Электродвигатели постоянного тока ранней электромеханики
История развития электрической машины от лабораторных приборов до промышленных конструкций. Характеристика трех этапов развития электродвигателя постоянного тока. Изобретение "колеса Барлоу", его принцип действия. Описание электродвигателя Генри.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 17.10.2013 |
Размер файла | 1,7 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
Государственное образовательное учреждение
высшего профессионального образования
«ГОСУДАРСТВЕННЫЙ ЭНЕРГЕТИЧЕСКИЙ УНИВЕРСИТЕТ»
КАФЕДРА ЭЛЕКТРОСНАБЖЕНИЯ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ
РЕФЕРАТ
на тему: «Электродвигатели постоянного тока ранней электромеханики»
по дисциплине: «История развития энергетики»
Содержание
Введение
1. Начальный период развития электродвигателя (1821 -- 1834 гг.)
2. Второй этап развития электрических двигателей (1834 -- 1860 гг.)
3. Третий этап в развитии электродвигателей (1860 г.)
Заключение
Литература
Введение
Электрическая машина прошла длинный и сложный путь от лабораторных приборов до завершенных промышленных конструкций. Однако вначале развитие электрических генераторов и электрических двигателей шло совершенно различными путями, что вполне соответствовало состоянию науки об электричестве и магнетизме того периода: принцип обратимости электрической машины был открыт в 30-х годах, но его использование в широких масштабах начинается лишь с 70-х годов ХIХ века.
Так как в период до 1870 года все первые потребители электрической энергии питались исключительно постоянным током, и этот род тока был наиболее изучен, то и первые электрические машины были машинами постоянного тока.
В развитии электродвигателя постоянного тока можно наметить три основных этапа, которые ниже будут последовательно рассмотрены. Следует заметить, что это разделение на этапы является условным, так как конструкции и принципы действия электродвигателей, характерные для одного этапа, в отдельных случаях появлялись вновь спустя много лет; с другой стороны, более поздние и более прогрессивные конструкции в их зародышевой форме нередко можно найти в первоначальном периоде развития электродвигателя.
1. Начальный период развития электродвигателя (1821 -- 1834 гг.)
Характеризуется созданием физических приборов, демонстрирующих непрерывное преобразование электрической энергии в механическую. Первым таким прибором была установка Фарадея для демонстрации взаимного вращения магнитов и проводников с током.
Исследуя взаимодействие проводников с током и магнитов, Фарадей в 1821 году установил, что электрический ток, проходящий по проводнику, может заставить этот проводник совершать вращение вокруг магнита или вызывать вращение магнита вокруг проводника. Следовательно, опыт Фарадея являлся наглядной иллюстрацией принципиальной возможности построения электродвигателя.
Возможность превращения электрической энергии в механическую была показана и во многих других экспериментах. Так, в книге П. Барлоу «Исследование магнитных притяжений», опубликованной в 1824 году, описывалось устройство, известное под названием «колеса Барлоу» и являющееся одним из исторических памятников предыстории развития электродвигателя.
Колесо Барлоу по принципу действия представляет собой униполярную электрическую машину, работающую в двигательном режиме: в результате взаимодействия магнитного поля постоянных магнитов и тока, проходящего через оба медных зубчатых колеса, сидящих на одной оси, колеса начинают быстро вращаться. Легко определить (пользуясь, например, правилом левой руки), что оба колеса будут вращаться в одном и том же направлении.
Барлоу установил, что перемена контактов или перемена положения полюсов магнитов немедленно вызывает перемену направления вращения колес. Колесо Барлоу не имело практического значения и остается до сих пор лабораторным демонстрационным прибором.
Создание первого электродвигателя, а также итоги проведенных с ним испытаний сыграли важную роль в развитии электротехники. Они явились толчком для целого ряда работ, и в первую очередь для классических исследований Э.X. Ленца и Б.С. Якоби по изучению электромагнитов и по теории электрических машин, имевших существенное значение для дальнейшего развития электромашиностроения. Тщательные экспериментальные теоретические изыскания по изучению законов электромагнитов были проведены учеными в 1838-1844 годы. Хотя электромагнит был изобретен в 1835 году., его законы до этого времени не были изучены. Ученые, занимавшиеся исследованием электромагнитов, делали совершенно неверные выводы. Так, например, В. Риччи в 1836 году утверждал, что электромагниты в принципе обладают меньшей силой притяжения, чем постоянные магниты. Неверным был и установленный Даль-Негро закон, согласно которому сила намагничивающего тока прямо пропорциональна периметру пластин гальванического элемента. Уже в своих первых работах Якоби показал ошибочность такого вывода. Электромагниты составляли основную часть его двигателя, и вполне естественно, что он был крайне заинтересован в строго научном их изучении.
Живой интерес к этому проявил и Э.X. Ленц. В результате многолетних исследований оба ученых пришли к важному фундаментальному выводу: магнитный поток, создаваемый в железном стержне электромагнита, пропорционален силе намагничивающего тока и числу витков обмотки и не зависит от диаметра проволоки и диаметра витков. Ими было также доказано, что сила возбуждаемого «магнетизма» в электромагнитах не зависит от формы сечения проволоки и от материала, из которого она сделана.
