Восстановление деталей методом детонационной наплавки

Технологические особенности детонационного напыления на изделиях. Формирование покрытий при различных сочетаниях скорости и температуры части. Создание высокотемпературного потока газовой смеси. Давление при ударе. Технологические функции газовых добавок.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 01.10.2013
Размер файла 322,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Теоретические основы детонационного напыления

2. Технологические особенности детонационного напыления

2.1 Температура контакта

2.2 Давление при ударе

3. Установки для детонационно-газового напыления

4. Перспективы детонационно-газового напыления

Заключение

Список используемой литературы

Введение

детонационный напыление газовый температура

Под детонацией понимают процесс химического превращения взрывчатого вещества при распространении по нему детонационной волны с максимально возможной скоростью, превышающей скорость звука в этой среде.

При детонационно-газовом напылении покрытий используют специфический источник нагрева, распыления и ускорения напыляемых частиц. Источник представляет собой высокоскоростной поток газовой смеси, образующейся в результате направленного взрыва, обусловленного детонацией. Для этого заданное количество газовой смеси способной детонировать, подают в камеру зажигания и ствол установки.

Протекание детонационного взрыва и теплофизические параметры продуктов реакции легко регулируются введением в состав горючей смеси различных технологических добавок. Наиболее часто используют азот, аргон и др. Технологические газовые добавки выполняют и другие функции. В частности, запирают каналы рабочих газов от действия взрыва, очищают камеру сгорания и ствол от продуктов детонации. Скорости частиц при этом оказываются достаточно высокими, чтобы существенно повышать их температуру в момент соударения.

1. Теоретические основы детонационного напыления

Отличительная особенность детонационного напыления - циклический характер подачи порошка на поверхность обрабатываемой детали со скоростью, превышающей скорость звука. Циклический процесс напыления получают с помощью детонационных установок, принципиальная схема которых представлена на рис. 1.

В общем виде детонационные установки состоят из блока 4 подачи напыляющего порошка, включающего порошковый питатель и дозирующее устройство; блока 1, служащего для образования требуемых газовых смесей и заполнения ими ствола детонационной установки с заданной скоростью; блока под-жига 3 и воспламенителя 2, предназначенных для инициирования взрыва рабочей смеси; ствола 5, представляющего собой трубу диаметром 20 - 50 мм, длиной 1 - 2,5 м и предназначенного для направленного распространения взрывной волны в сторону открытого конца ствола.

Рис. 1 Схема детонационных устройств

Принцип действия установки состоит в следующем. Из блока 1 газовая смесь подается в ствол 5. Одновременно из порошкового питателя через дозирующее устройство (блок 4) заданными порциями вдувают газом -- азотом или воздухом -- мелкодисперсный порошок в газовую смесь непосредственно перед ее зажиганием, затем воспламенителем 2 поджигают газовую смесь. В результате воспламенения и перемещения по каналу горючей смеси происходит ее взрыв с выделением значительного количества теплоты и образованием детонационной волны, которая ускоряет и переносит через ствол на поверхность детали 6 напыляемые частицы 7 со скоростью, определяемой геометрией ствола и составом газа.

Процесс формирования покрытий детонационным напылением сложный и недостаточно изучен. Во многом он сходен с процессом плазменного напыления. Сходство заключается в том, что сцепление частиц с подложкой и между собой может происходить в расплавленном, оплавленном и твердом состояниях. Прочность сцепления обеспечивается главным образом за счет напыления расплавленными и оплавленными частицами, которые растекаются и кристаллизуются на поверхности подложки за счет химического взаимодействия. В то же время детонационный процесс напыления в отличие от непрерывного плазменного является цикличным, сообщающим частицам порошка более высокие скорости, что определяет особенности механизма формирования покрытий.

