Электрические цепи постоянного тока

Понятие и закономерности действия электрической цепи. Порядок расчета линейных электрических цепей с использованием законов Ома и Кирхгофа. Основные методы расчета сложных цепей: метод контурных токов, узловых потенциалов и эквивалентного генератора.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 27.10.2013
Размер файла 80,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

РЕФЕРАТ

Электрические цепи постоянного тока

1. Основные понятия, определения и законы

Электрической цепью называют совокупность устройств и объектов, образующих путь для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об ЭДС, токе и напряжении.

Элемент электрической цепи, параметры которого (сопротивление и др.) не зависят от тока в нем, называют линейным, в противном случае - нелинейным.

Линейная электрическая цепь - цепь, все элементы которой являются линейными.

Нелинейная электрическая цепь - цепь, содержащая хотя бы один нелинейный элемент.

Электрическая схема - графическое изображение электрической цепи, содержащее условные обозначения ее элементов и способы их соединения. Электрическая схема простейшей электрической цепи с источником ЭДС, обладающим внутренним сопротивлением R0, и приемником электрической энергии с сопротивлением Rн, представлена на рис. 1.1.

электрически ток цепь кирхгоф

Ветвь электрической цепи (схемы) - участок цепи с одним и тем же током. Ветвь может состоять из одного или нескольких последовательно соединенных элементов. Количество ветвей в электрической схеме принято обозначать буквой «p».

Узел - место соединения трех и более ветвей. Ветви, присоединенные к одной паре узлов, называют параллельными. Число узлов принято обозначать буквой «q».

Контур - любой замкнутый путь, проходящий по нескольким ветвям.

Независимый контур - контур, в состав которого входит хотя бы одна ветвь, не принадлежащая другим контурам. Число независимых контуров в электрической схеме n = p - (q - 1).

В электрической схеме, представленной на рис. 1.2, три узла (q = 3), пять ветвей (p = 5), шесть контуров и три независимых контура (n = 3). Между узлами 1 и 3 имеются две параллельные ветви с источниками ЭДС Е1 и Е2, между узлами 2 и 3 также имеются две параллельные ветви с резисторами R1 и R2.

Условные положительные направления ЭДС источников, токов в ветвях и напряжений между узлами или на зажимах элементов цепи необходимо задать для правильной записи уравнений, описывающих процессы в электрической цепи или ее элементах. На электрических схемах их указывают стрелками (см. рис. 1.2):

а) для ЭДС источников - произвольно, при этом полюс (зажим), к которому направлена стрелка, имеет более высокий потенциал по отношению к другому полюсу (зажиму);

б) для токов в ветвях, содержащих источники ЭДС - совпадающими с направлением ЭДС, во всех других ветвях - произвольно;

в) для напряжений - совпадающими с направлением тока в ветви или элементе цепи.

Источник ЭДС на электрической схеме можно заменить источником напряжения, при этом условное положительное направление напряжения источника задается противоположным направлению ЭДС (см. рис. 1.2, напряжения U1 и U2)

Закон Ома для участка цепи:

I = U / R или U = RI.

Для ветви 1 - 2 (см. рис. 1.2): U3 = R3I3 - называют напряжением или падением напряжения на резисторе R3, I3 = U3 / R3 - ток в резисторе.

Первый закон Кирхгофа: сумма токов в узле равна нулю

При записи уравнений по первому закону Кирхгофа токи, направленные к узлу, берут с одним знаком, как правило со знаком «плюс», а токи, направленные от узла, - с противоположным знаком. Например, для узла 1 (см. рис. 1.2) I1 + I2 - I3 = 0.

Второй закон Кирхгофа. Формулировка 1: сумма ЭДС в любом контуре электрической цепи равна сумме падений напряжений на всех элементах этого контура

где n - число источников ЭДС в контуре, m - число элементов с сопротивлением Rk в контуре, Uk = RkIk - напряжение или падение напряжения на k-м элементе контура.

Формулировка 2: сумма напряжений на всех элементах контура, включая источники ЭДС, равна нулю, т.е.

При записи уравнений по второму закону Кирхгофа необходимо:

1) задать условные положительные направления ЭДС, токов и напряжений;

2) выбрать направление обхода контура, для которого записывается уравнение;

3) записать уравнение, пользуясь одной из формулировок, причем слагаемые, входящие в уравнение, берут со знаком «плюс», если их условные положительные направления совпадают с направлением обхода контура, и со знаком «минус», если они противоположны.

