляются растягивающим усилиям.
Газы могут находиться в жидкости в растворенном и нерастворенном виде. Присутствие в жидкости нерастворенного газа в виде пузырьков существенно уменьшает модуль упругости жидкости, причем это уменьшение не зависит от размеров пузырьков воздуха. Динамическая вязкость жидкости с увеличением содержания в ней воздуха растет. Содержание нерастворенного воздуха в рабочих жидкостях гидросистем машин и механизмов, так же как и в трубопроводах, подающих жидкость, может сильно повлиять на параметры работы трубопроводов и гидросистем.
Вязкость - свойство жидкости оказывать сопротивление относительному сдвигу ее слоев. Вязкость проявляется в том, что при относительном перемещении слоев жидкости на поверхностях их соприкосновения возникают силы сопротивления сдвигу, называемые силами внутреннего трения, или силами вязкости. Если рассмотреть то, как распределяются скорости различных слоёв жидкости по сечению потока, то можно легко заметить, что чем дальше от стенок потока, тем скорость движения частиц больше. У стенок потока скорость движения жидкости равна нулю. Иллюстрацией этого является рисунок, так называемой, струйной модели потока. На рисунке применены следующие обозначения:
- скорость слоя жидкости,
- расстояние между соседними слоями жидкости.
Медленно движущийся слой жидкости «тормозит» соседний слой жидкости, движущийся быстрее, и наоборот, слой, движущийся с большей скоростью, увлекает (тянет) за собой слой, движущийся с меньшей скоростью. Силы внутреннего трения появляются вследствие наличия межмолекулярных связей между движущимися слоями.
Если между соседними слоями жидкости выделить некоторую площадку S, то согласно гипотезе Ньютона:
где T - силы вязкого трения;
S - площадь трения;
градиент скорости
м - коэффициент вязкого трения.
Физический смысл коэффициента вязкого трения - число, равное силе трения, развивающейся на единичной поверхности при единичном градиенте скорости.
Единицы измерения: [Н·с/м2], [кГс·с/м2], [Пз]{Пуазейль}, 1Пз=0,1Н·с/м2.
На практике чаще используется кинематический коэффициент вязкости, названный так потому, что в его размерности отсутствует обозначение силы. Этот коэффициент представляет собой отношение динамического коэффициента вязкости жидкости к её плотности
.
Единицы измерения: [м2/c], [cм2/c], [Ст] {стокс}, [сСт] {сантистокс}, 1Ст=100сСт {1Ст=1 cм2/c}.
Анализ свойства вязкости
Для капельных жидкостей вязкость зависит от температуры t и давления Р, однако последняя зависимость проявляется только при больших изменениях давления, порядка нескольких десятков МПа.
Зависимость коэффициента динамической вязкости от температуры выражается формулой вида:
где мt - коэффициент динамической вязкости при заданной температуре,
м0 - коэффициент динамической вязкости при известной температуре (для минеральных масел при 50 0C),
T - заданная температура,
T0 -температура, при которой измерено значение м0 (50 0C для минеральных масел),
kt - коэффициент, для минеральных масел равный 0,02-0,03,
e - основание натурального логарифма равное 2,718282.
Зависимость относительного коэффициента динамической вязкости от давления описывается формулой
где мP - коэффициент динамической вязкости при заданном давлении,
м0 - коэффициент динамической вязкости при известном давлении (чаще всего при нормальных условиях),
P - заданное давление,
P0 -давление, при которой измерено значение м0,
kP - коэффициент, для минеральных масел равный 0,002-0,003.
Влияние давления на вязкость жидкости проявляется только при высоких давлениях.
Для примера приведём значения кинематического коэффициента вязкости для некоторых жидкостей: масла индустриальные (по ГОСТ 20799-75) при температурах 50 0C: И-5А - 4-5 сСт, И-12А - 10-14 сСт, И-40А - 35-45 сСт; вода пресная при 20 0C - 0,0101Ст; ртуть при 150C 0,0011- Ст, сталь жидкая при 1550 0C - 0,0037 Ст.
Вязкость жидкости - это свойство, проявляющееся только при движении жидкости, и не влияющее на покоящиеся жидкости. Вязкое трение в жидкостях подчиняется закону трения, принципиально отличному от закона трения твёрдых тел, т.к. зависит от площади трения и скорости движения жидкости.
Жидкости, которые подчиняются описанному закону жидкостного трения Ньютона, называются ньютоновскими жидкостями. Однако есть жидкости, трение в которых описывается другими закономерностями.
Особенностью ньютоновских жидкостей является полное отсутствие трения покоя. Однако существуют жидкости (растворы полимеров, коллоидные суспензии, строительные растворы, пищевые и кормовые смеси и т. п.), для которых связь между касательным напряжением и поперечным градиентом скорости не подчиняется закону Ньютона. Такие жидкости называются неньютоновскими или Бингемовские, и отличаются от ньютоновских наличием касательного напряжения в состоянии покоя 0.
Например, касательные напряжения подчиняются закону
Такие жидкости называются вязкопластичными, и движение их слоёв начинается лишь после того, как будет преодолено напряжение сдвига покоя 0.
Для других неньютоновских жидкостей динамическая вязкость может зависеть от градиента скорости, времени и т. д. Эта зависимость может иметь, например, следующий вид
где k - коэффициент, который может зависеть от скорости, времени, температуры, давления и некоторых других факторов.
Размещено на Allbest.ru
...Подобные документы
Гидравлика как теоретическая дисциплина, изучающая вопросы, связанные с механическим движением жидкости в различных природных, техногенных условиях. Широкое использование в практической деятельности человека гидравлики. Изучение свойств жидкостей и газов.