При детонационном напылении скорость частиц в отличие от плазменного напыления (100-200 м/с) достигает 400-1000м/с. Поэтому кроме термической активации существенное влияние на механизм и кинетику формирования напыленных слоев оказывает пластическая деформация в зоне соударения частиц и подложки. Однако основной вклад в формирование покрытий при напылении вносит термическая активация. Опыт применения различных способов напыления, в том числе детонационного, показывает, что для получения удовлетворительного сцепления частиц порошка с основой необходимо, чтобы их значительная часть транспортировалась на подложку в расплавленном или оплавленном состоянии. Экспериментальные исследования по процессу формирования покрытий детонационным напылением показывают, что состояние частиц, находящихся в двухфазном потоке, неоднородно. В начале и середине потока они находятся в расплавленном или оплавленном состоянии, и температура в контакте с подложкой достигает температуры их плавления. При этом за счет теплоты, выделяемой при ударе о подложку частиц, имеющих скорость ~ 400 м/с, температура в зоне контакта повышается примерно на 100°С.

При напылении порошковыми материалами с температурой плавления, превышающей температуру плавления основного металла, происходит подплавление последнего. Так, например, при нанесении покрытий из оксида алюминия АlОз и порошковыми твердыми сплавами типа ВК на коррозионно-стойкие стали последние подплавляются и перемешиваются с напыляемыми расплавленными частицами порошка, повышая тем самым прочность сцепления. Повышению адгезии, как и при других способах газотермического напыления, способствует предварительная дробеструйная обработка напыляемой поверхности. В этом случае возможно получать прочные связи между напыляемым материалом и подложкой, имеющей твердость выше HRC 60. При напылении первого слоя возможно возникновение пор. При напылении второго слоя частицы порошка деформируют и уплотняют кристаллизующийся первый слой, что способствует устранению или уменьшению пористости. Это явление характерно для детонационного напыления, его называют эффект горячего ударного прессования.

Более крупные частицы из конца (хвоста) менее концентрированного потока обладают меньшей скоростью и наносятся на поверхность подложки чаще всего в нерасплавленном виде. При формировании покрытия такие частицы играют двоякую роль: полезную - удаляют дефектные участки ранее нанесенного покрытия, повышая его плотность и физико-механические свойства; вредную - при значительном повышении кинетической энергии крупных частиц в покрытии могут появиться трещины и даже полное его отслоение. Эти явления можно регулировать, изменяя режим скорострельности установки и грануляцию напыляемого порошка. С точки зрения применяемых материалов и оборудования процесс детонационного напыления весьма простой. Основными факторами, определяющими характер детонационного напыления, являются газовая смесь, порошки, ствол установки.

Однако использование этих факторов в технологическом процессе напыления связано с изменением и управлением ряда характерных для каждого из них параметров. Для газовой смеси это состав газовой смеси; доза газовой смеси за один выстрел; состав газовой смеси в стволе между выстрелами.

Для порошка - химический состав порошка; грануляция напыляемого порошка; расположение порошка в стволе в момент поджига смеси; распределение частиц по размерам. Ствол характеризуется геометрическими параметрами: диаметром и длиной.

В свою очередь, перечисленные параметры порождают другие параметры, характеризующие конечное состояние процесса: концентрация, температура и скорость частиц; химический состав среды; температура поверхности подложки.

Таким образом, технологический процесс детонационного напыления является сложным, и качество формирования покрытий зависит от совокупности многочисленных параметров, их поддержания в оптимальных пределах.

В серийном производстве поддержание оптимальных режимов многопараметрического процесса возможно при условии работы установки в автоматическом режиме.

2. Технологические особенности детонационного напыления

2.1 Температура контакта

При напылении расплавленные частицы ударяются о более холодную поверхность с последующим растеканием, одновременным деформированием и затвердеванием. В начальный момент удара сферическая частица, сплющиваясь под действием сил инерции, растекается по поверхности от места первичного контакта. Вместе с круговым поверхностным растеканием происходит теплоотдача от материала частицы в направлении, перпендикулярном поверхности основы, и в этом же направлении распространяется фронт затвердевания.

Оба этих процесса протекают в течение времени, необходимого для перемещения верхней точки С1 расплавленной частицы, через положение С2 к конечному положению Сз на поверхности затвердевшей частицы (рис. 2). Соответственно этому крайняя точка частицы C1' перемещается по поверхности в положение C2' и C3', формируя круговой край затвердевшей частицы.