Выводы были правильными, но только для толстых железных стержней и для слабых токов, т. е. для областей, весьма далеких от области насыщения. Это обстоятельство и дало возможность сделать им правильное заключение о пропорциональности магнитного потока и намагничивающего электрического тока. Такая пропорциональность действительно существует в достаточно широких границах, и поэтому она применима во многих практических случаях. Позднее наукой было установлено, что для тонких железных стержней и для сильных намагничивающих токов намагничивание очень быстро перестает быть пропорциональным силе тока. Впервые зависимость намагничивания мягкого железа от напряженности магнитного поля была исследована в 1872 году русским физиком А.Г. Столетовым в его докторской диссертации, носившей название «Исследование о функции намагничивания мягкого железа». Эта работа и послужила в дальнейшем основой для разработки расчетов электрических машин.
Установленные Ленцем и Якоби закономерности позволяли правильно определить число пар в батарее и конструкцию обмотки электромагнита для получения максимального намагничивания железных стержней электромагнита. При этом обязательно должно было соблюдаться равенство внутреннего и внешнего сопротивления цепи. Это существенно облегчало выбор рациональной конструкции электромагнитов, что имело важное значение для дальнейшего развития электромашиностроения. Были исследованы многие частные случаи получения максимального намагничивания железных стержней. Этого можно достигнуть, писали ученые «бесчисленным множеством способов, если толщину проволоки выбирать в определенном соотношении с устройством цепи; но каким бы способом мы, ни достигли этого максимума, расход цинка за определенное время в точности одинаков». Этот важный вывод давал возможность правильно учитывать энергетическую сторону в работе с электромагнитами.
Ценные исследования были проведены Ленцем и Якоби и по изучению зависимости «магнетизма» от размеров железных стержней, их длины и диаметра. Учеными были получены самые точные результаты, каких могла добиться наука того времени. Оценивая эти результаты в 1875 году, русский академик Г.И. Вильд писал: «Исследования обоих ученых по этому вопросу (т. е. по изучению электромагнитов) могут быть названы образцовыми, а результаты их до сих пор остаются главными законами электромагнитов, несмотря на некоторые добавления и небольшие изменения, внесенные в них усовершенствованием инструментов и методов».
Полученные результаты в изучении электродвигателей Якоби изложил в работах «О принципах электромагнитных машин» (1840) и «О теории электромагнитных машин» (1850).
В своих изысканиях Якоби исходил, прежде всего, из особенностей конструкции своего двигателя, хотя и подчеркивал, что полученные им результаты применимы к электромагнитному двигателю любой конструкции. Прежде всего он изучил параметры электродвигателя, которые, по его убеждению, определяли действие электрических машин и были наиболее важными для их характеристики. Такими параметрами он считал: скорость вращения ротора, величину действующих электромагнитных сил, мощность машин и, главное, их коэффициент полезного действия, или, как он писал, их «экономический эффект». Очень важно отметить, что при анализе работы электрических машин Якоби исходил из передовых научных представлений, т. е. из закона сохранения энергии, закона электромагнитной индукции, закона Ома и из установленных им совместно с Ленцем закономерностей для электромагнитов. Его труды были первой попыткой теоретического анализа работы электрического двигателя. Ученый писал их в то время, когда еще не были изучены процессы, происходящие во вращающихся двигателях, когда ученые ничего не знали о существовании петель гистерезиса и когда совсем не были изучены свойства ферромагнитных материалов. Поэтому совершенно не случайно формулы, выведенные Якоби для тормозного режима двигателя, не учитывали процессов, происходящих во вращающемся двигателе. Правда, ученый понимал, что сила притяжения электромагнитов при движении машин не оставалась постоянной, и что при изменении направления тока в обмотке электромагнитов намагничивание сердечника происходило не мгновенно. А это означало, что «магнетизм» не сразу достигал своего максимального значения.
Не зная магнитных характеристик железа, Якоби не мог понять причину такого несоответствия, хотя и предполагал, что это явление связано с особенностями поведения железного сердечника в магнитном поле. Он руководствовался законом пропорциональности между силой тока и намагничиванием железа. Но для областей, близких к насыщению железа, этот закон не мог быть применен. Поэтому и получалось расхождение вычисленных и опытных данных.
Ценные расчеты были проведены им и по определению мощности электродвигателя. Пользуясь современными обозначениями (Р - мощность, U - напряжение, R - сопротивление), формулу, по которой Якоби определял мощность электродвигателя, можно записать так:
Формула имела глубокий энергетический смысл. Она наглядно доказала, что определенная механическая мощность на валу двигателя может быть получена только путем затраты пропорционального количества электрической энергии. В результате исследований по этому вопросу Якоби убедился в ошибочности своего первоначального предположения, сделанного им в 1834 году. Тогда он утверждал, что «новый двигатель не подчинен имевшему до сего времени силу закону пропорциональности между эффектом и затратами». Ему тогда казалось, что «в электрической машине скорость не стоит денег».
