Асинхронный двигатель

Создание асинхронных двигателей. Ротор асинхронной машины типа "беличья клетка". Трёхфазный коллекторный асинхронный двигатель с питанием со стороны ротора. Схемы соединения фазных обмоток трехфазного асинхронного двигателя в звезду и в треугольник.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 18.10.2013
Размер файла 328,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Статор и ротор асинхронной машины 0,75 кВт, 1420 об/мин, 50 Гц, 230--400 В, 3,4-2,0 A

Асинхронная машина -- электрическая машина переменного тока, частота вращения ротора которой не равна (в двигательном режиме меньше) частоте вращения магнитного поля, создаваемого током обмотки статора.

В ряде стран к асинхронным машинам причисляют также коллекторные машины. Второе название асинхронных машин -- индукционные вследствие того, что ток в обмотке ротора индуцируется вращающимся полем статора. Асинхронные машины сегодня составляют большую часть электрических машин. В основном они применяются в качестве электродвигателей и являются основными преобразователями электрической энергии в механическую. Асинхронные электродвигатели (АД) находят в народном хозяйстве широкое применение. По разным данным до 70% всей электрической энергии, преобразуемой в механическую энергию вращательного или поступательного движения, потребляется асинхронным двигателем. Электрическую энергию в механическую энергию поступательного движения преобразуют линейные асинхронные электродвигатели, которые широко используются в электрической тяге, для выполнения технологических операций. Широкое применение АД связано с рядом их достоинств. Асинхронные двигатели - это самые простые в конструктивном отношении и в изготовлении, надежные и самые дешевые из всех типов электрических двигателей. Они не имеют щеточноколлекторного узла либо узла скользящего токосъема, что помимо высокой надежности обеспечивает минимальные эксплуатационные расходы. В зависимости от числа питающих фаз различают трехфазные и однофазные асинхронные двигатели. Трехфазный асинхронный двигатель при определенных условиях может успешно выполнять свои функции и при питании от однофазной сети. АД широко применяются не только в промышленности, строительстве, сельском хозяйстве, но и в частном секторе, в быту, в домашних мастерских, на садовых участках. Однофазные асинхронные двигатели приводят во вращение стиральные машины, вентиляторы, небольшие деревообрабатывающие станки, электрические инструменты, насосы для подачи воды. Чаще всего для ремонта или создания механизмов и устройств промышленного изготовления или собственной конструкции применяют трехфазные АД. Причем в распоряжении конструктора может быть как трехфазная, так и однофазная сеть. Возникают проблемы расчета мощности и выбора двигателя для того или другого случая, выбора наиболее рациональной схемы управления асинхронным двигателем, расчета конденсаторов, обеспечивающих работу трехфазного асинхронного двигателя в однофазном режиме, выбора сечения и типа проводов, аппаратов управления и защиты. Такого рода практическим проблемам посвящена предлагаемая вниманию читателя книга. В книге приводится также описание устройства и принципа действия асинхронного двигателя, основные расчетные соотношения для двигателей в трехфазном и однофазном режимах.

Достоинства:

1. Лёгкость в изготовлении.

2. Отсутствие электрического контакта ротора со статической частью машины.

Недостатки:

1. Небольшой пусковой момент.

2. Значительный пусковой ток.

История

Модель индукционного (двухфазного) двигателя Н. Теслы. Музей Николы Теслы, Белград.

Трёхфазный асинхронный двигатель Н. Теслы. Музей Николы Теслы, Белград.

Наибольший вклад в создание асинхронных двигателей внесли Галилео Феррарис (англ.) и Никола Тесла. В 1888 году Феррарис опубликовал свои исследования в статье для Королевской академии наук в Турине (в том же году, Тесла получил патент США №381968 от 01.05.1888 (U.S. Patent 0 381 968|заявка на изобретение № 252132 от 12.10.1887), в которой изложил теоретические основы асинхронного двигателя.[1] Заслуга Феррариса в том, что сделав ошибочный вывод о небольшом к.п.д. асинхронного двигателя и о нецелесообразности применения систем переменного тока, он привлек внимание многих инженеров к проблеме совершенствования асинхронных машин. Статья Галилео Феррариса, опубликованная в журнале «Атти ди Турино», была перепечатана английским журналом и в июле 1888 года попала на глаза выпускнику Дармштадтского высшего технического училища, выходцу из России Михаилу Осиповичу Доливо-Добровольскому. Уже в 1889 году Доливо-Добровольский получил патент на трехфазный асинхронный двигатель с короткозамкнутым ротором типа «беличья клетка», а в 1890-м -- патенты в Англии № 20425 и Германии № 75361 на трёхфазный асинхронный двигатель с фазным ротором. Данные изобретения открыли эру массового промышленного применения электрических машин. В настоящее время асинхронный двигатель является самым распространенным электродвигателем.