Рис. 2. Схема деформации и одновременного затвердевания (заштрихована твердая фаза) расплавленной частицы при ударе о плоскую поверхность

По мере растекания уже затвердевшая часть материала частицы получает давление со стороны еще не кристаллизовавшегося, жидкого объема, за счет чего прижимается к поверхности основы до момента полного, затвердевания. Поэтому затвердевшая частица при напылении под прямым углом на плоскую поверхность, из исходной сферической формы диаметром d приобретает форму диска диаметром D и толщиной h с отношением h d ? 0,05...0.1. В действительности форма частиц становится более сложной, т.к. они попадают в покрытие под различными углами, на шероховатую поверхность.

Процесс затвердевания и охлаждения частицы в реальном процессе напыления с достаточной точностью описывается без учета возможного перегрева частиц сверх температуры их плавления Тпл.

2.2 Давление при ударе

Явления, возникающие в зоне удара, соответствуют положениям гидродинамики процессов удара жидких сферических тел в твердую мишень.

Под действием кинетической энергии, обусловленной скоростью удара н, частицы интенсивно деформируются, из-за чего в зоне соударения возникает давление Р. Его величина определяется двумя составляющими: напорным, или скоростным давлением Рн и ударным, или импульсным давлением Ру.

Деформация частицы в первый момент удара имеет упругий характер, с возникновением и распространением в материале частицы упругих волн сжатия. Затем в месте удара жидкая частица растекается и образует тонкий плоский слой, после чего происходит равномерная деформация частицы.

За счет движения в частице упругих волн сжатия в течение времени фу = 10-10 - 10-9 с создается ударное давление Ру наибольшая величина которого определяется на основе известного уравнения Жуковского для гидравлического удара:

,

где Pу - наибольшее давление удара, МПа;

Высокое ударное давление Ру способствует очистке поверхности от загрязняющих и оксидных слоев, обеспечивая улучшение физического контакта между частицей и основой. Напорное давление Рн обусловливает последующее интенсивное протекание процессов приваривания частицы и прочное ее сцепление с основой.

Тепловые и гидродинамические особенности процессов контактного взаимодействия напыляемых частиц с основой показывают, что главными факторами, определяющими прочность сцепления при образовании покрытия, являются:

- температура контакта Тк частицы и основы в зоне контакта их жидкой и твердой фаз;

- продолжительность контакта фо;

- давление контакта Р, приложенное к фазам, взаимодействующим в контактной зоне.

Так как диаметр площади контакта близок к диаметру частицы и к диаметру химического взаимодействия, то значения Тк и Рн остаются постоянными в течение времени удара то, соответствующего времени кристаллизации. Поэтому считается, что химико-физическое взаимодействие материалов частицы и основы протекает в условиях, близких к изобарно-изотермическим, которые создаются самими процессами деформации и кристаллизации частиц.

Формирование покрытия при напылении происходит за счет наслоения частиц на поверхность основы и в дальнейшем друг на друга. Поэтому большое влияние на строение и качество покрытия оказывает не только взаимодействие частиц с основой, но и частиц между собой.

3. Установки для детонационно-газового напыления

В табл. 1 приведены технические характеристики некоторых установок для детонационно-газового напыления. Первоначально была предложена установка с механическим клапанным механизмом подачи рабочих газов, позднее - с электромагнитным клапанным механизмом и смешанного типа.

Таблица № 1. Технические характеристики установок для детонационно-газового напыления

Характеристика

АДК-1

ДНП-5

АДК

АДУ-СЛ

Объем ствола, см3

500-700

400

630

(Lст, м)

(0,45-1,0)

(2.0)

Расход газов (не более), мз/ч:

-ацетилена

1,2-2,25

0,5-4,0

< 2,2

3,0

-кислорода

1,2-2,25

-

< 2,6

5,0

-азота

5,0-8,0

-

< 9,0

8,0

-воздуха

20-25

-

< 25

-

Давление газов, МПа:

-ацетилена

0,15

-

0,1-0,12

-

-кислорода

0,5

-

0,3-0,5

-

-азота

0,3-0,8

-

0,3-0,8

-

-воздуха

0.4

-

0,4-0,5

-

Расход охлаждающей воды, м3/ч (давление, МПа)