После тщательных экспериментальных изысканий Якоби пришел к выводу, что дело обстоит далеко не так. Его иллюзии, как и иллюзии многих ученых и изобретателей относительно даровой механической работы, которую, якобы, можно было получить от электродвигателя, были глубоко ошибочными. Опыт показал, и это Якоби было неопровержимо доказано, что существует прямая пропорциональность между затратами на питание электродвигателя и получаемым от него эффектом. Двигатель, питаемый электрической энергией от гальванической батареи, не может развить большой мощности. Отсюда становилась очевидной задача начать поиски нового источника дешевого электрического тока для питания электродвигателя.
Изобретатели середины XIX в. слишком долго все надежды возлагали на гальванические элементы и аккумуляторы. Они были наиболее распространенными источниками тока примерно до 1870 года. Первый патент на самовозбуждающийся электрический генератор с кольцевым якорем был получен 3. Граммом в 1870 году. Этот генератор положил начало широкому практическому применению в промышленности и судоходстве электрических генераторов.
Электродвигатель Генри
Характерным для первого этапа развития электродвигателя примером, отражающим иное направление в создании конструктивных форм, является прибор американского физика Дж. Генри. Генри в 1831 году. опубликовал статью «О качательном движении, производимом магнитным притяжением и отталкиванием», в которой он описал разработанный им электродвигатель.
Это устройство, как и колесо Барлоу, не пошло дальше лабораторных демонстраций, и сам изобретатель не придавал ему серьезного значения.
В историческом аспекте электродвигатель Генри интересен тем, что в этом устройстве впервые сделана попытка использовать притяжение разноименных и отталкивание одноименных магнитных полюсов для получения непрерывного движения (в данном случае -- качательного). Изменение полярности электромагнита за счет перемены направления протекающего по его обмотке тока приводило электромагнит в равномерное качательное движение.
В модели, построенной самим Генри, электромагнит совершал 75 качаний в минуту. Мощность двигателей подобного типа была очень небольшой: один из таких двигателей, построенный в 1831 году, имел мощность 0,044 Вт (по современным подсчетам).
Как на первом этапе, так и позднее было предложено много конструкций двигателей с качательным движением якоря. Однако более прогрессивными оказались попытки построить электродвигатель с вращательным движением якоря.
2. Второй этап развития электрических двигателей (1834 -- 1860 гг.)
Преобладание конструкций с вращательным движением явнополюсного якоря. Вращающий момент на валу таких двигателей обычно был резко пульсирующим. Наиболее характерные и существенно важные работы по конструированию электродвигателей этого рода принадлежат Б. С. Якоби.
Рис. 1 Общий вид электродвигателя Якоби конструкция 1834 г.
Изучая конструкции электродвигателей своих предшественников, в которых было реализовано возвратно-поступательное или качательное движение якоря, Якоби отозвался об одном из них, что «такой прибор будет не больше, чем забавной игрушкой для обогащения физических кабинетов», и что «его нельзя будет применять в большом масштабе с какой-нибудь экономической выгодой» - поэтому он направил свое внимание на построение более мощного электродвигателя с вращательным движением якоря.
В 1834 году Якоби построил и описал электродвигатель, который действовал на принципе притяжения и отталкивания между электромагнитами. Этот двигатель имел две группы П-образных электромагнитов, из которых одна группа (четыре П-образных электромагнита) располагалась на неподвижной раме, а другая аналогичная группа -- на вращающемся диске. В качестве источника тока для питания электромагнитов была применена батарея гальванических элементов. Для попеременного изменения полярности подвижных электромагнитов служил коммутатор.
Коммутатор представлял собой чрезвычайно важную и глубоко продуманную часть устройства электродвигателя Якоби. Конструктивно он представлял собой четыре металлических кольца, установленных на валу и изолированных от него; каждое кольцо имело четыре выреза, которые соответствовали одной восьмой части окружности. Вырезы были заполнены изолирующими вкладками; каждое кольцо было смещено на 45° по отношению к предыдущему. По окружности кольца скользил рычаг, представлявший собой своеобразную щетку; второй конец рычага был погружен в соответствующий сосуд со ртутью, к которому подводились проводники от батареи (сосуды с ртутью являлись наиболее распространенными в то время контактными устройствами).
Таким образом, при каждом обороте кольца 4 раза разрывалась электрическая цепь, к электромагнитам вращающегося диска отходили от колец проводники, укрепленные на валу машины. Обмотки всех электромагнитов неподвижной рамы были соединены последовательно и обтекались током батареи в одном направлении.
Обмотки электромагнитов вращающегося диска были также соединены последовательно, но направление тока в них с помощью коммутатора изменялось 8 раз за один оборот вала. Следовательно, полярность этих электромагнитов также изменялась 8 раз за один оборот вала и эти электромагниты поочередно притягивались и отталкивались электромагнитами неподвижной рамы.
Первый электродвигатель, построенный Якоби, мог поднимать груз весом 10--12 фунтов (т. е. примерно 4--5 кг) на высоту 1 фут (примерно 30 см) в секунду, что составляло мощность около 15 вт. Желание увеличить мощность электродвигателя привело Б. С. Якоби к созданию конструкции электродвигателя сдвоенного типа.
