Изоляция электрических установок
Характеристика и типы линейных изоляторов для крепления проводов воздушных линий электропередачи. Общие сведения о кратковременной электрической прочности внутренней изоляции оборудования энергосистем. Тепловой пробой под воздействием высокого напряжения.
Рубрика | Физика и энергетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 04.10.2013 |
Размер файла | 247,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Введение
1. Линейные изоляторы
2. Общие сведения о кратковременной электрической прочности внутренней изоляции. Тепловой пробой внутренней изоляции
Список используемой литературы
Введение
Изоляция электрических установок разделяется на внешнюю и внутреннюю.
К внешней изоляции установок высокого напряжения относят изоляционные промежутки между электродами (проводами линий электропередачи (ЛЭП), шинами распределительных устройств (РУ), наружными токоведущими частями электрических аппаратов и т.д.), в которых роль основного диэлектрика выполняет атмосферный воздух. Изолируемые электроды располагаются на определенных расстояниях друг от друга и от земли (или заземленных частей электроустановок) и укрепляются в заданном положении с помощью изоляторов.
К внутренней изоляции относится изоляция обмоток трансформаторов и электрических машин, изоляция кабелей, конденсаторов, герметизированная изоляция вводов, изоляция между контактами выключателя в отключенном состоянии, т.е. изоляция герметически изолированная от воздействия окружающей среды корпусом, оболочкой, баком и т.д. Внутренняя изоляция, как правило, представляет собой комбинацию различных диэлектриков (жидких и твердых, газообразных и твердых).
В данной работе были рассмотрены линейные изоляторы, их характеристика, а также были приведены рисунки некоторых типов линейных изоляторов. Еще в данной работе общие сведения о кратковременной электрической прочности внутренней изоляции и тепловой пробой внутренней изоляции.
1. Линейные изоляторы
Изоляторы, применяемые для крепления проводов воздушных линий электропередачи, делятся по своей конструкции на штыревые, подобные опорным штыревым, и подвесные. Последние подразделяются на изоляторы тарельчатого типа и стержневые.
Линейные изоляторы испытывают механические нагрузки, которые создаются натяжением проводов и зависят от сечения проводов и длин пролетов между опорами, от температуры проводов, силы ветра и других факторов. Для штыревых линейных изоляторов эти нагрузки являются главным образом изгибающими. Подвесные изоляторы благодаря шарнирному креплению подвергаются только растягивающим усилиям.
Штыревые изоляторы. Провод крепится на верхней или боковой бороздке изолятора с помощью проволочной вязки или специальных зажимов. Сам изолятор навертывается на металлический штырь или крюк, закрепленный на опоре. Чтобы крюк не поворачивался в опоре при натяжении провода, ему придается такая форма, что ось провода и ось ввертываемой в опору части крюка лежат в одной плоскости. При этом натяжение провода не создает вращающего момента относительно оси крюка.
Гнездо с резьбой для ввертывания штыря или крюка углублено в тело изолятора настолько, что верхняя часть штыря или крюка оказывается на уровне шейки изолятора. Этим достигается уменьшение изгибающего момента, действующего на тело изолятора. Механическая прочность штыревых изоляторов характеризуется минимальной разрушающей нагрузкой на изгиб.
При дожде внешняя часть поверхности изолятора оказывается полностью смоченной водой. Сухой остается лишь его нижняя поверхность, поэтому почти все напряжение оказывается приложенным между концом внешнего ребра и штырем. Вследствие этого, несмотря на значительное увеличение диаметра изолятора (он примерно на 35 % больше высоты), мокроразрядное напряжение получается почти вдвое меньше, чем сухоразрядное.
Изоляторы типа ШФ 20 на напряжение 20 кВ и ШФ 35 на напряжение 35 кВ в целях получения необходимых электрической и механической прочностей выполняются из двух фарфоровых частей, склеиваемых цементным раствором. Подвесные изоляторы тарельчатого типа. На линиях 35 кВ и более высокого напряжения применяются преимущественно подвесные изоляторы тарельчатого типа. Путем последовательного соединения таких изоляторов можно получить гирлянды на любое номинальное напряжение. Применение на линиях разного класса напряжения гирлянд из изоляторов одного и того же типа значительно упрощает организацию их массового производства и эксплуатацию.
Как уже отмечалось, из-за шарнирного соединения изоляторы в гирлянде работают только на растяжение. Однако сами изоляторы сконструированы так, что внешнее растягивающее усилие вызывает в изоляционном теле в основном напряжения сжатия и среза. Тем самым используется весьма высокая прочность фарфора и стекла на сжатие.