реферат [134,6 K], добавлен 10.02.2010История развития гидравлики. Жидкости и их основные физические свойства. Расчет напорных и безнапорных потоков. Методы измерения расхода воды. Течения в руслах, в канализационных и сливных системах ливнёвки, в водопроводах жилых помещений, трубопроводах.
реферат [1,0 M], добавлен 30.03.2015Теория движения жидкости. Закон сохранения вещества и постоянства. Уравнение Бернулли для потока идеальной и реальной жидкости. Применение уравнения Д. Бернулли для решения практических задач гидравлики. Измерение скорости потока и расхода жидкости.
контрольная работа [169,0 K], добавлен 01.06.2015Особенности развития гидравлики в период Древней Греции и Древнего Рима, в период XV - начало XVIII века. Научные основы механики жидкости заложены учеными XVIII в.: Бернулли, Эйлером и Д'Аламбером. Зарождение и развитие гидравлики в ХІХ в. в России.
реферат [297,5 K], добавлен 14.09.2010Модернизация учебной лабораторной установки для лаборатории гидравлики и теплотехники кафедры 34, МГИУ и разработка соответствующих методических материалов. Сущность вихревого эффекта и конструкции вихревых труб. Гипотеза турбулентного энергообмена.
дипломная работа [3,1 M], добавлен 24.09.2012Конвективный теплообмен в однородной среде. Свободная (естественная) и вынужденная конвекции. Физические свойства жидкостей. Коэффициенты динамической вязкости, объемного (температурного) расширения жидкости. Гидродинамический пограничный слой.
презентация [100,5 K], добавлен 18.10.2013Кинематика, динамика, статика, законы сохранения. Механическое движение, основная задача механики. Материальная точка. Положение тела в пространстве - координаты. Тело и система отсчета. Относительность механического движения. Состояние покоя, движения.
презентация [124,8 K], добавлен 20.09.2008Вязкость - свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одного слоя вещества относительно другого. Определение коэффициента вязкости жидкости методом Стокса. Законы и соотношения, использованные при расчете формулы.
лабораторная работа [531,3 K], добавлен 02.03.2013Сущность и условия кипения жидкостей. Законы, действующие на пар, образующийся при этом внутри них. Поведение перегретой жидкости. Получение и свойства пересыщенного пара. Исследование кинетики в СССР. Научная деятельность кафедры молекулярной физики.
реферат [13,9 K], добавлен 16.01.2014Произведение расчета кривых потребного напора трубопроводов (расход жидкости, число Рейнольдса, относительная шероховатость, гидравлические потери) с целью определение затрат воды в ветвях разветвленного трубопровода без дополнительного контура.
контрольная работа [142,7 K], добавлен 18.04.2010Уравнение неразрывности потока жидкости. Дифференциальные уравнения движения Эйлера для идеальной жидкости. Силы, возникающие при движении реальной жидкости. Уравнение Навье - Стокса. Использование уравнения Бернулли для идеальных и реальных жидкостей.
презентация [220,4 K], добавлен 28.09.2013Описание основных законов Ньютона. Характеристика первого закона о сохранении телом состояния покоя или равномерного движения при скомпенсированных действиях на него других тел. Принципы закона ускорения тела. Особенности инерционных систем отсчета.
презентация [551,0 K], добавлен 16.12.2014Исследование устройства и принципов работы приборов для измерения влажности и скорости движения воздуха, плотности жидкостей. Абсолютная и относительная влажность воздуха, их отличительные особенности. Оценка преимуществ и недостатков гигрометра.
лабораторная работа [232,2 K], добавлен 09.05.2011Математическая модель и решение задачи очистки технических жидкостей от твердых частиц в роторной круговой центрифуге. Система дифференциальных уравнений, описывающих моделирование процесса движения твердой частицы. Физические характеристики жидкости.
презентация [139,6 K], добавлен 18.10.2015Демонстрация первого закона Ньютона о сохранении телом состояния покоя или равномерного движения при скомпенсированных действиях на него других тел. Формулирование и математическое представление основных законов, лежащих в основе классической механики.
презентация [588,4 K], добавлен 05.10.2011Основы гидравлики, сущность и содержание гидростатики, ее законы и принципы. Характер и направления действия сил, действующих на жидкость. Дифференциальные уравнения равновесия Эйлера. Основное уравнение гидростатики и его практические приложения.
презентация [159,6 K], добавлен 28.09.2013Изучение теплопроводности как физической величины, определяющей показатель переноса тепла структурными частицами вещества в процессе теплового движения. Способы переноса тепла: конвекция, излучение, радиация. Параметры теплопроводности жидкостей и газов.
курсовая работа [60,5 K], добавлен 01.12.2010Методы изучения движения жидкости. Основная теорема кинематики (Гельмгольца). Уравнение движения сплошной среды в напряжениях. Понятия и определения потенциальных течений. Моделирование гидрогазодинамических явлений, ламинарное и турбулентное движение.
шпаргалка [782,6 K], добавлен 04.09.2010Понятия и устройства измерения абсолютного и избыточного давления, вакуума. Определение силы и центра давления жидкости на цилиндрические поверхности. Границы ламинарного, переходного и турбулентного режимов движения. Уравнение неразрывности для потока.
контрольная работа [472,2 K], добавлен 08.07.2011Физико-химические методы исследования поверхностной активности жидкостей. Исследования с помощью барьерной системы Ленгмюра-Блоджет и весов Вильгельми динамики ее формирования в однокомпонентных растворах лаурата, каприлата калия и каприловой кислоты.
курсовая работа [2,3 M], добавлен 11.11.2014