Рис. 2 Электродвигатель Якоби сдвоенного типа
Этот электродвигатель имел 24 неподвижных П-образных электромагнита и 12 подвижных стержневых электромагнитов, но действовал на том же принципе, что и первый его электродвигатель. Прогрессивным в этом варианте двигателя Якоби было то, что при подобной конструкции электродвигателя подшипники разгружались от аксиальных усилий, которые возникали в первом электродвигателе при совмещении осей подвижных и неподвижных электромагнитов.
Изменение конструкции, однако, не дало значительного увеличения мощности и не позволило применить электродвигатель на практике. Нужно было искать новое конструктивное решение, которое через несколько лет и было найдено Б. С. Якоби.
Первый свой электродвигатель Якоби построил в мае 1834 года, а в ноябре того же года он представил Парижской академии наук сообщение об этом устройстве. Сообщение было прочитано на заседании Парижской академии в декабре 1834 года и немедленно после этого опубликовано. Таким образом, известие об изобретении Б. С. Якоби очень скоро распространилось по всем странам.
Электродвигатель Девенпорта
В 1837 году американский техник Т. Девенпорт также построил электродвигатель с непосредственным вращением якоря, в котором взаимодействовали подвижные электромагниты с неподвижными постоянными магнитами. В этой конструкции были некоторые прогрессивные идеи, на которые, по-видимому, обратили внимание конструкторы электродвигателей, в том числе и Б. С. Якоби.
Электродвигатель Девенпорта имел четыре горизонтальных крестообразно расположенных электромагнита, укрепленных на деревянном диске, жестко связанном с вертикальным валом. Эти электромагниты были расположены внутри двух постоянных магнитов в форме полуокружностей, опирающихся на деревянное кольцо; магниты соприкасались одноименными полюсами и создавали кольцо с двумя полюсами: N и S.
На особой подставке были расположены медные пластины, разделенные посередине изоляцией. К ним подводился ток от источника питания. Концы последовательной обмотки каждой пары электромагнитов имели пружинящие контакты. Взаимодействие электромагнитов и постоянных магнитов приводило электродвигатель в работу, причем полярность электромагнитов в соответствующие моменты изменялась при помощи мощи коммутатора.
Новый двигатель Якоби 1838 года.
С созданием специальной комиссии и выделением для проведения опытов необходимых средств, Якоби целиком отдает всю свою энергию, весь свой талант инженера и ученого выполнению возложенной на него огромной и ответственной задачи - созданию пригодного для практики, более мощного и более экономичного электродвигателя.
Для проведения необходимых исследований Якоби прежде всего потребовал выделения помещения, помощников и приобретения нужного ему оборудования. Требования ученого были быстро удовлетворены: помещение было выделено; механическая мастерская была оборудована необходимыми станками и инструментами; в качестве помощников для работы в мастерской были найдены достаточно квалифицированные мастер, слесарь и столяр. Необходимыми приборами была укомплектована и лаборатория.
К концу 1837 года по заданию комиссии, которая собиралась каждый месяц, Якоби построил три двигателя: один модели 1834 года, но большего размера, второй по его «совершеннейшей» конструкции и третий «по описанию подобного аппарата, сделанного в Америке». Все двигатели испытывались в лаборатории. Их мощность определялась по работе, совершаемой в точно установленное время при поднятии груза на определенную высоту. Мощность оказалась недостаточной для приведения в движение катера. Поэтому по предложению Якоби было решено строить двигатель больших размеров и главное - значительно большей мощности, примерно на 368- 760 Вт, с тем чтобы испытать его применимость для движения катера.
Напряженной работой по созданию такого двигателя ученый был занят с января по август 1838 года. Было проведено много экспериментов и расчетов, в результате которых Якоби спроектировал и построил новый вариант более мощного электродвигателя. При его создании он пошел по пути конструктивного объединения нескольких двигателей в один агрегат. Это была типичная для середины XIX века тенденция в деле создания мощных электродвигателей, необходимых для потребностей практики. Никаких качественно новых решений никто из ученых и конструкторов, в том числе и Якоби, придумать тогда не смог. Он использовал идею, выдвинутую Т. Девенпортом, располагать неподвижные и вращающиеся электромагниты в одной плоскости на вертикально установленном валу высотой 1,2м. Это увеличивало размеры двигателя в вертикальном направлении, и в то же время сокращало занимаемую им площадь. Она была равна 0,7 м2, т. е. 0,9м в длину и 0,77м в ширину.
Двигатель представлял собой комбинацию из 40 небольших двигателей, по 20 двигателей на каждом вертикальном валу. Таким образом, оба вертикальных вала 2 с двигателями занимали в катере площадь 1,4 м. Каждый из небольших двигателей по своему устройству был очень простым. Неподвижная его часть состояла из двух электромагнитов 3, которые были изогнуты по дуге окружности. Каждый из них занимал четвертую часть окружности кольца. Между собой эти электромагниты были скреплены скобами 4 из немагнитного материала. Для придания стойкости скобы привинчивались к вертикально расположенной деревянной станине.
Подвижная часть каждого из малых двигателей составлялась из четырех электромагнитов 1, расположенных крестообразно на специальной втулке. Для. питания током обмоток электромагнитов на катере было установлено 320 гальванических элементов. Изменение направления тока в обмотках подвижных электромагнитов осуществлялось с помощью конструктивно измененного коммутатора 5, Для приведения в движение катера вращение с вертикальных валов с помощью конических шестерен 6, 7 передавалось на горизонтальную ось 8, на которой по его обоим бортам были укреплены гребные колеса.