Рисунок 1. Изолятор линейный полимерный
Рисунок 2. Изолятор линейный подвесной стеклянный ПСВ-40В
2. Общие сведения о кратковременной электрической прочности внутренней изоляции. Тепловой пробой внутренней изоляции
Внутренняя изоляция оборудования энергосистем должна надежно выдерживать грозовые и внутренние перенапряжения. Электрическая прочность при воздействии перенапряжений характеризует способность изоляции противостоять этим воздействием и определяется пробивным напряжением (пробивной напряженностью электрического поля) при нормированных воздействиях.
Перенапряжения не должны приводить к полному пробою внутренней изоляции, а также к появлению в ней каких-либо местных повреждений, влекущих за собой сокращение срока службы изоляционной конструкции. Такие повреждения при перенапряжениях могут быть вызваны частичными разрядами. Это возможно в том случае, если энергия частичных разрядов достаточна для разрушения изоляции за малое время существования перенапряжения. Например, опасные повреждения возможны при появлении критических частичных разрядов в бумажно-масляной изоляции, а также в маслобарьерной изоляции силовых трансформаторов при частичных разрядах в виде пробоя первого масляного канала.
Таким образом, кратковременная электрическая прочность внутренней изоляции или ее способность выдерживать воздействие перенапряжений не всегда характеризуется напряжением полного (сквозного) пробоя, в ряде случаев она определяется напряжением появления частичных разрядов (ЧР) с опасной для данной изоляции интенсивностью.
Это весьма важно с практической точки зрения. Например, при заводском контроле изоляционных конструкций отсутствие пробоя во время приложения испытательного напряжения еще не означает, что испытания прошли успешно. Необходимо убедиться в том, что под действием испытательного напряжения в изоляции не появились частичные повреждения. С этой целью до и после приложения испытательного напряжения состояние изоляции обязательно контролируется с использованием методов, позволяющих обнаружить местные дефекты (например, по характеристикам частичных разрядов).
Кратковременная электрическая прочность обычно рассматривается применительно к следующим нормированным воздействиям:
а) электрическая прочность при кратковременном приложении напряжения промышленной частоты (плавный подъем напряжения с определенной скоростью или одноминутное приложение напряжения) - используется при определении требуемых габаритов изоляции по заданным испытательным напряжениям промышленной частоты, при определении допустимых испытательных напряженностей электрического поля по результатам этих испытаний, а также при определении размеров (допустимых напряженностей) по уровню длительных квазистационарных перенапряжений;
б) электрическая прочность при импульсных напряжениях длительностью порядка десятков микросекунд - используется при определении размеров изоляции (допустимых напряженностей) по заданным грозовым перенапряжениям, возникающим в электропередачах при ударах молнии. В этом случае при испытаниях чаще всего используются импульсы 1,2/50 мкс и срезанные импульсы при времени среза 2-3 мкс;
в) электрическая прочность при импульсных напряжениях длительностью от сотен микросекунд до десятых долей секунды - используется при определении размеров изоляции (допустимых напряженностей) по заданным внутренним коммутационным перенапряжениям. Испытания изоляции чаще всего проводятся апериодическим импульсом с фронтом примерно 250 мкс и длительностью примерно 2500 мкс (250/2500 мкс) или колебательным импульсом; например, для внутренней изоляции силовых трансформаторов - с фронтом не менее 100 мкс и длительностью импульса не менее (длительностью первого полупериода до полуспада напряжения) 1000 мкс.
Электрическая прочность внутренней изоляции зависит как от амплитуды и длительности, так и от его формы. При этом воздействие колебательных импульсов для некоторых видов изоляции более опасно, чем апериодических при одинаковой амплитуде импульса. Снижение электрической прочности при колебательных импульсах напряжения по сравнению с апериодическими связано с тем, что в первом случае количество ЧР, возникающих в изоляции при каждом импульсе, больше, чем во втором.
Частичные разряды сопровождаются разрушением изоляции, и поэтому многократное воздействие перенапряжений приводит к накоплению разрушений (кумулятивный эффект), например к образованию газовых полостей в пропитанной изоляции за счет разложения жидкого диэлектрика и снижению напряжения частичных разрядов.
Для каждого вида электрооборудования может быть введено понятие внутреннего ресурса. Внутренний ресурс изоляционной конструкции представляет собой величину, характеризующую способность изоляции в течение определенного времени выдерживать приложенное напряжение и противостоять разрушающему действию процессов, протекающих при этом напряжении.