Конструкция

Асинхронная машина имеет статор и ротор, разделённые воздушным зазором. Её активными частями являются обмотки и магнитопровод (сердечник); все остальные части -- конструктивные, обеспечивающие необходимую прочность, жёсткость, охлаждение, возможность вращения и т. п.

Обмотка статора представляет собой трёхфазную (в общем случае -- многофазную) обмотку, проводники которой равномерно распределены по окружности статора и пофазно уложены в пазах с угловым расстоянием 120 эл.град. Фазы обмотки статора соединяют по стандартным схемам «треугольник» или «звезда» и подключают к сети трёхфазного тока. Магнитопровод статора перемагничивается в процессе изменения тока в обмотке статора, поэтому его набирают из пластин электротехнической стали для обеспечения минимальных магнитных потерь. Основным методом сборки магнитопровода в пакет является шихтовка.

По конструкции ротора асинхронные машины подразделяют на два основных типа: с короткозамкнутым ротором и с фазным ротором. Оба типа имеют одинаковую конструкцию статора и отличаются лишь исполнением обмотки ротора. Магнитопровод ротора выполняется аналогично магнитопроводу статора -- из пластин электротехнической стали.

Короткозамкнутый ротор

Ротор асинхронной машины типа «беличья клетка»

Короткозамкнутая обмотка ротора, часто называемая «беличья клетка» из-за внешней схожести конструкции, состоит из медных или алюминиевых стержней, замкнутых накоротко с торцов двумя кольцами. Стержни этой обмотки вставляют в пазы сердечника ротора. Сердечники ротора и статора имеют зубчатую структуру. В машинах малой и средней мощности обмотку обычно изготавливают путём заливки расплавленного алюминиевого сплава в пазы сердечника ротора. Вместе со стержнями «беличьей клетки» отливают короткозамыкающие кольца и торцевые лопасти, осуществляющие вентиляцию машины. В машинах большой мощности «беличью клетку» выполняют из медных стержней, концы которых соединяют с короткозамыкающими кольцами при помощи сварки.

Зачастую пазы ротора или статора делают скошенными для уменьшения высших гармонических ЭДС, вызванных пульсациями магнитного потока из-за наличия зубцов, магнитное сопротивление которых существенно ниже магнитного сопротивления обмотки, а также для снижения шума, вызываемого магнитными причинами. Для улучшения пусковых характеристик асинхронного электродвигателя с короткозамкнутым ротором, а именно, увеличения пускового момента и уменьшения пускового тока, на роторе применяют специальную форму паза. При этом внешняя от оси вращения часть паза ротора имеет меньшее сечение, чем внутренняя. Это позволяет использовать эффект вытеснения тока, за счет которого увеличивается активное сопротивление обмотки ротора при больших скольжениях (при пуске).

Асинхронные двигатели с короткозамкнутым ротором имеют небольшой пусковой момент и значительный пусковой ток, что является существенным недостатком «беличьей клетки». Поэтому их применяют в тех электрических приводах, где не требуются большие пусковые моменты. Из достоинств следует отметить лёгкость в изготовлении, и отсутствие электрического контакта со статической частью машины, что гарантирует долговечность и снижает затраты на обслуживание. При специальной конструкции ротора, когда вращается в воздушном зазоре только полый цилиндр из алюминия, можно достичь малой инерционности двигателя.

Массивный ротор

Существует разновидность асинхронных машин с массивным ротором. Такой ротор изготавливают полностью из ферромагнитного материала, то есть фактически это стальной цилиндр. Ферромагнитный ротор одновременно выполняет роль как магнитопровода, так и проводника (вместо обмотки). Вращающееся магнитное поле индуцирует в роторе вихревые токи, которые взаимодействуя с магнитным потоком статора создают вращающий момент.