Рис. 3. Чертеж электродвигателя Б.С. Якоби конструкции 1838 года
Мощность нового электродвигателя была равна примерно 550-736 Вт. Его испытания были проведены 13 сентября 1838 года на Неве. Катер, вмещавший без «стеснения 12 пассажиров, двигался посредством магнетизма» в течение 7 часов со скоростью 2 км/ч как по течению на расстояние 7 км, так и против течения на такое же расстояние. Испытания продолжались несколько дней и на Неве и на каналах города. Это был первый в мире случай практического применения электродвигателя для судоходства. Катер работал безотказно. Он превзошел возлагавшиеся на него надежды. «В противоположность первоначальному плану, - указывалось в заключении комиссии по которому предположено было производить опыты на тихой воде, удалось совершить плавание на самой Неве и даже против течения». Успех был поистине сенсационным.
Тщательный анализ итогов испытаний позволил комиссии дать им высокую положительную оценку.
В то же время были установлены и некоторые существенные недостатки. Было отмечено, что Якоби напрасно применил новую конструкцию коммутатора. Необходимо было сохранить конструкцию 1834 года. Неудовлетворительной оказалась и шелковая изоляция проводов. При использовании гальванических- элементов не был учтен доказанный ранее Якоби и Ленцем вывод, что количество применяемых в батарее электродов не играет большой роли, важна их площадь. Значит, можно было вместо 320 гальванических элементов использовать значительно меньшее их число, например 10 или 20, но с большей площадью электродов. Оказалось также, что вместо перепонок, разделяющих в элементах различные кислоты, можно было применить пористые глиняные перегородки. Это значительно повысило бы качество каждого элемента и всей батареи.
Надеясь, что отмеченные недостатки могут быть устранены, комиссия решила продолжить практическое испытание электродвигателя в 1839 году. Особенно горячо на этом настаивал представитель Морского ведомства в комиссии капитан корпуса корабельных инженеров С. А. Бурачек. Он заявил, что результаты испытаний электродвигателя дают возможность надеяться на применение его «к военному кораблю и к целому флоту». Парусный флот с военной точки зрения, по его мнению, не выдерживал никакой критики. Стоило вражеской артиллерии разбить паруса, и корабль, потеряв управление, лишался маневренности, а следовательно, и боеспособности.
Применение же паровой машины в военном флоте, «несмотря на все ее совершенство», также создавало ряд трудностей. «Котел, машины и уголь заявлял Бурачек,- вытеснят артиллерию. Одного ядра достаточно, чтобы прострелить паровой котел, цилиндр, дымовую трубу, сбить гребные колеса и оставить корабль без всякого движения». Ему как моряку представлялось, что применение электродвигателя приведет не только к устранению этих недостатков, но и преобразит военный флот. Расположенный на дне корабля электродвигатель будет «скрыт и безопасен от ядер», что является «первейшим условием для всякого движителя» любого военного корабля. Он освободит его от огромного груза и тем самым даст возможность лучше оснастить его необходимой артиллерией. Электрический ток от батарей может быть использован для освещения и взрывного дела. Применение электродвигателя даст возможность сократить штат команды корабля на 200-300 матросов.
Готовясь к новым испытаниям, Якоби выполнил огромную работу, прежде всего по усовершенствованию гальванической батареи. Им были созданы для этой цели новые элементы с платиновыми и цинковыми электродами. Извещая об этом важном нововведении, петербургская печать сообщала, что теперь гальваническая батарея Якоби доведена «до высшего совершенства и может действовать целые сутки с одинаковой силой».
Рис. 4 Судовой электродвигатель Б.С. Якоби конструкции 1838 года
В гальванических элементах были установлены электроды со значительно большей поверхностью, что дало возможность сократить их число и тем самым уменьшить площадь всей батареи. В электродвигателе был заменен коммутатор, а также изоляция проводников. По своему устройству двигатель 1839 года почти ничем не отличался от двигателя 1838 года. И тот и другой были одной и той же модели. Однако внесенные усовершенствования существенно повысили его мощность, которая увеличилась в 3-4 раза по сравнению с двигателями 1838 года.
Испытания катера с усовершенствованным двигателем, «лучшим, чем все доселе изготовленные для опыта одели», началось на Неве 8 августа 1839 года в присутствии многих высокопоставленных должностных лиц. Они продолжались и в сентябре 1839 года. На электроходе плавало от 10 до 14 человек. Более мощный двигатель быстрее вращал гребные колеса, и тем самым обеспечивал большую скорость катера. Его скорость превышала вдвое скорость, достигнутую в 1838 году, и составляла 4 км/ч.
Результаты испытаний превосходили все то, что было достигнуто за рубежом, где многие ученые, «поддерживаемые значительными денежными пожертвованиями и обширными техническими средствами», также проводили работы, связанные с практическим применением электродвигателя. Это значительное событие в технике того времени стало известно всему миру. Оно широко освещалось в мировой печати и повсеместно вселяло надежду, что проблема использования электродвигателя в судоходстве будет успешно решена в ближайшее время.