Например, для контура II (см. рис. 1.2) при указанном направлении обхода уравнения имеют вид

E2 = R02I2 + R3I3 + R4I4 (формулировка 1)

- U2 + U02 + U3 + U4 = 0. (формулировка 2)

Вторым законом Кирхгофа можно пользоваться и для определения напряжения между двумя произвольными точками схемы. Для этого в уравнения (1.3) необходимо ввести напряжение между этими точками, которое как бы дополняет незамкнутый контур до замкнутого. Например, для определения напряжения Uab (см. рис. 1.2) можно написать уравнение U0l - U02 - Uab = 0, откуда Uab = E1 - E2 = U1 - U2.

Закон Джоуля-Ленца: количество теплоты, выделяемой в элементе электрической цепи, обладающем сопротивлением R, за время t равно:

Q = PI2t = GU2t = UIt = Pt

где G = 1 / R - электрическая проводимость, Р = UI - электрическая мощность.

2. Расчет линейных электрических цепей с использованием законов Ома и Кирхгофа

Законы Ома и Кирхгофа используют, как правило, при расчете относительно простых электрических цепей с небольшим числом контуров, хотя принципиально с их помощью можно рассчитать сколь угодно сложные электрические цепи. Однако решение в этом случае может оказаться слишком громоздким и потребует больших затрат времени. По этой причине для расчета сложных электрических цепей разработаны более рациональные методы расчета, основные из них рассмотрены ниже.

При расчете электрических цепей в большинстве случаев известны параметры источников ЭДС или напряжения, сопротивления элементов электрической цепи, и задача сводится к определению токов в ветвях цепи. Зная токи, можно найти напряжения на элементах цепи, мощность отдельных элементов и электрической цепи в целом, мощность источников и др.

Для определения токов в ветвях электрической цепи необходимо составить систему из «p» уравнений и решить ее относительно токов. При этом по первому закону Кирхгофа записывают (q - 1) уравнений для любых узлов цепи, а недостающие n = p - (q - 1) уравнений записывают по второму закону Кирхгофа для n независимых контуров.

3. Основные методы расчета сложных электрических цепей

Метод контурных токов (МКТ)

При расчете цепи этим методом составляют систему уравнений по второму закону Кирхгофа для всех независимых контуров. Затем полагают, что в каждом независимом контуре «к» протекает свой контурный ток Iкк условное положительное направление которого совпадает с направлением обхода этого контура. Если ветвь является общей для нескольких контуров, то ток в ней будет равен алгебраической сумме контурных токов, замыкающих эту ветвь.

В общем случае система уравнений для цепи, имеющей и независимых контуров имеет следующий вид:

R11I11 + R12I22 + R13I33 +… + R1nInn = E11,

R21I11 + R22I22 + R23I33 + … + R2nInn = E22,

R31I11 + R32I22 + R33I33 + … + R3nInn = E33,

……………………………………………

Rn1I11 + Rn2I22 + Rn3I33 + … + RnnInn = Enn,

где E11, E22, E33, …, Enn - контурные ЭДС, равные алгебраической сумме ЭДС в соответствующих контурах, причем ЭДС считают положительными, если их условные положительные направления совпадают с направлением обхода контура (контурного тока), и отрицательными, если их направления противоположны; R11, R22, R33, …, Rnn - собственные сопротивления тех же контуров, равные сумме сопротивлений всех резисторов, принадлежащих соответствующему контуру; R12 = R21, R23 = R32 и так далее - взаимные сопротивления контуров, равные сумме сопротивлений резисторов, принадлежащих одновременно двум контурам, номера которых указаны в индексе. При этом взаимные сопротивления надо принимать: а) положительными, если контурные токи в них направлены одинаково; б) отрицательными, если они направлены встречно; в) равными нулю, в) равными нулю, если контуры не имеют общей ветви.

Число независимых контуров, следовательно, и уравнений, определяют из соотношения n = p - (q - 1), где по-прежнему p - число ветвей, а q - число узлов. Таким образом, МКТ позволяет понизить порядок системы уравнений на (q - 1). После решения системы уравнений относительно контурных токов определяют токи в ветвях, предварительно задав их условные положительные направления.