Достоинства:

· Простота изготовления, дешевизна

· Высокая механическая прочность (важно для высокоскоростных машин)

· Высокий пусковой момент

Недостатки:

· Большие потери энергии в роторе

Особенности:

· Имеют пологую механическую характеристику

· Ротор значительно нагревается даже при небольших нагрузках.

Существуют разные способы улучшения массивных роторов: припаивание медных колец по торцам, покрытие ротора слоем меди.

Отдельно можно поставить машины с полым ротором. Это может быть полый цилиндр из ферромагнитного или просто из проводящего материала.

Фазный ротор

Фазный ротор имеет трёхфазную (в общем случае -- многофазную) обмотку, обычно соединённую по схеме «звезда» и выведенную на контактные кольца, вращающиеся вместе с валом машины. С помощью графитовых или металлографитовых щёток, скользящих по этим кольцам, в цепь обмотки ротора:

· включают пускорегулирующий реостат, выполняющий роль добавочного активного сопротивления, одинакового для каждой фазы. Снижая пусковой ток, добиваются увеличения пускового момента до максимального значения (в первый момент времени). Такие двигатели применяются для привода механизмов, которые пускают в ход при большой нагрузке или требующих плавного регулирования скорости.

· включают индуктивности (дроссели) в каждую фазу ротора. Сопротивление дросселей зависит от частоты протекающего тока, а, как известно, в роторе в первый момент пуска частота токов скольжения наибольшая. По мере раскрутки ротора частота индуцированных токов снижается, и вместе с нею снижается сопротивление дросселя. Индуктивное сопротивление в цепи фазного ротора позволяет автоматизировать процедуру запуска двигателя, а при необходимости -- «подхватить» двигатель, у которого упали обороты из-за перегрузки. Индуктивность держит токи ротора на постоянном уровне.

· включают источник постоянного тока, получая таким образом синхронную машину.

· включают питание от инвертора, что позволяет управлять оборотами и моментными характеристиками двигателя. Это особый режим работы (машина двойного питания). Возможно включение напряжения сети без инвертора, с фазировкой, противоположной той, которой запитан статор.

Двигатель Шраге-Рихтера

Трёхфазный коллекторный асинхронный двигатель с питанием со стороны ротора. Обращенный (питание с ротора) асинхронный двигатель, позволяющий плавно регулировать скорость от минимальной (диапазон определяется обмоточными данными добавочной обмотки, используемой для получения добавочной э.д.с., вводимой с частотой скольжения во вторичную цепь машины) до максимальной, лежащей обычно выше скорости синхронизма. Физически производится изменением раствора двойного комплекта щеток на каждую «Фазу» вторичной цепи двигателя. Таким образом, переставляя при помощи механического устройства (штурвал или иное исполнительное устройство)щеточные траверсы являлось возможным весьма экономично управлять скоростью асинхронного двигателя переменного тока. Идея управления в общем предельно проста и будет реализована впоследствии в так называемых асинхронно-вентильных каскадах, где в цепь фазного ротора включали тиристорный преобразователь, работавший инвертором или в выпрямительном режиме. Сущность идеи -- во вторичную цепь асинхронного двигателя вводится добавочная э.д.с. изменяемой амплитуды и фазы с частотой скольжения. Задачу согласования частоты добавочной э.д.с с частотой скольжения ротора выполняет коллектор. Если добавочная э.д.с. противонаправлена основной, производится вывод мощности из вторичной цепи двигателя с соответствующим уменьшением скорости машины, ограничение скорости вниз диктуется только условиями охлаждения обмоток). В точке синхронизма машины частота добавочной э.д.с. равна нулю, то есть во вторичную цепь коллектором подается постоянный ток. В случае суммирования добавочной э.д.с. с основной производится инвертирование добавочной мощности во вторичную цепь машины, и соответственно -- разгон выше синхронной частоты вращения. Таким образом, результатом регулирования являлось семейство достаточно жестких характеристик с уменьшением критического момента при снижении скорости, а при разгоне выше синхронной скорости -- с его пропорциональным увеличением.

Определенный интерес представляет собой работа машины с несимметричным раствором щеточных траверс. В этом случае векторная диаграмма добавочной э.д.с. двигателя получает так называемую тангенциальную составляющую, делающую возможным работу с емкостной реакцией на сеть.