1,0

-

1,0

.-

(0,2)

(0,05-0,1)

Скорострельность, выстрел/с

2-4

2-15

4

4

Расход напыляемого порошка, г/выстрел

0,1-0,25

2-12

-

4-12

Производительность на пыления, кг/ч

0,8-2,5

0,7-3,0

0,7-3,5

КИП

0,4-0,5

0,3-0,8

0,3-0,5

0,1-0,8

Электрическая мощность, кВт

0,35

-

0,3

-

Толщина покрытия за выстрел, мкм (площадь, см2)

5-10

-

3-10

-

(3.2)

На рис. 3, а приведена принципиальная схема установки механического типа. Рабочие газы С2Н2 (1), О2 (2) и N2 (3) через систему подводящих трубопроводов и тарельчатых клапанов 1 подаются в смесительную камеру 3. Первоначально срабатывают клапаны, подающие С2Н2 и О2, а при их закрытии открывается клапан подачи азота. Готовая взрывчатая смесь проталкивается в камеру 6, где и взрывается искрой запального устройства 5. Подача продувочного газа необходима для того, чтобы заглушить азотом входные отверстия ацетиленового и кислородного клапанов. Этим предотвращается возможность обратного удара и увеличивается стойкость клапанов. Кроме того, азот очищает камеру смешения и взрывную камеру 6 от продуктов сгорания перед новым циклом. Распределительный механизм, выполненный в виде вала с кулачками 2, управляет работой клапанов и установки. Этот механизм приводится в движение электроприводом 4.

Рис. 3. Схема детонационно-газовых установок: а - с клапанами механического типа; б - с пневмоклапанами

На рис. 3, б приведена упрощенная принципиальная схема установки с электромагнитной клапанной системой. Блок управления БУ с электронным счетно-суммирующим программным устройством определяет последовательность работы схемы. В начальный момент по команде с БУ открываются электромагнитные клапаны 1 - 3, подающие в смесительную камеру 7 компоненты газовой рабочей смеси. С помощью клапана 3 регулируется количество азота в смеси N2. Это позволяет в широких пределах регулировать температуру, давление и скорость детонационной волны и продуктов ее распада. Появляется возможность подбирать необходимый режим работы установки. Одновременно с клапанами 1-3 открывается клапан 4, через который поступает транспортирующий газ N2 (тр) и подается из питателя 8 порция порошка во взрывную камеру 9. После заполнения взрывной камеры рабочей смесью клапаны 1-4 закрываются. Одновременно открывается клапан 5, через который нейтральный газ N2 (з) заполняет буферный змеевик 10. После закрытия всех клапанов генератор 11 подает импульс высокого напряжения на искровую свечу 12. Этим обеспечивает подрыв рабочей смеси во взрывной камере. Цикл заканчивается открытием клапана 6 и продувкой системы нейтральным газом N2 (п). В последующих циклах последовательность работы клапанов повторяется.

Преимуществом установок с электромагнитной клапанной системой и электронным счетно-суммирующим программным устройством является оперативное изменение режимов (программы) напыления покрытий.

Функционирование детонационно-газовых установок зависит от совершенства конструкций ряда узлов и систем, например распылителя, камеры смешения, системы зажигания, устройства для предотвращения обратного удара, системы управления и регулирования и др.

4. Перспективы детонационно-газового напыления

Композиционные материалы, все более широко применяемые в машиностроении, должны обладать высокой несущей способностью, низким коэффициентом трения, устойчивостью к воздействию агрессивных сред и ударных нагрузок.

Полимерные материалы (фторопласт, полиэтилен и др.), обладая хорошими антифрикционными свойствами, имеют низкую несущую способность. Поэтому для подшипников скольжения используют фторопластовые эмульсии, которыми заполняют пористые подложки, припеченные к металлической ленте. Такой метод снижения трения позволяет повысить работоспособность узла даже без применения смазки. Однако это покрытие не обладает достаточной стойкостью в агрессивных средах в виду его пористости и малой толщины. Целесообразно применение деталей с полимерным покрытием, которое получают приклеиванием тонких пленок к защищаемой поверхности.