Например, для схемы (рис. 1.3), имеющей три независимых контура I, II и III с контурными токами I11, I22 и I33 в них, система уравнений имеет вид

R11I11 + R12I22 + R13I33 = E11,

R21I11 + R22I22 + R23I33 = E22,

R31I11 + R32I22 + R33I33 = E33,

где

E11 = E1 - E2, E22 = E2, E33 = - E5;

R11 = R1 + R2, R22 = R2 + R3 + R4, R33 = R4 + R5;

R12 = R21 = - R2, R23 = R32 = - R4, R13 = R31 = 0

Токи в ветвях при указанных на схеме условных положительных направлениях:

I1 = I11, I2 = I22 - I11, I3 = I22,

I4 = I22 - I33, I5 = - I33

Если некоторые токи в ветвях окажутся отрицательными, его означает, что действительные направления токов в них противоположны условно принятым.

Метод узловых потенциалов (МУП)

Ток в любой ветви электрической цепи можно определить по известным потенциалам узлов, к которым она подключена, или напряжению между этими узлами.

Согласно второму закону Кирхгофа для любой ветви электрической цепи, схема которой приведена на рисунке, при заданных условных положительных направлениях ЭДС, тока и напряжения и указанном направлении обхода контура можно написать уравнение - Ukm + RkmIkm = Ekm, откуда

Ikm = (Ekm + Ukm)/Rkm = [Ekm + (цk - цm)] Gkm

где Ukm = (цk - цm) - напряжение между узлами «k» и «m», а цk и цm - потенциалы этих узлов, причем цk > цm Gkm = 1/Rkm - проводимость ветви.

Метод расчета электрических цепей, в котором в качестве неизвестных принимают потенциалы узлов схемы, называют методом узловых потенциалов. Метод более эффективен по сравнению с методом контурных токов в случае, если число узлов в схеме меньше или равно числу независимых контуров, так как в любой электрической цепи потенциал одного из узлов можно принять равным нулю, а число узлов, потенциалы которых следует определить относительно этого узла, станет равным (q -1).

Система уравнений для неизвестных потенциалов любой электрической цепи, имеющей q узлов, может быть получена из системы уравнений, составленной по первому закону Кирхгофа для (q - 1) узлов, если в ней токи в ветвях выразить через потенциалы узлов в соответствии с (1.8). В общем случае эта система имеет вид

G11ц1 + G12ц2 + G13ц3 + … + G1nцn = Iy1,

G21ц1 + G22ц2 + G23ц3 + … + G2nцn = Iy2,

Gn1ц1 + Gn2ц2 + Gn3ц3 + … + Gnnцn = Iyn

где n = (q - 1); ц1, ф2…цn - потенциалы 1, 2, … n узлов относительно узла q, потенциал которого принят равным нулю; Gkk - сумма проводимостей всех ветвей, подключенных к узлу k; Gkj = Gjk - сумма проводимостей ветвей между узлами «j» и «k», взятая со знаком «минус». Если же между узлами «j» и «k» нет ветвей, то принимают Gkj = Gjk = 0; Iyk - узловой ток, равный сумме токов всех ветвей, содержащих источники ЭДС и подключенных к узлу «k», причем каждый из них определяется по уравнению (1.8) при Ukm = 0. Токи, направленные к узлу, берут со знаком «плюс», а от узла - со знаком «минус».

После решения системы (1.9) относительно узловых потенциалов определяют напряжения между узлами Ukm и токи в ветвях в соответствии с (1.8). Токи в ветвях, не содержащих источников ЭДС, определяют аналогично, полагая в уравнении (1.8) Ekm = 0.

Например, для электрической цепи (см. рис. 1.3), если принять потенциал узла 3 равным нулю (ц3 = 0), система уравнений будет иметь вид

G11ц1 + G12ц2 = Iy1,

G21ц1 + G22ц2 = Iy2,

где

Метод узловых потенциалов особенно эффективен при расчете электрических цепей с двумя узлами и большим количеством параллельных ветвей, при этом, если принять потенциал одного из узлов равным нулю, например, j 2 = 0, то напряжение между узлами будет равно потенциалу другого узла

где п - число параллельных ветвей цепи, а m - число ветвей, содержащих источники ЭДС.