Данные о кратковременной электрической прочности при стандартных грозовых импульсах напряжения и при плавном или ступенчатом подъеме напряжения 50 Гц. Соответствующие напряжения будем обозначать далее UИ и U50Гц При этом требования о том, что внутренняя изоляция должна выдерживать воздействия грозовых и внутренних перенапряжений, могут быть записаны в виде следующих неравенств:
UИ>UИСП.И; (1)
U50Гц>UИСП.50 Гц, (2)
где UИСП.И и UИСП.50 Гц - испытательные напряжения соответственно импульсное и промышленной частоты, значения которых устанавливаются с учетом уровней возможных в эксплуатации грозовых и внутренних перенапряжений. изоляция электрическая прочность пробой
В силу случайной природы разрядных процессов во внутренней изоляции и неконтролируемых различий между внешне одинаковыми изоляционными конструкциями напряжения UИ и U50Гц являются величинами случайными, подверженными значительным разбросам. Следовательно условия (1) и (2) должны соблюдаться с некоторой достаточно высокой вероятностью Р, зависящей от требований к надежности изоляции (например, Р=0,999). Это означает, что в условия (1) и (2) должны входить такие значения напряжений UИ и U50Гц, вероятность появления которых или еще более низких очень мала и равна 1-Р.
Напряжения UИ и U50Гц, соответствующие требуемой малой вероятности пробоя, или повреждения изоляции называются допустимыми для данной изоляционной конструкции. Обозначим их UД.И и UД.50Гц. Таким образом, условиями нормальной работы внутренней изоляции при перенапряжениях будут неравенства:
UД.И?UИСП.И; (3)
UД.50Гц? UИСП.50 Гц. (4)
При разработке изоляционных конструкций пользуются значениями напряжений UД.И и UД.50Гц, полученными по результатам испытаний соответствующих конструкций или макетов, воспроизводящих ту или иную часть конструкции. Для этого результаты испытаний достаточно больших партий конструкций или макетов подвергают статистическому анализу, выбирают вид функций распределения F(UИ) и F(U50Гц) и оценивают их параметры, например, математические ожидания UИ, U50Гц и среднеквадратические отклонения ?И, ?50Гц. Затем, используя функции распределения F(UИ) и F(U50Гц), определяют допустимые напряжения из условий:
F(UД.И)? 1- Р; (5)
F(UД.50Гц)? 1- Р, (6)
где Р - вероятность того, что конструкция выдержит перенапряжения без пробоя и повреждения.
При пробое под воздействием высокого напряжения внутренняя изоляция полностью или частично утрачивает свою электрическую прочность. Большинство видов внутренней изоляции принадлежит к группе несамовосстанавливающейся изоляции, пробой которой означает необратимое повреждение конструкции. Это означает, что внутренняя изоляция должна обладать более высоким уровнем электрической прочности, чем внешняя изоляция, т.е. таким уровнем, при котором пробои полностью исключаются в течение всего срока службы.
Необратимость повреждения внутренней изоляции сильно осложняет накопление экспериментальных данных для новых видов внутренней изоляции и для вновь разрабатываемых крупных изоляционных конструкций оборудования высокого и сверхвысокого напряжения. Ведь каждый экземпляр крупной дорогостоящей изоляции можно испытать на пробой только один раз.
Список используемой литературы
1. http://www.bester54.ru/goods/index.php?type=description&id=442.
2. http://www.bester54.ru/goods/index.php?section=7&subSection=51&type =goods.
3. http://electricalschool.info/main/visokovoltny/437-osnovnye-vidy-i-jelektricheskie.html.
4. http://www.mosvet.ru/page319.html.
Размещено на Allbest.ru
...Подобные документы
Изучение устройств для подвешивания и изоляции проводов и кабелей на опорах воздушной линии электропередачи или воздушных линий связи. Конструкция подвесных изоляторов. Описания проходных, штыревых и линейных изоляторов. Состав тарельчатых изоляторов.
презентация [752,2 K], добавлен 20.04.2017Общие сведения о воздушных линиях электропередач, типы опор для них. Понятие и классификация изоляторов провода трассы. Особенности процесса разбивки трассы, монтажа проводов и тросов. Характеристика технического обслуживания воздушных линий до 1000 В.
курсовая работа [35,4 K], добавлен 05.12.2010Воздушная линия электропередачи - устройство для передачи электроэнергии по проводам. Конструкции опор, изоляторов, проводов. Особенности проведения ремонта и заземления воздушных линий. Монтаж, ремонт, обслуживание воздушных линий электропередач.
дипломная работа [64,0 K], добавлен 10.06.2011Понятия разрядного напряжения и резконеоднородного поля. Внешняя и внутренняя изоляция электрических установок. Коронный разряд у электродов с малым радиусом кривизны во внешней изоляции. Целесообразность применения внутренней изоляции электроустановок.
реферат [24,3 K], добавлен 07.01.2011Виды электроизоляционных материалов и требования к изоляции. Особенности изоляции маслонаполненных и воздушных выключателей. Технические характеристики ограничителей перенапряжения. Выбор гирлянды изоляторов и расстояний опоры линии электропередачи.