Конструкционно двигатель представляет собой обращенную машину, где на роторе уложены две обмотки: питание с питанием с контактных колец и обмотку, соединяемую посредством двух пар щеток на «фазу» со вторичной обмоткой статора. Фактически, эти две части вторичной обмотки в зависимости от положения щеточных траверс включается то согласно друг другу, то встречно. Так осуществляется регулирование.

Наибольшее развитие такие двигатели получили в 30-е годы XX века. В Советском Союзе коллекторные машины переменного тока (к.м.п.т.) не получили сколько-нибудь заметного распространения и развития в силу повышенных требований к изготовлению коллекторно-щеточного узла и общей высокой стоимости. На территорию СССР они проникали в основном в составе приобретенного за границей оборудования и при первой возможности заменялись менее эффективными, но более дешевыми машинами постоянного тока или асинхронными двигателями с фазным ротором. Существующие методики расчета к.м.п.т. разработанные академиком М. П. Костенко (в его учебниках асинхронные машины делятся на коллекторные и бесколлекторные) считают достаточным критерием работоспособности машины проверкой её по условиям коммутации (для сравнения -- для двигателя постоянного тока критическим является тепловой расчет).

В настоящее время двигатель Шраге представляет интерес исключительно как великолепное наглядное пособие для студентов. По словам преподавателя кафедры электропривода Липецкого технического университета Л. Я. Теличко «лучшей модели, где теорию и практику каскада можно потрогать руками, найти невозможно».

Принцип действия

На обмотку статора подаётся переменное напряжение, под действием которого по этим обмоткам протекает ток и создаёт вращающееся магнитное поле. Магнитное поле воздействует на обмотку ротора и по закону электромагнитной индукции наводит в ней ЭДС. В обмотке ротора под действием наводимой ЭДС возникает ток. Ток в обмотке ротора создаёт собственное магнитное поле, которое вступает во взаимодействие с вращающимся магнитным полем статора. В результате на каждый зубец магнитопровода ротора действует сила, которая, складываясь по окружности, создаёт вращающий электромагнитный момент, заставляющий ротор вращаться.

(АД) традиционного исполнения, обеспечивающий вращательное движение, представляет собой электрическую машину, состоящую из двух основных частей: неподвижного статора и ротора, вращающегося на валу двигателя. Статор двигателя состоит из станины, в которую впрессовывают так называемое электромагнитное ядро статора, включающее магнитопровод и трехфазную распределенную обмотку статора. Назначение ядра - намагничивание машины или создание вращающегося магнитного поля. Магнитопровод статора состоит из тонких (от 0,28 до 1 Мм) изолированных друг от друга листов, штампованных из специальной электротехнической стали. В листах различают зубцовую зону и ярмо (рис. 1.а). Листы собирают и скрепляют таким образом, что в магнитопроводе формируются зубцы и пазы статора (рис. 1.б). Магнитопровод представляет собой малое магнитное сопротивление для магнитного потока, создаваемого обмоткой статора, и благодаря явлению намагничивания этот поток усиливает.

Магнитопровод статора

асинхронный двигатель ротор обмотка

В пазы магнитопровода укладывается распределенная трехфазная обмотка статора. Обмотка в простейшем случае состоит из трех фазных катушек, оси которых сдвинуты в пространстве по отношению друг к другу на 120°. Фазные катушки соединяют между собой по схемам звезда, либо треугольник (рис. 2).

Схемы соединения фазных обмоток трехфазного асинхронного двигателя в звезду и в треугольник

Более подробные сведения о схемах соединения и условных обозначениях начал и концов обмоток представлены ниже. Ротор двигателя состоит из магнитопровода, также набранного из штампованных листов стали, с выполненными в нем пазами, в которых располагается обмотка ротора. Различают два вида обмоток ротора: фазную и короткозамкнутую. Фазная обмотка аналогична обмотке статора, соединенной в звезду. Концы обмотки ротора соединяют вместе и изолируют, а начала присоединяют к контактным кольцам, располагающимся на валу двигателя. На контактные кольца, изолированные друг от друга и от вала двигателя и вращающиеся вместе с ротором, накладываются неподвижные щетки, к которым присоединяют внешние цепи. Это позволяет, изменяя сопротивление ротора, регулировать скорость вращения двигателя и ограничивать пусковые токи. Наибольшее применение получила короткозамкнутая обмотка типа «беличьей клетки». Обмотка ротора крупных двигателей включает латунные или медные стержни, которые вбивают в пазы, а по торцам устанавливают короткозамыкающие кольца, к которым припаивают или приваривают стержни. Для серийных АД малой и средней мощности обмотку ротора изготавливают путем литья под давлением алюминиевого сплава. При этом в пакете ротора 1 заодно отливаются стержни 2 и короткозамыкающие кольца 4 с крылышками вентиляторов для улучшения условий охлаждения двигателя, затем пакет напрессовывается на вал 3. (рис. 3). На разрезе, выполненном на этом рисунке, видны профили пазов, зубцов и стержней ротора.