В 1840 году Якоби выступил с докладом об итогах испытания на съезде Британской ассоциации естествоиспытателей, где присутствовали ученые всего мира, работавшие над важнейшими научными проблемами. Однако ничего нового и полезного для себя по вопросам практического применения электродвигателя он за границей не нашел. В письме к жене в Петербург он писал: «Когда увидишь Ленца, много раз поклонись ему от меня и сообщи следующее. Пока я еще не видел и не слышал ничего нового и думаю, что мы и в теоретическом и практическом отношении еще стоим на шаг впереди. Говоря без лишней гордости, нам приходится скорее учить, чем учиться. Мы оба здесь в большом почете, наши работы распространяются здесь в оттисках».
Вернувшись в Петербург, Якоби, убежденный в важности начатого им дела, прилагает максимум усилий, чтобы добиться практического применения электродвигателя в судоходстве. Но решить эту проблему он не смог. Не решил ее и никто из ученых Европы и Америки, несмотря на огромные усилия, которые они прилагали к «практической стороне электромагнетизма». Электродвигатель можно было использовать только для прогулок на катере. О применении его на флоте, для приведения в движение больших кораблей не могло быть и речи, по причине его незначительной мощности. Не удалась попытка его применения и для движения повозки по рельсам.
Практическое применение первых двигателей
Произведенные опыты, а также теоретическое исследование электрической машины привели Якоби к очень важному для практики выводу: разрешение вопроса о более или менее широком применении электродвигателей находится в прямой зависимости от удешевления электроэнергии, - т. е. от создания генератора тока более экономичного, чем гальванические батареи.
Основная непреодолимая трудность заключалась в отсутствии достаточно мощного источника электрического тока. Батареи из гальванических элементов, используемые для питания более мощных двигателей, имели значительный вес, занимали большую площадь и, главное, стоили очень дорого. Якоби убедился, что получение механической энергии от таких батарей обходилось в 12 раз дороже, чем от паровой машины. В своей работе «О магнитоэлектрических машинах», напечатанной в 1847 году, он писал: «Их (электродвигателей) внедрению в промышленность препятствуют не технические и конструктивные трудности, которые всегда преодолимы, а следующий простой факт: химическая энергия в настоящее время дороже механической».
Единственные тогда источники электрической энергии - гальванические элементы, на которые ученые всего мира, в том числе и Якоби, возлагали такие большие надежды, не могли удовлетворить предъявляемых к ним требований. И это несмотря на то, что было сделано максимум возможного для их усовершенствования. Необходим был достаточно легкий и экономичный генератор электрической энергии нового типа, который можно было бы установить на корабле для питания электродвигателя.
Но такого генератора в то время еще не было. Учитывая, что желаемых результатов от гальванических батарей получить невозможно, комиссия в 1842 году решила «прекратить временно действия свои впредь до открытия какого-либо нового пути, могущего вести к усовершенствованию приложения электромагнитной силы к движению судов».
Однако и в тех условиях, когда питание электродвигателей могло осуществляться лишь при помощи гальванических элементов, на практике были случаи, когда выгоднее было устанавливать электродвигатель, чем агрегат для получения механической энергии от парового двигателя. Поэтому в 50-х и 60-х годах 19 века в некоторых отраслях производства электродвигатель иногда находил применение.
В качестве одного из примеров можно указать типографии.
В то время большинство производственных операций в типографиях велось либо ручным способом, либо на машинах с ручным приводом. Появление крупных печатных машин потребовало привода от двигателя.
Для одной крупной печатной машины, обычной для типографии того времени, работавшей к тому же периодически, а не в течение целого рабочего дня, проще было использовать электродвигатель.
В этих и аналогичных случаях практики за рубежом имел некоторое распространение электродвигатель французского электротехника П. Г. Фромана.
Рис. 5 Общий вид электродвигателя Фромана
Некоторые из электродвигателей, построенных в 40--60-х годах XIX в., действовали на принципе втягивания стального сердечника в соленоид; получавшееся при этом возвратно-поступательное движение преобразовывалось посредством балансира или шатунно-кривошипного механизма во вращательное движение вала, снабженного для равномерности хода маховыми колесами. Таковы, например, электродвигатели Пейджа и Бурбуза.
Рис. 6 Электродвигатель Пэйджа: 1 - катушка электромагнитов с втягивающими сердечниками 2 и 3
Рис. 7 Электродвигатель Бурбуза: 1, 2 - катушки электромагнитов с втягивающими сердечниками; 3 - переключатель
Все рассмотренные выше электродвигатели действовали на принципе взаимных притяжений и отталкиваний магнитов или электромагнитов. Они были снабжены якорями простейшей формы в виде стержня с обмоткой; такие стержневые якоря являются явнополюсными. Этим электродвигателям были свойственны существенные недостатки. Наиболее серьезными из них являлись большие габариты машины при сравнительно малой мощности, большое магнитное рассеяние и низкий к. п. д. Кроме того, вращающий момент на валу таких электродвигателей отличался непостоянством и в связи с попеременными притяжениями и отталкиваниями стержневых якорей, действие таких электродвигателей было в большей или меньшей степени толчкообразным. При столь резких и частых изменениях вращающего момента на валу двигателя применение последнего в системе электропривода представлялось малоперспективным.