Метод эквивалентного генератора (МЭГ)

Метод позволяет в ряде случаев относительно просто определить ток в какой-либо одной ветви сложной электрической цепи и исследовать поведение этой ветви при изменении ее сопротивления. Сущность метода заключается в том, что по отношению к исследуемой ветви сложная цепь заменяется эквивалентным источником (эквивалентным генератором - ЭГ) с ЭДС Ег и внутренним сопротивлением Rг.

Например, по отношению к ветви с резистором R3 электрическую схему, приведенную на рис. 1.4, а, можно заменить эквивалентной.

Если известны ЭДС и сопротивление эквивалентного генератора, то ток ветви может быть найден как

I3 = Eг / (Rг + R3)

и задача сводится к определению значений Ег и Rг.

Уравнение (1.12) справедливо при любых значениях сопротивления резистора R3. Так, при холостом ходе ЭГ, когда узлы 1 и 2 разомкнуты, I3 = 0 и Ег = U0, где U0 = (ц1 - ц2) - напряжение холостого хода эквивалентного генератора, ц1 и ц2 - потенциалы узлов 1 и 2 в этом режиме.

При коротком замыкании ветви (R3 = 0) ток в ней Iкз = Eг/Rг = U0/Rг, откуда внутреннее сопротивление ЭГ Rг = U0/Iкз. Таким образом, для определения параметров эквивалентного генератора необходимо рассчитать любым из известных методов потенциалы узлов ц1 и ц2 в режиме холостого хода ЭГ и ток короткого замыкания в исследуемой ветви.

Приведенный метод определения параметров эквивалентного генератора является наиболее универсальным, однако в ряде случаев сопротивление Rг, проще рассчитать как эквивалентное сопротивление между разомкнутыми узлами исследуемой ветви сложной цепи в предположении, что все источники ЭДС в цепи закорочены.

Литература

1. Иванов И.И., Лукин А.Ф., Соловьев Г.И. Электротехника. Основные положения, примеры и задачи. 2-е изд., исправленное. - СПб.: Издательство «Лань», 2002.

2. Иванов И.И., Равдоник В.С. Электротехника: Учебник для вузов. - М.: Высшая школа, 1984.

3. Электротехнический справочник. В 3-х т. Т. 1. Э45 Общие вопросы. Электротехнические материалы/ Под общ. ред. профессоров МЭИ В.Г. Герасимова, П.Г. Грудинского, Л.А. Жукова и др. - 6-е изд., испр. и доп. - М.: Энергия, 1980.

Размещено на Allbest.ru

...

Подобные документы

  • Основные понятия, определения и законы в электротехнике. Расчет линейных электрических цепей постоянного тока с использованием законов Ома и Кирхгофа. Сущность методов контурных токов, узловых потенциалов и эквивалентного генератора, их применение.

    реферат [66,6 K], добавлен 27.03.2009

  • Порядок расчета цепи постоянного тока. Расчет токов в ветвях с использованием законов Кирхгофа, методов контурных токов, узловых потенциалов, эквивалентного генератора. Составление баланса мощностей и потенциальной диаграммы, схемы преобразования.

    курсовая работа [114,7 K], добавлен 17.10.2009

  • Определение напряжения в узлах электрической цепи. Получение тока ветвей цепи и их фазы методами контурных токов, узловых потенциалов и эквивалентного генератора. Теорема об эквивалентном источнике напряжения. Применение первого и второго закона Кирхгофа.

    курсовая работа [816,5 K], добавлен 18.11.2014

  • Практические рекомендации по расчету сложных электрических цепей постоянного тока методами наложения токов и контурных токов. Особенности составления баланса мощностей для электрической схемы. Методика расчета реальных токов в ветвях электрической цепи.

    лабораторная работа [27,5 K], добавлен 12.01.2010

  • Метод уравнений Кирхгофа. Баланс мощностей электрической цепи. Сущность метода контурных токов. Каноническая форма записи уравнений контурных токов. Метод узловых напряжений (потенциалов). Матричная форма узловых напряжений. Определение токов ветвей.

    реферат [108,5 K], добавлен 11.11.2010

  • Методы контурных токов, узловых потенциалов, эквивалентного генератора. Составление уравнений по законам Кирхгофа. Линейные электрические цепи синусоидального тока. Трехфазная цепь с несимметричной нагрузкой. Расчет параметров четырехполюсника.