Известно, что полимерные материалы плохо смачиваются клеями и практически не склеиваются. Исследования вели в направлении создания слоя, сцепленного механически с полимером и обладающего хорошей адгезией с клеем. В результате были разработаны такие технологические процессы, как металлизация поверхности полимера в тлеющем разряде и втирание абразивных частиц специальной формы, смешанных с клеем, в склеиваемые поверхности. Однако значительного повышения прочности адгезии при этом получить не удалось.

Одним из перспективных методов создания высокопрочных клееных полимерных композиционных материалов является детонационно-газовое нанесение активного слоя. Преимущество этого метода заключается в высокой скорости частиц, обеспечивающей хорошую адгезию при низкотемпературном воздействии газовой струи на деталь. Процесс можно представить в такой последовательности. При детонационно-газовом напылении покрытия в момент инициирования взрыва детонирующей смеси в ствол установки подается мелкодисперсный металлический порошок, обладающий определенными свойствами. Детонационная волна распространяется в стволе со скоростью 3000 - 4000 м/с, образуя фронт с высокими термодинамическими параметрами. Попадая в эту зону, частицы порошка разогреваются, пластифицируются и ускоряются до скорости 8 - 1200 м/с на срезе ствола.

Одним из условий получения качественного газопламенного покрытия является обеспечение необходимого уровня энергии частиц напыляемого материала на поверхности изделия. Энергетическое состояние частиц определяется суммой энергий -- тепловой, характеризующейся температурой нагрева, и кинетической.

При газопламенном напылении порошковым материалом частица напыляемого материала нагревается до температуры пластического состояния или температуры плавления за счет конвективного теплообмена между продуктами горения факельного пламени и частицей. Это происходит в интервале эффективных температур, где температура продуктов горения на 300 °С выше температуры плавления. Участок факела, на котором температура частицы не ниже температуры плавления материала и не охлаждается ниже этой температуры, определяет рабочую зону факела пламени для газопламенного нанесения покрытий.

Заключение

Представленные в работе данные позволяют сделать вывод о том, что для всех видов материалов при детонационном (газотермическом) напылении покрытий существует оптимальное соотношение между скоростью и температурой напыляемых частиц. Это предопределяет необходимость более тщательного подхода к выбору источников энергии для детонационного нанесения порошковых покрытий, накоплению и обобщению экспериментальных данных о формировании покрытий при различных сочетаниях скорости и температуры части.

Работы в области получения новых экспериментальных данных продолжается и вполне успешно, это позволяет сделать вывод о том, что метод применяется и будет в дальнейшем применим т.к. ведутся разработки.

Детонационно-газовое напыление предусматривает последовательную передачу взрывных импульсов в определенном направлении для создания высокотемпературного потока газовой смеси, нагревающего и распыляющего порошковый материал, ускоряющего его частицы и формирующего покрытие.

Взрывное, детонационное сгорание обеспечивается заданным составом газовой смеси после ее поджигания в камере и появления тепловых волн за счет которых возникают ударные волны, и происходит попадание смеси в канал ствола, куда вводится напыляемый порошок. Здесь появляется взрывная, детонационная волна с образованием продуктов взрывного сгорания и формированием на выходе из ствола газового потока с напыляемыми частицами.

Применение детонационно-газового метода дает возможность напылять покрытия различного назначения на мелких и крупных изделиях, наружных и внутренних поверхностях при следующих основных преимуществах процесса:

- высокие механические свойства покрытия;

- широкая номенклатура напыляемых материалов;

- невысокий нагрев изделия при напылении;

- повышенная производительность;

- малая чувствительность к качеству подготовки поверхности.

К недостаткам метода относятся:

- трудность нанесения покрытий на очень твердую поверхность;

- трудность использования порошков с невысокой плотностью частиц;

- высокий уровень шума (до 130 дБ);

- повышенная стоимость оборудования.

Список используемой литературы

1. Астахов Е.А. Влияние детонационных покрытий на механические свойства изделий / / Автоматическая сварка. - 2004. - №6. - С. 56 - 57.

