Электрическое поле в веществе

Понятие удельного сопротивления (проводимости) и характер его влияния на классификацию материалов по трем основным типам: диэлектрики, полупроводники, металлы. Электрическая емкость проводника, понятие и функциональные особенности конденсаторов.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 21.10.2013
Размер файла 63,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Реферат

Электрическое поле в веществе

1. Электрическое поле при наличии проводников

Удельное сопротивление (проводимость) веществ определяет классификацию материалов по трем основным типам: диэлектрики, полупроводники, металлы. Классификация производится по следующим пределам изменения удельного сопротивления :

а) диэлектрики: Омм;

б) полупроводники: Омм;

в) металлы Омм.

Можно определить эту классификацию по удельной проводимости (Ом-1м-1=Смм, См - Сименс).

В металлах существуют свободные носители электрических зарядов - свободные электроны, определяющие большую проводимость, так как при наличии электрического поля возникает ток - направленное движение зарядов. Сила тока связана с разностью потенциалов законом Ома, отрытым экспериментально в 1827 г.:

, (1)

где - сопротивление: , - длина проводника, - его сечение, - разность потенциалов. Если записать , где - вектор плотности тока, то:

; ,

получим закон Ома в векторной форме.

(2)

В электростатике рассматривается случай неподвижных зарядов, т.е. , поэтому : внутри проводника при электростатическом равновесии электрическое поле отсутствует.

Используя теорему Гаусса:

,

при получим , то есть внутри проводника отсутствуют объемные заряды. Конечно, внутри проводника имеются как положительные, так и отрицательные заряды, но они взаимно компенсируются, так что внутри проводника . Если нейтральный проводник поместить во внешнее электрическое поле, то поверхностные заряды на нем перераспределяются так, что создаваемые ими внутри электрические поля компенсируют внешнее поле. Если - внешнее поле, - поле, создаваемое поверхностными зарядами:

. (3)

Явление перераспределения поверхностных зарядов на проводнике при его помещении во внешнее электрическое поле называется электрической индукцией.

Поле вблизи поверхности проводника.

Найдем поле вблизи поверхности проводника (рис. 2.2). Для этого используем теорему Гаусса. Выберем гауссову поверхность в виде цилиндра с основанием . Тогда поток напряженности поля, создаваемого поверхностными зарядами :

где - заряд в объеме цилиндра. Направим по нормали к поверхности проводника. Поток вектора через поверхность:

. (4)

Нормальная составляющая вектора напряженности электрического поля вблизи поверхности проводника определяется поверхностной плотностью заряда.

Поле представляет собой сумму двух полей: на границе диэлектрика есть поле , создаваемое зарядами на границе, (оно направлено как наружу, так и вовнутрь металла); кроме того, есть внешнее поле , направленное лишь в одну сторону. Из рис. 2.3 видно, что внутри поля и компенсируются; снаружи и складываются и образуют поле . Учитывая равенство поля внутри проводника нулю, получаем:

.

Для нахождения тангенциальной составляющей вектора воспользуемся теоремой о циркуляции. Выберем прямоугольный контур 1 - 2 - 3 - 4.

.

Внутри ; на участках 14 и 23 . Тогда:

,

. (5)

Это означает, что:

напряженность электрического поля вблизи поверхности проводника направлена по нормали к поверхности и равна .

. (6)

Зависимость поверхностной плотности зарядов от кривизны.

Рассмотрим систему из двух проводящих шаров, заряженных зарядами и . Радиусы шаров и . Если шары не соединены друг с другом, то

; ;

; .

Соединим их проволокой, тогда ; , т.е.

, (7)

поверхностная плотность больше на шаре с меньшим радиусом. Можно заключить, что поверхностная плотность зарядов увеличивается с ростом кривизны поверхности. Это проявляется в стекании заряда с острия, в таком явлении, как огни Эльма.

Так как внутри проводника , то внутренняя часть его может быть удалена: остается замкнутая оболочка, называющаяся экраном (экранирует внутреннее пространство от внешних полей) - см. рис. 2.5. Техническое использование экранов из сетки очень широкое.

Можно ли использовать экран для того, чтобы поле не проникало наружу, во внешнее пространство?

Поместим положительный заряд внутри экрана (рис. 2.6). На внутренней стороне возникнут отрицательные заряды , на внешней - положительные . Они обусловливают , направленные наружу, т.е. вне экрана поле существует. Чтобы было , необходимо заземлить оболочку, т.е. удалить все заряды с внешней оболочки.

Заземленная замкнутая оболочка экранирует внешнее замкнутое пространство от зарядов, находящихся в объеме, окруженном этой оболочкой.

Так как на поверхности проводника , , то она является эквипотенциальной поверхностью, поскольку направлен по нормали. Потенциал во всех точках проводника постоянен по величине и может быть записан как:

. (8)

2. Электрическая емкость проводника. Конденсаторы

Из формулы (2.8) видно, что . Рассмотрим уединенный проводник. Потенциал проводника зависит от заряда на его поверхности и может быть записан:

, (9)

где С - емкость проводника; это коэффициент пропорциональности между зарядом и коэффициентом.