Ротор аснхронного двигателя с короткозамкнутой обмоткой

Общий вид асинхронного двигателя серии 4А представлен на рис. 4 [2]. Ротор 5 напрессовывается на вал 2 и устанавливается на подшипниках 1 и 11 в расточке статора в подшипниковых щитах 3 и 9, которые прикрепляются к торцам статора 6 с двух сторон. К свободному концу вала 2 присоединяют нагрузку. На другом конце вала укрепляют вентилятор 10 (двигатель закрытого обдуваемого исполнения), который закрывается колпаком 12. Вентилятор обеспечивает более интенсивное отведение тепла от двигателя для достижения соответствующей нагрузочной способности. Для лучшей теплоотдачи станину отливают с ребрами 13 практически по всей поверхности станины. Статор и ротор разделены воздушным зазором, который для машин небольшой мощности находится в пределах от 0,2 до 0,5 мм. Для прикрепления двигателя к фундаменту, раме или непосредственно к приводимому в движение механизму на станине предусмотрены лапы 14 с отверстиями для крепления. Выпускаются также двигатели фланцевого исполнения. У таких машин на одном из подшипниковых щитов (обычно со стороны вала) выполняют фланец, обеспечивающий присоединение двигателя к рабочему механизму.

Общий вид асинхронного двигателя серии 4А

Выпускаются также двигатели, имеющие и лапы, и фланец. Установочные размеры двигателей (расстояние между отверстиями на лапах или фланцах), а также их высоты оси вращения нормируются. Высота оси вращения - это расстояние от плоскости, на которой расположен двигатель, до оси вращения вала ротора. Высоты осей вращения двигателей небольшой мощности: 50, 56, 63, 71, 80, 90, 100 мм.

Принцип действия трехфазных асинхронных двигателей

Выше отмечалось, что трехфазная обмотка статора служит для намагничивания машины или создания так называемого вращающегося магнитного поля двигателя. В основе принципа действия асинхронного двигателя лежит закон электромагнитной индукции. Вращающееся магнитное поле статора пересекает проводники короткозамкнутой обмотки ротора, отчего в последних наводится электродвижущая сила, вызывающая в обмотке ротора протекание переменного тока. Ток ротора создает собственное магнитное поле, взаимодействие его с вращающимся магнитным полем статора приводит к вращению ротора вслед за полями. Наиболее наглядно идею работы асинхронного двигателя иллюстрирует простой опыт, который еще в XVIII веке демонстрировал французский академик Араго (рис. 5). Если подковообразный магнит вращать с постоянной скоростью вблизи металлического диска, свободно расположенного на оси, то диск начнет вращаться вслед за магнитом с некоторой скоростью, меньшей скорости вращения магнита.

Опыт Араго, объясняющий принцип работы асинхронного двигателя

Это явление объясняется на основе закона электромагнитной индукции. При движении полюсов магнита около поверхности диска в контурах под полюсом наводится электродвижущая сила и появляются токи, которые создают магнитное поле диска. Читатель, которому трудно представить проводящие контуры в сплошном диске, может изобразить диск в виде колеса со множеством проводящих ток спиц, соединенных ободом и втулкой. Две спицы, а также соединяющие их сегменты обода и втулки и представляют собой элементарный контур. Поле диска сцепляется с полем полюсов вращающегося постоянного магнита, и диск увлекается собственным магнитным полем. Очевидно, наибольшая электродвижущая сила будет наводиться в контурах диска тогда, когда диск неподвижен, и напротив, наименьшая, когда близка к скорости вращения диска. Перейдя к реальному асинхронному двигателю отметим, что короткозамкнутую обмотку ротора можно уподобить диску, а обмотку статора с магнитопроводом - вращающемуся магниту. Однако вращение магнитного поля в неподвижном статоре а осуществляется благодаря трехфазной системе токов, которые протекают в трехфазной обмотке с пространственным сдвигом фаз.