2. Белоус Ю.Ю., Волхов А.М., Захаров Н.Г., Ахтырский В.П. Технология получения металло-полимерных клееных соединений / / Сварочное производство. - 1989. - №2. - С. 30 - 31.

3. Бутовский К. Г., Лясников В.Н Напыленные покрытия и оборудование: Учеб. пособие для студ. мишино-и приборостроит. спец./ Саратовский гос. тех. ун-т. - Саратов, 1999. -118с.:ил.

4. Жадкевич М.Л., Тюрин Ю.Н., Колисниченко О.В., Мазунин В.М. Влияние параметров разрядного контура плазменно-детонационной установки на газодинамические характеристики импульсных плазменных потоков / / Автоматическая сварка. - 2006. - №8. - С. 52 - 45.

5. Корж В.Н., Попиль Ю.С. Получение газопламенного покрытия при использовании водородно-кислородного пламени / / Автоматическая сварка. - 2005. - №9. - С. 25 - 30.

6. Кудинов В.В. Нанесение покрытий напылением. Теория, технология и оборудование: учебник для вузов / В.В. Кудинов, Г.В. Бобров; под ред. Б.С.Митина, - М.: Металлургия, 1992. - 432.с: ил.

7. Пащенко В.Н., Солодский С.П. Магнитное управление потоками низкотемпературной плазмы в процессах нанесения покрытий / / Автоматическая сварка. - 2006. - №6. - С. 53 - 55.

8. Ульшин В.А, Харламов М.Ю. Оптимизация параметров детонационно-газового напыления с использованием генетического алгоритма / / Автоматическая сварка. - 2005. - №2. - С. 32 - 37.

9. Ульшин В.А., Харламов М.Ю., Борисов Ю.С., Астахов Е.А. Динамика движения и нагрева пороша при детонационном напылении покрытий / / Автоматическая сварка. - 2006. - №9. - С. 37 - 43.

10. Харламов Ю.А. О роли скорости и температуры частиц при газотермическом напылении / / Физ. и химия обработки материалов. - 1983. - №3. - С.12 - 17.

Размещено на Allbest.ru

...

Подобные документы

  • Особенности и алгоритм определения теплоемкости газовой смеси (воздуха) методом калориметра при постоянном давлении. Процесс определения показателя адиабаты газовой смеси. Основные этапы проведения работы, оборудование и основные расчетные формулы.

    лабораторная работа [315,4 K], добавлен 24.12.2012

  • Скорости газовых молекул. Обзор опыта Штерна. Вероятность события. Понятие о распределении молекул газа по скоростям. Закон распределения Максвелла-Больцмана. Исследование зависимости функции распределения Максвелла от массы молекул и температуры газа.

    презентация [1,2 M], добавлен 27.10.2013

  • Определение реакции баллона на возросшее давление. Анализ газовой постоянной и плотности смеси, состоящей из водорода и окиси углерода. Аналитическое выражение законов термодинамики. Расчет расхода энергии в компрессорах при политропном сжатии воздуха.

    контрольная работа [747,5 K], добавлен 04.03.2013

  • Определение линейного теплового потока методом последовательных приближений. Определение температуры стенки со стороны воды и температуры между слоями. График изменения температуры при теплопередаче. Число Рейнольдса и Нусельта для газов и воды.

    контрольная работа [397,9 K], добавлен 18.03.2013

  • Физические основы различных распылений: ионного, катодного, магнетронного, высокочастотного. Получение покрытий распылением в несамостоятельном газовом разряде. Методы контроля параметров осаждения покрытий. Вакуумная металлизация полимерных материалов.

    курсовая работа [457,3 K], добавлен 19.01.2011

  • Определение средней скорости. Модули линейной скорости. Движение с ускорением. Применение законов Ньютона. Кинематический закон движения. Зависимость скорости от времени. Модуль импульса, закон сохранения энергии. Закон Дальтона и парциальное давление.

    задача [340,1 K], добавлен 04.10.2011

  • Гидростатическое давление в сосуде. Определение траектории движения тела и направления ускорения. Зависимость давления идеального газа от температуры. Зависимость проекции скорости материальной точки от времени. Изобарное охлаждение постоянной массы газа.