В СИ единица емкости - Фарада (Ф).

В СГСЕ - единица емкости - сантиметр (см).

3. Электрическое поле при наличии диэлектриков

Диэлектрики делятся на два типа: полярные и неполярные. Неполярный диэлектрик при имеет дипольный момент молекулы, равный нулю . К ним относятся молекулы: и .

Полярные диэлектрики при имеют отличный от нуля дипольный момент: . Пример: .

В присутствии электрического поля в неполярных диэлектриках возникает дипольный момент:

, (18)

где - молекулярная восприимчивость. У неполярных и полярных диэлектриков при происходит ориентация вдоль поля. Этот процесс называется поляризацией. Как видно из рис. 2.11, внутри диэлектрика соседние разноименные заряды диполей компенсируются. Не скомпенсированы лишь диполи на поверхности диэлектрика. Видно, что внутри возникло поле , антипараллельное внешнему полю : , ; - т.е. поле внутри диэлектрика меньше внешнего.

Общая поляризованность - это суммарный дипольный момент единицы объема диэлектрика:

проводимость конденсатор диэлектрик проводник

;

Размерность - Кл/м2. Величина зависит от линейно:

, (19)

где - диэлектрическая восприимчивость единицы объема. Взаимная ориентация векторов показаны на рис. 2.11 и 2.12.

Теорема Гаусса для вектора поляризованности.

Поляризованность создается связанными зарядами внутри диэлектрика. Чтобы найти величину этих зарядов, рассмотрим вывод теоремы Гаусса для .

Произвольная замкнутая поверхность (рис. 2.13) охватывает часть объема внутри диэлектрика. На рис. 2.13 изображена лишь часть этой поверхности. При включении внешнего поля диэлектрик поляризуется: положительные заряды смещаются вдоль поля, отрицательные - против.

Возьмем элемент поверхности . Найдем заряд, пересекающий под действием поля. Пусть положительный заряд смещается на , а отрицательный - на . Плотность этих зарядов - и . Тогда, построив на , и косой цилиндр, рассчитаем общий положительный и отрицательный заряды, прошедшие через .

,

здесь - объемы соответствующих частей цилиндра.

Суммарный заряд, прошедший через :

,

, - расстояние, на которое сместились заряды. Тогда:

, (20)

Так как:

, (21)

где соотношение представляет собой концентрацию диполей (связанных зарядов). Поэтому, подставив (2.20) в (2.19), получим:

. (22)

Проинтегрировав выражение (2.22) по всей замкнутой поверхности , находим весь заряд, пересекший поверхность :

.

В результате выхода из поверхности положительных зарядов и входа в поверхность отрицательных зарядов внутри поверхности появляется не скомпенсированный заряд (при внутри поверхности число положительных и отрицательных зарядов было одинаковым, диэлектрик электрически нейтрален). При этом возникает связанный заряд, отрицательный по величине:

.

Тогда внутри поверхности появляется избыточный отрицательный заряд:

, (22')

где - плотность связанных зарядов внутри :

. (23)

Это теорема Гаусса для вектора поляризованности : поток вектора поляризованности сквозь замкную поверхность равен отрицательному связанному заряду, возникающему внутри поверхности

Список литературы

1. Волькенштейн В.С. Сборник задач по общему курсу физики: учебное пособие для вузов. - М.: Наука, 2007.

2. Ремизов А.Н., Потапенко А.Я. Курс физики: Учеб. для вузов. - М.: Дрофа, 2009. - 720 с.

3. Савельев И.С. Курс общей физики: учебное пособие для студентов. - М.: Наука, 2007.

4. Яворский Б.М., Детлаф А.А. Курс физики: учебное пособие для студентов. - М.: Высшая школа, 2007.

5. Яворский Б.М., Детлаф А.А. Справочник по физике. - М.: Наука, 2008.

Размещено на Allbest.ru

...

Подобные документы

  • Деление твердых тел на диэлектрики, проводники и полупроводники. Собственная и примесная проводимость полупроводниковых материалов. Исследование изменений сопротивления кристаллов германия и кремния при нагревании, определение энергии их активации.

    лабораторная работа [120,4 K], добавлен 10.05.2016

  • Строение твердого тела. Понятие об энергетических уровнях. Классификация тел по электропроводности. Механизм образования электронной и дырочной проводимости. Примесные и собственные полупроводники. Области применения полупроводниковых материалов.

    курсовая работа [475,6 K], добавлен 12.02.2014

  • Свойства активных диэлектриков. Вещества, обладающие самопроизвольной поляризацией. Внешнее электрическое поле. Направление электрических моментов доменов. Применение сегнетоэлектриков для изготовления малогабаритных низкочастотных конденсаторов.

    контрольная работа [22,4 K], добавлен 29.08.2010

  • Общие сведения о проводниковых материалах. Электрическое сопротивление проводников. Параметры и использование стабилитронов. Полупроводниковые приборы. Основные определения и классификация диэлектриков. Характеристики электроизоляционных материалов.