Скорость вращения поля статора

При питании обмотки статора трёхфазным (в общем случае -- многофазным) током создаётся вращающееся магнитное поле, синхронная частота вращения [об/мин] которого связана с частотой питающего напряжения сети [Гц] соотношением:

,

где -- число пар магнитных полюсов обмотки статора.

В зависимости от количества числа пар полюсов возможны следующие значения частот вращения магнитного поля статора, при частоте питающего напряжения сети 50 Гц:

n, об/мин

3000

1

1500

2

1000

3

300

10

Большинство двигателей имеют 1-3 пары полюсов, реже 4. Большее число полюсов используется очень редко, такие машины имеют низкий КПД и коэффициент мощности, однако позволяют очень плавно и медленно вращать ротор двигателя.

Режимы работы

Механическая характеристика асинхронной машины: а -- режим рекуперации энергии в сеть (генераторный режим), б -- двигательный режим, в -- режим противовключения (режим электромагнитного тормоза).

Двигательный режим

Если ротор неподвижен или частота его вращения меньше синхронной, то вращающееся магнитное поле пересекает проводники обмотки ротора и индуцирует в них ЭДС, под действием которой в обмотке ротора возникает ток. На проводники с током этой обмотки (а точнее, на зубцы сердечника ротора), действуют электромагнитные силы; их суммарное усилие образует электромагнитный вращающий момент, увлекающий ротор вслед за магнитным полем. Если этот момент достаточен для преодоления сил трения, ротор приходит во вращение, и его установившаяся частота вращения [об/мин] соответствует равенству электромагнитного момента тормозному, создаваемого нагрузкой на валу, силами трения в подшипниках, вентиляцией и т. д. Частота вращения ротора не может достигнуть частоты вращения магнитного поля, так как в этом случае угловая скорость вращения магнитного поля относительно обмотки ротора станет равной нулю, магнитное поле перестанет индуцировать в обмотке ротора ЭДС и, в свою очередь, создавать вращающий момент; таким образом, для двигательного режима работы асинхронной машины справедливо неравенство:

.

Относительная разность частот вращения магнитного поля и ротора называется скольжением:

.

Очевидно, что при двигательном режиме .

Генераторный режим

Если ротор разогнать с помощью внешнего момента (например, каким-либо двигателем) до частоты, большей частоты вращения магнитного поля, то изменится направление ЭДС в обмотке ротора и активной составляющей тока ротора, то есть асинхронная машина перейдёт в генераторный режим. При этом изменит направление и электромагнитный момент, который станет тормозным. В генераторном режиме работы скольжение .

Для работы асинхронной машины в генераторном режиме требуется источник реактивной мощности, создающий магнитное поле. При отсутствии первоначального магнитного поля в обмотке статора поток создают с помощью постоянных магнитов, либо при активной нагрузке за счёт остаточной индукции машины и конденсаторов, параллельно подключенных к фазам обмотки статора.

Асинхронный генератор потребляет реактивный ток и требует наличия в сети генераторов реактивной мощности в виде синхронных машин, синхронных компенсаторов, батарей статических конденсаторов (БСК). Из-за этого, несмотря на простоту обслуживания, асинхронный генератор применяют сравнительно редко, в основном в качестве ветрогенераторов малой мощности, вспомогательных источников небольшой мощности и тормозных устройств. Зато генераторный режим асинхронного двигателя используется довольно часто. В таком режиме работают двигатели эскалаторов метро, которые едут вниз. В генераторном режиме работают двигатели лифтов, в зависимости от соотношения веса в кабине и в противовесе.

Режим холостого хода

асинхронный двигатель ротор обмотка

Режим холостого хода асинхронного двигателя возникает при отсутствии на валу нагрузки в виде редуктора и рабочего органа. Из опыта холостого хода могут быть определены значения намагничивающего тока и мощности потерь в магнитопроводе, в подшипниках, в вентиляторе. В режиме реального холостого хода s=0,01-0,08. В режиме идеального холостого хода n2=n1, следовательно s=0 (на самом деле этот режим недостижим, даже при допущении, что трение в подшипниках не создаёт свой момент нагрузки -- сам принцип работы двигателя подразумевает отставание ротора от поля статора для создания поля ротора. При s=0 поле статора не пересекает обмотки ротора и не может индуцировать в нём ток, а значит не создаётся магнитное поле ротора.)