    задача [250,4 K], добавлен 04.10.2011

  • Скорости газовых молекул. Понятие о распределении молекул газа по скоростям. Функция распределения Максвелла. Расчет среднеквадратичной скорости. Математическое определение вероятности. Распределение молекул идеального газа. Абсолютное значение скорости.

    презентация [1,1 M], добавлен 13.02.2016

  • Определение перемещений и напряжений при ударе. Случай продольного удара груза по неподвижному телу. Определение скорости тела в момент удара. Возникновение значительной силы инерции, определение ее величины по действию удара. Действие нагрузки.

    реферат [585,2 K], добавлен 27.11.2008

  • Перспективы методов контроля оптической толщины покрытий различного функционального назначения. Контроль толщины оптических покрытий на основе тугоплавких оксидов формируемых методом электронно-лучевого синтеза. Расчёт интерференционных покрытий.

    дипломная работа [2,7 M], добавлен 18.03.2015

  • Понятие абсолютной, относительной влажности воздуха и влагоемкости. Давление водяного пара атмосферы при различных температурах. Краткая характеристика основных методов оценки влажности и температуры воздуха. Аспирационный и простой психрометры.

    лабораторная работа [331,0 K], добавлен 19.11.2011

  • Характеристика законов Бойля-Мариотта, Бойля-Мариотта, Авогадро. Парциальное давление как давление, которое оказывал бы каждый газ смеси, если бы он один занимал объем, равный объему смеси. Знакомство с положениями молекулярно-кинетической теории газа.

    презентация [625,5 K], добавлен 06.12.2016

  • Рассмотрение экспериментальных зависимостей температуры горячего потока от входных параметров. Расчет показателей расхода хладагента и горячего потока и их входной температуры. Определение толщины отложений на внутренней поверхности теплообменника.

    лабораторная работа [52,4 K], добавлен 13.06.2019

  • Понятие вещества и его состояния (твердое, жидкое, газообразное, плазменное), влияние изменения температуры. Физическое состояние газа, характеризующееся величинами: температура, давление, объем. Формулировка газовых законов: Бойля-Мариотта, Гей-Люссака.

    презентация [1,1 M], добавлен 09.04.2014

  • Адгезия и методы ее измерения. Основные свойства силицидов молибдена и защитных покрытий на их основе. Метод акустической эмиссии и его применение для изучения разрушения покрытий и материалов. Получение образцов молибдена с силицидными покрытиями.

    дипломная работа [1,5 M], добавлен 22.06.2012

  • Использование законов кинематики поступательного и вращательного движения для определения скорости пули. Схема установки для определения скорости пули кинематическим методом. Формулы для определения частоты вращения дисков. Начало системы отсчета.

    лабораторная работа [96,1 K], добавлен 24.10.2013

  • Гидравлический расчет газовой сети, состоящей из участков среднего и низкого давления. Определение основного направления главной магистрали системы. Минимизация используемых трубопроводов. Анализ значения скорости, диаметра и давления в тупиковых ветвях.

    курсовая работа [2,0 M], добавлен 19.12.2014

  • Определение массовой, объемной и мольной теплоемкость газовой смеси. Расчет конвективного коэффициента теплоотдачи и конвективного теплового потока от трубы к воздуху в гараже. Расчет по формуле Д.И. Менделеева низшей и высшей теплоты сгорания топлива.

    контрольная работа [117,3 K], добавлен 11.01.2015

  • Расчет значения среднеинтегрального напора насоса по смеси и соответствующей ему величине среднеинтегральной подачи смеси путем интегрирования подачи от давления у входа до давления на выходе из насоса. Расчет кавитационного режима работы насоса.

    презентация [1,9 M], добавлен 04.05.2016

  • Определение увеличение объема жидкости после ее нагрева при атмосферном давлении. Расчет величины и направления силы гидростатического давления воды на 1 метр ширины вальцового затвора. Определение скорости движения потока, давления при входе в насос.

    контрольная работа [474,0 K], добавлен 17.03.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.