3. Третий этап в развитии электродвигателей (1860г.)
Характеризовался разработкой конструкций электродвигателей с кольцевым неявнополюсным якорем и практически постоянным вращающим моментом. Первый шаг в этом принципиально новом направлении был сделан итальянским ученым, впоследствии профессором физики Болонского и Пизанского университетов Антонио Пачинотти. Электродвигатель Пачинотти (1860) состоял из якоря кольцеобразной формы, вращавшегося в магнитном поле электромагнитов. Главное значение работы Пачинотти состоит в том, что им был сделан дальнейший и притом весьма важный шаг на пути построения современной машины постоянного тока: явнополюсный якорь был заменен неявнополюсным. К этому следует еще добавить удобную схему возбуждения и коллектор, по существу говоря, современного типа.
Рис. 8 Модель электродвигателя Пачинотти: 1 - электромагниты с полюсными наконечниками; 2, 3 - кольцевой зубчатый якорь с катушками
Пачинотти указал на возможность обращения своего двигателя в генератор. Однако, не зная о возможности применения самовозбуждения машины, он рекомендовал для использования машины в качестве генератора заменить электромагниты постоянными магнитами.
В 1863 году Пачинотти опубликовал сведения о конструкции своего электродвигателя, но на эту публикацию не было обращено достаточно внимания, и изобретение было на время забыто. Несмотря на большой интерес с принципиальной точки зрения, оно не получило распространения, так как по прежнему не было еще экономичного генератора электрической энергии. Идея кольцевого якоря была возрождена примерно через 10 лет 3.Т. Граммом в конструкции электромашинного генератора.
Генератор Грамма работал не только в генераторном, но и в двигательном режиме, что положило начало практическому внедрению принципа обратимости электрических машин (открытому Э. X. Ленцем, 1832--38) и позволило значительно расширить область использования электрических машин. Последующее совершенствование машин постоянного тока шло по пути улучшения их конструктивных элементов -- замена кольцевого якоря барабанным (Ф. Хёфнер-Альтенек, 1873), усовершенствование шихтованных якорей (американский изобретатель Х. Максим, 1880), введение компенсационной обмотки (1884), дополнительных полюсов (1885) и др. К 80-м гг. 19 века электрические машины постоянного тока приобрели основные конструктивные черты современных машин. Их совершенствованию способствовало открытие закона о направлении индукционных токов (см. Ленца правило), обнаружение и исследование противоэдс (Якоби, 1840) и реакции якоря (Ленц, 1847), разработка методов расчёта электрических цепей (Г.Р. Кирхгоф, 1847) и магнитных цепей (английский учёный Дж. Гопкинсон, нач. 80-х гг.), изучение магнитных свойств железа (А.Г. Столетов, 1871) и другие.
Заключение
В середине XIX в. один из важнейших принципов электротехники - принцип обратимости электрических машин был еще не понят современниками Ленца и Фарадея. Не понял его и Якоби, хотя этот принцип был ему известен. Ученые, инженеры и изобретатели в то время обращали внимание, прежде всего на возможность использования электромагнитных машин в качестве двигателей, а не в качестве источников электрического тока. Электродвигатель на первых порах своей эволюции рассматривался ими как нечто самодовлеющее и внутренне не связанное с электромагнитным генератором электрического тока.
И только позднее после глубокого познания принципа обратимости и выяснения единой сущности двух казавшихся ранее независимыми электромагнитных процессов - генераторного и двигательного - динамо-машина и электродвигатель стали рассматриваться как одна и та же машина, различным образом используемая лишь в зависимости от преследуемых целей.
электродвигатель ток барлоу генри
Литература
1. Л.Д. Белкинд, О.Н. Веселовский, И.Я. Конфедератов, Я.А. Шнейберг, "История энергетической техники", Ленинград, "Госэнергоиздат", 1960.
2. Б.С. Якоби. Москва, « Просвещение», 1978
3. Б.А. Спасский «Физика в ее развитии». Москва «Просвещение» ,1979.
4. Интернет - сайт http://www.electromechanics.ru/
5. Интернет - сайт http://istoriatehnik.ru/razvitie-texniki-v-period-vozniknoveniya-i-utverzhdeniya-kapitalizma-1765-1871/elektricheskie-dvigateli.html
6. Интернет - сайт http://www.electro-machines.ru/content/tretii-etap-razvitiya-elektrod
Размещено на Allbest.ru
...Подобные документы
Конструкция и принцип действия машины постоянного тока. Характеристики генератора независимого возбуждения. Внешняя характеристика генератора параллельного возбуждения. Принцип обратимости машин постоянного тока. Электромагнитная обмотка якоря в машине.
презентация [4,1 M], добавлен 03.12.2015Принцип работы и устройство генераторов постоянного тока. Электродвижущая сила и электромагнитный момент генератора постоянного тока. Способы возбуждения генераторов постоянного тока. Особенности и характеристика двигателей различных видов возбуждения.