курсовая работа [586,5 K], добавлен 19.04.2012Выбор номинального напряжения сети, мощности компенсирующих устройств, сечений проводов воздушных линий электропередачи, числа и мощности трансформаторов. Расчет схемы замещения электрической сети, режима максимальных, минимальных и аварийных нагрузок.
курсовая работа [2,5 M], добавлен 25.01.2015Формы электрических полей. Симметричная и несимметричная система электродов. Расчет максимальной напряженности кабеля. Виды и схема развития пробоя твердого диэлектрика. Характеристики твердой изоляции. Зависимость пробивного напряжения от температуры.
контрольная работа [91,5 K], добавлен 28.04.2016Технические данные элементов электрической сети, расчетная схема сети. Составление электрической схемы замещения для прямой последовательности. Расчет сопротивления параллельно работающих трансформаторов. Сопротивление воздушных линий электропередачи.
контрольная работа [467,8 K], добавлен 18.04.2014Расчет сечения провода по экономической плотности тока. Механический расчет проводов и тросов воздушных линий электропередачи. Выбор подвесных изоляторов. Проверка линии электропередачи на соответствие требованиям правил устройства электроустановок.
курсовая работа [875,3 K], добавлен 16.09.2017Выбор схемы соединения линий электрической сети. Определение сечений проводов линий электропередачи. Расчёт максимального режима сети. Выявление перегруженных элементов сети. Регулирование напряжения на подстанциях. Выбор трансформаторов на подстанциях.
курсовая работа [5,0 M], добавлен 14.03.2009Виды тепловой изоляции: естественная или природная (асбест, слюда, пробка) и предварительно обработанные материалы. Альфолевая изоляция. Термическое сопротивление теплопередачи через изолированный трубопровод. Выбор эффективной изоляции трубопроводов.
презентация [121,0 K], добавлен 18.10.2013Выбор конфигурации, номинального напряжения сети. Выбор трансформаторов и схем электрических соединений. Сечение проводов воздушных линий электропередачи. Технико–экономические показатели. Уточнённый расчёт радиально-магистральной сети напряжением 220 кв.
курсовая работа [1,3 M], добавлен 25.10.2016Выбор сечений проводов воздушных линий электропередачи. Зарядная мощность линий. Мощность трансформаторов на подстанциях. Справочные и расчетные параметры выбранных трансформаторов. Определение расчетных нагрузок узлов. Анализ схемы электрической сети.
курсовая работа [439,9 K], добавлен 16.01.2013Расчет воздушной линии электропередачи, обеспечение условия прочности провода. Внешние нагрузки на провод. Понятие о критическом пролете, подвеска провода. Опоры воздушных линий электропередачи. Фермы как опоры для высоковольтных линий электропередачи.
дипломная работа [481,8 K], добавлен 27.07.2010Составление вариантов схемы электрической сети и выбор наиболее рациональных из них. Расчет потокораспределения, номинальных напряжений, мощности в сети. Подбор компенсирующих устройств, трансформаторов и сечений проводов воздушных линий электропередачи.
курсовая работа [1,6 M], добавлен 24.11.2013Изучение методов испытания изоляции, пробоя воздушного промежутка при различной форме электродов. Проверка электрической прочности трансформаторного масла. Описание испытательной установки АИИ-70 для создания напряжений постоянного и переменного токов.
лабораторная работа [270,1 K], добавлен 02.11.2014Разработка вариантов схем электрической сети. Определение потокораспределения и выбор сечений проводов воздушных линий. Расчет токов короткого замыкания. Выбор и проверка оборудования подстанции. Выбор и расчет релейной защиты, заземления, молниезащиты.
курсовая работа [744,2 K], добавлен 11.05.2012Изоляция электротехнических установок. Составляющие времени разряда при воздействии короткого импульса. Стандартный грозовой импульс и его параметры. Время запаздывания разряда. Измерения с помощью шаровых разрядников. Характеристики изоляции.
лабораторная работа [1,1 M], добавлен 27.01.2009Задачи и критерии оптимизации режимов энергосистем. Математическое моделирование. Оптимизации режимов электрической сети. Контроль напряжений узлов и перетоков мощности в линиях электропередачи. Планирование режимов работы электрических станций.
реферат [198,5 K], добавлен 08.01.2017Проектирование воздушных линий электропередачи, его основные этапы. Особенности выбора промежуточных опор и линейной арматуры. Механический расчет проводов, и грозозащитного троса и монтажных стрел провеса. Специфика расстановки опор по профилю трассы.
курсовая работа [1,4 M], добавлен 12.12.2009