    реферат [207,6 K], добавлен 27.02.2009

  • Ток и плотность тока проводимости. Закон Ома в дифференциальной форме. Стороннее электрическое поле. Законы Кирхгофа в дифференциальной форме. Уравнение Лапласа для электрического поля в проводящей среде. Дифференциальная форма закона Джоуля-Ленца.

    презентация [512,3 K], добавлен 13.08.2013

  • Электрическое сопротивление - основная электрическая характеристика проводника. Рассмотрение измерения сопротивления при постоянном и переменном токе. Изучение метода амперметра-вольтметра. Выбор метода, при котором погрешность будет минимальна.

    презентация [158,9 K], добавлен 21.01.2015

  • Кинематика материальной точки. Законы Ньютона и законы сохранения. Постоянное электрическое поле. Теорема Гаусса. Потенциал - энергетическая характеристика поля. Электроемкость уединенного проводника. Электрическое поле в диэлектрике. Закон Ома.

    курс лекций [1021,2 K], добавлен 09.02.2010

  • Система из двух и более электродов, разделенных диэлектриком. Сохранение электрического заряда. Обозначение конденсаторов на схемах. Номинальное напряжение и полярность. Паразитные параметры, электрическое сопротивление изоляции и удельная емкость.

    презентация [1,2 M], добавлен 17.06.2012

  • Теорема Гаусса для электростатического поля в вакууме. Циркуляция вектора напряженности электростатического поля. Условия на границе раздела двух диэлектрических сред. Вывод основных законов электрического тока в классической теории проводимости металлов.

    шпаргалка [619,6 K], добавлен 04.05.2015

  • Способность диэлектриков проводить электрический ток, характер движения электронов, переходы. Определения механизма проводимости — наблюдение тока в магнитном поле, определение знака термоэлектродвижущей силы. Проводимость первого и второго порядка.

    реферат [18,4 K], добавлен 20.09.2009

  • Полупроводники n- и p-типа, методы получения и их зонные диаграммы. Основные и неосновные носители зарядов. Прохождение тока через полупроводники с разным типом проводимости. Виды транзисторных технологий, методика изготовления и область применения.

    реферат [756,9 K], добавлен 28.07.2010

  • Задачи на применение первого закона Кирхгофа. Параллельное соединение элементов. Второй закон Кирхгофа, его применение. Последовательное соединение конденсаторов, их эквивалентная емкость. Обратная емкость конденсаторов, соединенных последовательно.

    реферат [85,5 K], добавлен 15.01.2012

  • Создание технических средств метрологического обеспечения контроля качества полупроводниковых материалов. Анализ установки по измерению удельного электрического сопротивления четырехзондовым методом. Измерение сопротивления кремния монокристаллического.

    дипломная работа [1,2 M], добавлен 24.07.2012

  • Понятие о полупроводниках, их свойства, область применения. Активные диэлектрики. Рождение полупроводникового диода. Открытие сегнетоэлектриков и пьезоэлектриков. Исследования проводимости различных материалов. Физика полупроводников и нанотехнологии.

    курсовая работа [94,4 K], добавлен 14.11.2010

  • Расчет объемной плотности энергии электрического поля. Определение электродвижущей силы аккумуляторной батареи. Расчет напряженности и индукции магнитного поля в центре витка при заданном расположении проводника. Угловая скорость вращения проводника.

    контрольная работа [250,1 K], добавлен 28.01.2014

  • Изучение сути закона Кулона - закона взаимодействия двух неподвижных точечных заряженных тел или частиц. Электрическое поле и линии его напряженности. Проводники и изоляторы в электрическом поле. Поляризация изоляторов (диэлектриков), помещенных в поле.

    контрольная работа [27,3 K], добавлен 20.12.2012

  • Понятие электрической емкости системы из двух проводников. Конструкции конденсаторов: бумажных, слюдяных, керамических, электролитических, переменной емкости с воздушным или твердым диэлектриком. Параллельное и последовательное соединение конденсаторов.

    презентация [728,9 K], добавлен 27.10.2015

  • Статическое электричество, изобретение первого генератора. Взаимодействие заряженных тел. Принцип действия электроскопа. Электрическое поле как одна из составляющих электромагнитного поля. Движение свободных электронов. Элементы электрической цепи.

    презентация [3,1 M], добавлен 22.05.2012

  • Открытие сверхпроводников, эффект Мейснера, высокотемпературная сверхпроводимость, сверхпроводящий бум. Синтез высокотемпературных сверхпроводников. Применение сверхпроводящих материалов. Диэлектрики, полупроводники, проводники и сверхпроводники.

    курсовая работа [851,5 K], добавлен 04.06.2016

  • Проведение экспериментального исследования по определению зависимости изменения сопротивления медного проводника от повышения температуры. Построение графической зависимости этих величин. Табличные значения термических коэффициентов других проводников.

    презентация [257,5 K], добавлен 18.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.