    курсовая работа [772,1 K], добавлен 17.03.2015

  • Расчет электрической цепи постоянного тока с использованием законов Кирхгофа, методом контурных токов, методом узловых потенциалов. Расчет реактивных сопротивлений, комплексов действующих значений токов, баланса активных и реактивных мощностей цепи.

    курсовая работа [143,9 K], добавлен 17.02.2016

  • Понятие и общая характеристика сложных цепей постоянного тока, их отличительные признаки и свойства, сущность и содержание универсального метода анализа и расчета параметров. Метод уравнений Кирхгофа, узловых потенциалов, контурных токов, наложения.

    контрольная работа [189,5 K], добавлен 22.09.2013

  • Свойства резистора. Расчет резистивной цепи постоянного тока методом эквивалентного генератора. Изучение методов уравнений Кирхгофа, контурных токов, узловых потенциалов, наложения и двух узлов. Расчет тока в электрических цепях и баланса мощностей.

    контрольная работа [443,9 K], добавлен 07.04.2015

  • Основные элементы и характеристики электрических цепей постоянного тока. Методы расчета электрических цепей. Схемы замещения источников энергии. Расчет сложных электрических цепей на основании законов Кирхгофа. Определение мощности источника тока.

    презентация [485,2 K], добавлен 17.04.2019

  • Ознакомление с основами метода уравнений Кирхгофа и метода контурных токов линейных электрических цепей. Составление уравнения баланса электрической мощности. Определение тока любой ветви электрической цепи методом эквивалентного источника напряжения.

    курсовая работа [400,7 K], добавлен 11.12.2014

  • Решение задач: линейные электрические цепи постоянного и синусоидального тока и трехфазные электрические цепи синусоидального тока. Метод контурных токов и узловых потенциалов. Условия задач, схемы электрических цепей, поэтапное решение и проверка.

    курсовая работа [86,5 K], добавлен 23.10.2008

  • Расчет линейных электрических цепей постоянного тока, определение токов во всех ветвях методов контурных токов, наложения, свертывания. Нелинейные электрические цепи постоянного тока. Анализ электрического состояния линейных цепей переменного тока.

    курсовая работа [351,4 K], добавлен 10.05.2013

  • Экспериментальное исследование электрических цепей постоянного тока методом компьютерного моделирования. Проверка опытным путем метода расчета сложных цепей постоянного тока с помощью первого и второго законов Кирхгофа. Составление баланса мощностей.

    лабораторная работа [44,5 K], добавлен 23.11.2014

  • Расчет линейной электрической цепи постоянного тока. Определение токов во всех ветвях методом контурных токов и узловых напряжений. Электрические цепи однофазного тока, определение показаний ваттметров. Расчет параметров трехфазной электрической цепи.

    курсовая работа [653,3 K], добавлен 02.10.2012

  • Элементы R, L, C в цепи синусоидального тока и фазовые соотношения между их напряжением и током. Методы расчета электрических цепей. Составление уравнений по законам Кирхгофа. Метод расчёта электрических цепей с использованием принципа суперпозиции.

    курсовая работа [604,3 K], добавлен 11.10.2013

  • Расчет линейной электрической цепи постоянного тока с использованием законов Кирхгофа, методом контурных токов, узловых. Расчет баланса мощностей цепи. Определение параметров однофазной линейной электрической цепи переменного тока и их значений.

    курсовая работа [148,1 K], добавлен 27.03.2016

  • Анализ свойств цепей, методов их расчета применительно к линейным цепям с постоянными источниками. Доказательство свойств линейных цепей с помощью законов Кирхгофа. Принцип эквивалентного генератора. Метод эквивалентного преобразования электрических схем.

    презентация [433,3 K], добавлен 16.10.2013

  • Определение тока методом эквивалентного генератора в ветвях цепи. "Базовая" частота, коэффициент, задающий ее значение в источниках. Расчет электрической цепи без учета взаимно индуктивных связей в ветвях, методом узловых напряжений и контурных токов.

    контрольная работа [44,2 K], добавлен 07.10.2010

  • Решение линейных и нелинейных электрических цепей постоянного тока, однофазных и трехфазных линейных электрических цепей переменного тока. Схема замещения электрической цепи, определение реактивных сопротивлений элементов цепи. Нахождение фазных токов.

    курсовая работа [685,5 K], добавлен 28.09.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.