Режим электромагнитного тормоза (противовключение]

Если изменить направление вращения ротора или магнитного поля так, чтобы они вращались в противоположных направлениях, то ЭДС и активная составляющая тока в обмотке ротора будут направлены так же, как в двигательном режиме, и машина будет потреблять из сети активную мощность. Однако электромагнитный момент будет направлен встречно моменту нагрузки, являясь тормозящим. Для режима справедливы неравенства:

.

Этот режим применяют кратковременно, так как при нём в роторе выделяется много тепла, которое двигатель не способен рассеять, что может вывести его из строя.

Для более мягкого торможения может применяться генераторный режим, но он эффективен только при оборотах, близких к номинальным.

Способы управления асинхронным двигателем

Под управлением асинхронным двигателем переменного тока понимается изменение частоты вращения ротора и/или его момента. Существуют следующие способы управления асинхронным двигателем:

· реостатный -- изменение частоты вращения АД с фазным ротором путём изменения сопротивления реостата в цепи ротора, кроме того это увеличивает пусковой момент и повышает критическое скольжение;

· частотный -- изменение частоты вращения АД путём изменения частоты тока в питающей сети, что влечёт за собой изменение частоты вращения поля статора. Применяется включение двигателя через частотный преобразователь;

· переключением обмоток со схемы «звезда» на схему «треугольник» в процессе пуска двигателя, что даёт снижение пусковых токов в обмотках примерно в три раза, но в то же время снижается и момент;

· импульсный -- подачей напряжения питания специального вида (например, пилообразного);

· введение добавочной э.д.с согласно или противонаправлено с частотой скольжения во вторичную цепь;

· изменением числа пар полюсов, если такое переключение предусмотрено конструктивно (только для к.з. роторов);

· изменением амплитуды питающего напряжения, когда изменяется только амплитуда (или действующее значение) управляющего напряжения. Тогда вектора напряжений управления и возбуждения остаются перпендикулярны (автотрансформаторный пуск);

· фазовое управление характерно тем, что изменение частоты вращения ротора достигается путём изменения сдвига фаз между векторами напряжений возбуждения и управления[2];

· амплитудно-фазовый способ включает в себя два описаных способа;

· включение в цепь питания статора реакторов;

· индуктивное сопротивление для двигателя с фазным ротором.[3][4].

Размещено на Allbest.ru

...

Подобные документы

  • Способы управления асинхронным двигателем. Ротор асинхронной машины типа "беличья клетка". Устройство, принцип работы, пусковые условия асинхронных электродвигателей с фазным ротором. Применение пускового реостата. Реостатный способ регулирования частоты.

    реферат [860,5 K], добавлен 17.03.2012

  • Анализ классических схем подключения трёхфазных асинхронных двигателей (соединение обмоток статора по схеме "звезда" и "треугольник"). Выбор схемы включения двигателя, емкости рабочего и пускового конденсатора и их типа. Сердечник ротора двигателя.

    курсовая работа [33,8 K], добавлен 21.03.2015

  • Асинхронный двигатель: сущность и принцип действия. Электромагнитный, тепловой, вентиляционный и механический расчет двигателя. Увеличение срока службы токопроводящих щеток фазного ротора. Технология изготовления статорной обмотки асинхронного двигателя.

    дипломная работа [3,9 M], добавлен 20.08.2012

  • Расчет конструкции асинхронного двигателя, выбор технических параметров рабочего режима. Расчет обмоток статора и ротора магнитной цепи. Определение пусковых характеристик с учетом влияния вытеснения тока и насыщения от полей рассеяния; тепловой расчет.

    курсовая работа [580,0 K], добавлен 06.05.2014

  • Проектирование и расчет асинхронного двигателя с короткозамкнутым ротором по заданным исходным характеристикам, установленным в соответствии с требованиями государственных и отраслевых стандартов. Расчет обмоток статора, ротора, намагничивающего тока.

    курсовая работа [229,4 K], добавлен 04.11.2012

  • Особенности расчета характеристик и определение параметров асинхронных короткозамкнутых двигателей по каталожным данным. Расчеты параметров обмоток статора и ротора, характеристики двигателя в двигательном режиме и в режиме динамического торможения.