реферат [3,2 M], добавлен 12.11.2009Принцип работы и устройство генератора постоянного тока. Типы обмоток якоря. Способы возбуждения генераторов постоянного тока. Обратимость машин постоянного тока. Двигатель параллельного, независимого, последовательного и смешанного возбуждения.
реферат [3,6 M], добавлен 17.12.2009Основные размеры электродвигателя. Размеры зубцов, пазов, проводов и электрические параметры якоря. Тепловой расчет микродвигателя постоянного тока. Мощность потерь и коэффициент полезного действия. Поперечное сечение рассчитанного электродвигателя.
курсовая работа [864,4 K], добавлен 11.03.2015Основные размеры электродвигателя постоянного тока. Расчет обмоток якоря и возбуждения. Размеры зубцов, пазов, проводов и электрические параметры якоря. Коллектор, щеткодержатели и щетки. Магнитная система и рабочие характеристики электродвигателя.
курсовая работа [367,2 K], добавлен 13.10.2014Изучение процесса пуска электрической машины постоянного тока при различных режимах работы и схемах включения обмотки возбуждения и добавочных реостатов в цепи. Исследование пусковых характеристик двигателя. Осциллограммы для схемы и электродвигателя.
лабораторная работа [1,6 M], добавлен 01.12.2011Рабочие характеристики электродвигателя. Расчет коллекторного двигателя постоянного тока малой мощности. Обмотка якоря, размеры зубцов, пазов и проводов. Магнитная система машины. Потери и коэффициент полезного действия. Индукция в станине, её значение.
курсовая работа [597,6 K], добавлен 25.01.2013История открытия и создания двигателей постоянного тока. Принцип действия современных электродвигателей. Преимущества и недостатки двигателей постоянного тока. Регулирование при помощи изменения напряжения. Основные линейные характеристики двигателя.
курсовая работа [1,3 M], добавлен 14.01.2018Определение ориентировочного значения тока в статорной обмотке асинхронного двигателя. Анализ назначения добавочных полюсов в электрической машине постоянного тока. Нахождение реактивного сопротивления фазы обмотки ротора при его неподвижном состоянии.
контрольная работа [333,7 K], добавлен 10.02.2016Генераторы синхронные с самовозбуждением. Описание работы корректора напряжения. Принцип действия электродвигателя постоянного тока типа ПГ1500/225.ОМ4. Предназначение и состав электроэнергетической системы. Устройство и работа рулевой машины.
реферат [37,3 K], добавлен 12.03.2012Особенности коллекторных двигателей для бытовых приборов. Разработка электродвигателя постоянного тока с шихтованной станиной и технические требования к нему. Расчетная часть для номинального режима. Обмотка якоря, коллектор и щетка. Проверка коммутации.
курсовая работа [1,5 M], добавлен 25.01.2011Назначение, технические данные и условия эксплуатации стенда для изучения двигателя постоянного тока. Описание структурной и электрической схем. Технология проверки приборов, монтажных и наладочных работ. Организация рабочего места слесаря-сборщика.
курсовая работа [73,2 K], добавлен 15.06.2013Принцип действия и структура синхронных машин, основные элементы и их взаимодействие, сферы и особенности применения. Устройство и методика использования машин постоянного тока, их разновидности, оценка Э.д.с., электромагнитного момента этого типа машин.
учебное пособие [7,3 M], добавлен 23.12.2009Конструкция и принцип действия электрических машин постоянного тока. Исследование нагрузочной, внешней и регулировочной характеристик и рабочих свойств генератора с независимым возбуждением. Особенности пуска двигателя с параллельной системой возбуждения.
лабораторная работа [904,2 K], добавлен 09.02.2014Генераторы и электродвигатели постоянного тока, якоря которых снабжены коллекторами и содержат совокупность обмоток, связанных с коллекторами. Действие заявляемого бесколлекторного генератора постоянного тока. Движения вихревого электрического поля.
доклад [14,9 K], добавлен 25.10.2013Принцип действия генератора постоянного тока. Якорные обмотки и процесс возбуждения машин постоянного тока. Обмотка с "мертвой" секцией. Пример выполнения простой петлевой и волновой обмотки. Двигатель постоянного тока с последовательным возбуждением.
презентация [4,9 M], добавлен 09.11.2013Моделирование системы автоматического управления - электродвигателя постоянного тока с параллельным возбуждением. Определение переходной, амплитудно-фазовой частотной и логарифмической характеристик. Построение полученных структурных одноконтурных схем.
курсовая работа [1,4 M], добавлен 09.10.2011Роль и значение машин постоянного тока. Принцип работы машин постоянного тока. Конструкция машин постоянного тока. Характеристики генератора смешанного возбуждения.
реферат [641,0 K], добавлен 03.03.2002Электрические цепи постоянного тока. Электромагнетизм. Однофазные и трехфазные цепи переменного тока. Электрические машины постоянного и переменного тока. Методические рекомендации по выполнению контрольных работ "Расчет линейных цепей постоянного тока".
методичка [658,2 K], добавлен 06.03.2015Общие сведения о тяговых электродвигателях постоянного тока последовательного, параллельного и смешанного возбуждения. Универсальные характеристики различных тяговых двигателей. Тяговая характеристика и ограничения, накладываемые на эту характеристику.
презентация [339,1 K], добавлен 27.09.2013