    курсовая работа [801,8 K], добавлен 03.04.2010

  • Устройство асинхронной машины: статор и вращающийся ротор. Механическая характеристика асинхронного двигателя, его постоянные и переменные потери. Методы регулирования частоты вращения двигателя. Работа синхронного генератора в автономном режиме.

    презентация [9,7 M], добавлен 06.03.2015

  • Механическая характеристика асинхронного двигателя с массивным ротором. Параметрическая модель асинхронного двигателя с массивным ротором в установившихся и переходных режимах. Влияние насыщения и поверхностного эффекта на магнитное сопротивление ротора.

    реферат [272,4 K], добавлен 19.02.2014

  • Особенность использования асинхронных машин в качестве двигателей. Сбор сердечников статора и ротора из отдельных листов электротехнической стали. Прохождение трехфазного переменного тока по обмоткам статора. Принцип действия частотного преобразователя.

    презентация [784,7 K], добавлен 18.08.2019

  • Понятие электрических машин, их виды и применение. Бытовая электрическая техника и оборудование предприятий. Устройство и принцип действия трёхфазного электрического двигателя, схемы соединения его обмоток. Формулы 3-х фазных ЭДС. Виды асинхронных машин.

    презентация [2,8 M], добавлен 02.02.2014

  • Принцип действия трехфазного асинхронного двигателя с короткозамкнутым ротором. Конструкция асинхронного двигателя с фазным ротором. Снижение тока холостого хода. Магнитопровод и обмотки. Направление электромагнитных сил. Генераторный режим работы.

    презентация [1,5 M], добавлен 09.11.2013

  • Расчет параметров обмотки статора и ротора асинхронного двигателя с короткозамкнутым ротором. Расчет механической характеристики асинхронного двигателя в двигательном режиме по приближенной формуле М. Клосса и в режиме динамического торможения.

    курсовая работа [827,2 K], добавлен 23.11.2010

  • Устройство и принцип действия трехфазного асинхронного двигателя с короткозамкнутым ротором. Рабочие характеристики и свойства двигателя, его применение для преобразования электрической энергии трехфазного переменного тока в механическую энергию.

    лабораторная работа [117,9 K], добавлен 22.02.2013

  • Определение трехфазного асинхронного двигателя и обмоточных данных, на которые выполнены схемы обмоток. Перерасчет обмоток на другие данные (фазное напряжение и частоту вращения магнитного поля статора). Установление номинальных данных электродвигателя.

    курсовая работа [1006,7 K], добавлен 18.11.2014

  • Асинхронный двигатель: строение и разновидности. Вращающееся магнитное поле. Принцип действия асинхронного двигателя с короткозамкнутым ротором. Регулирование частоты вращения путем вращения и скольжения. Тормозные режимы работы асинхронного двигателя.

    презентация [352,5 K], добавлен 19.10.2014

  • Электромагнитный, тепловой и вентиляционный расчет шестиполюсного трехфазного асинхронного двигателя с короткозамкнутым ротором полезной мощности 45 кВт на напряжение сети 380/660 В. Механический расчет вала и подшипников. Элементы конструкции двигателя.

    курсовая работа [1,3 M], добавлен 25.09.2012

  • Конструкция асинхронного электродвигателя. Асинхронные и синхронные машины. Простые модели асинхронного электропривода. Принцип получения движущегося магнитного поля. Схемы включения, характеристики и режимы работы трехфазного асинхронного двигателя.

    презентация [3,0 M], добавлен 02.07.2019

  • Рабочие характеристики асинхронного двигателя. Механическая характеристика асинхронного двигателя. определение способа соединения фаз электродвигателя. Выбор пускового аппарата, защитного аппарата, аппарата управления. Повышение коэффициента мощности.

    контрольная работа [88,7 K], добавлен 28.07.2008

  • Ремонт трехфазного асинхронного двигателя с короткозамкнутым ротором. Основные неисправности асинхронного двигателя с фазным ротором. Объем и нормы испытаний электродвигателя. Охрана труда при выполнении работ, связанных с ремонтом электродвигателя.

    курсовая работа [1,7 M], добавлен 28.01.2011

  • Основные особенности лабораторной установки для испытания асинхронного двигателя с короткозамкнутым ротором в трехфазном, однофазном и конденсаторном режимах. Общая характеристика принципов действия однофазного и конденсаторного асинхронных двигателей.

    лабораторная работа [381,6 K], добавлен 18.04.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.