История создания лазера

Лазер как усиление света посредством вынужденного испускания в генераторах и усилителях когерентного света. Создание мазера. Создание квантовых генераторов в оптическом диапазоне. Классификация лазеров, их характеристики и применение в науке и технике.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 30.10.2013
Размер файла 23,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

История создания лазера

Слово «лазер» составлено из начальных букв в английском словосочетании Light Amplification by Stimulated Emission of Radiation, что в переводе на русский язык означает: усиление света посредством вынужденного испускания. Таким образом, в самом термине лазер отражена та фундаментальная роль процессов вынужденного испускания, которую они играют в генераторах и усилителях когерентного света. Поэтому историю создания лазера следует начинать с 1917 г., когда Альберт Эйнштейн впервые ввел представление о вынужденном испускании. Это был первый шаг на пути к лазеру. Следующий шаг сделал советский физик В.А. Фабрикант, указавший в 1939 г. на возможность использования вынужденного испускания для усиления электромагнитного излучения при его прохождении через вещество. Идея, высказанная В.А. Фабрикантом, предполагала использование микросистем с инверсной заселенностью уровней. Позднее, после окончания Великой Отечественной войны В.А. Фабрикант вернулся к этой идее и на основе своих исследований подал в 1951 г. (вместе с М.М. Вудынским и Ф.А. Бутаевой) заявку на изобретение способа усиления излучения при помощи вынужденного испускания. На эту заявку было выдано свидетельство, в котором под рубрикой «Предмет изобретения» записано: «Способ усиления электромагнитных излучений (ультрафиолетового, видимого, инфракрасного и радиодиапазонов волн), отличающийся тем, что усиливаемое излучение пропускают через среду, в которой с помощью вспомогательного излучения или другим путем создают избыточную по сравнению с равновесной концентрацию атомов, других частиц или их систем на верхних энергетических уровнях, соответствующих возбужденным состояниям».

Создание мазера. Первоначально этот способ усиления излучения оказался реализованным в радиодиапазоне, а точнее в диапазоне сверхвысоких частот (СВЧ диапазоне). В мае 1952 г. на Общесоюзной конференции по радиоспектроскопии советские физики (ныне академики) Н.Г. Басов и А.М. Прохоров сделали доклад о принципиальной возможности создания усилителя излучения в СВЧ диапазоне. Они назвали его «молекулярным генератором» (предполагалось использовать пучок молекул аммиака). Практически одновременно предложение об использовании вынужденного испускания для усиления и генерирования миллиметровых волн было высказано в Колумбийском университете в США американским физиком Ч. Таунсом. В 1954 г. молекулярный генератор, названный в скоре мазером, стал реальностью. Он был разработан и создан независимо и одновременно в двух точках земного шара - в Физическом институте имени П.Н. Лебедева Академии наук СССР (группой под руководством Н.Г. Басова и А.М. Прохорова) и в Колумбийском университете в США (группой под руководством Ч. Таунса). В последствии от термина «мазер» и произошел термин «лазер» в результате замены буквы «М» (начальная буква слова Microwave - микроволновой) буквой «L» (начальная буква слова Light - свет). В основе работы как мазера, так и лазера лежит один и тот же принцип - принцип, сформулированный в 1951 г. В.А. Фабрикантом. Появление мазера означало, что родилось новое направление в науке и технике. Вначале его назвали квантовой радиофизикой, а позднее стали называть квантовой электроникой.

Спустя десять лет после создания мазера, в 1964 г. на церемонии, посвященной вручению Нобелевской премии, академик А.М. Прохоров сказал: «Казалось бы, что после создания мазеров в радиодиапазоне вскоре будут созданы квантовые генераторы в оптическом диапазоне. Однако этого не случилось. Они были созданы только через 5-6 лет. Чем это объясняется? Здесь были две трудности. Первая трудность заключалась в том, что тогда не были предложены резонаторы для оптического диапазона длин волн, и вторая - не были предложены конкретные системы и методы получения инверсной заселенности в оптическом диапазоне». Упомянутые А.М. Прохоровым шесть лет действительно были заполнены теми исследованиями, которые позволили в конечном счете перейти от мазера к лазеру. В 1955 г. Н.Г. Басов и А.М. Прохоров обосновали применение метода оптической накачки для создания инверсной заселенности уровней. В 1957 г. Н.Г. Басов выдвинул идею использования полупроводников для создания квантовых генераторов; при этом он предложил использовать в качестве резонатора специально обработанные поверхности самого образца. В том же 1957 г. В.А. Фабрикант и Ф.А. Бутаева наблюдали эффект оптического квантового усиления в опытах с электрическим разрядом в смеси паров ртути и небольших количеств водорода и гелия. В 1958 г. А.М. Прохоров и независимо от него американские физики А. Шавлов и Ч. Таунс теоретически обосновали возможность применения явления вынужденного испускания в оптическом диапазоне; они (а также американец Д. Дикке) выдвинули идею применения в оптическом диапазоне не объемных (как в СВЧ диапазоне), а открытых резонаторов. Заметим, что конструктивно открытый резонатор отличается от объемного тем, что убраны боковые проводящие стенки (сохранены торцовые отражатели, фиксирующие в пространстве ось резонатора) и линейные размеры резонатора выбраны большими по сравнению с длиной волны излучения. В 1959 г. вышла в свет работа Н.Г. Басова, Б.М. Вула, Ю.М. Попова с теоретическим обоснованием идеи полупроводниковых квантовых генераторов и анализом условий их создания. Наконец, в 1960 г. появилась обстоятельная статья Н.Г. Басова, О.Н. Крохина, Ю.М. Попова, в которой были всесторонне рассмотрены принципы создания и теория квантовых генераторов и усилителей в инфракрасном и видимом диапазонах. В конце статьи авторы писали: «Отсутствие принципиальных ограничений позволяет надеяться на то, что в ближайшее время будут созданы генераторы и усилители в инфракрасном и оптическом диапазоне волн».

Первые лазеры. Таким образом, интенсивные теоретические и экспериментальные исследования в СССР и США вплотную подвели ученых в самом конце 50-х годов к созданию лазера. Успех выпал на долю американского физика Т. Меймана. В 1960 г. в двух научных журналах появилось его сообщение о том, что ему удалось получить на рубине генерацию излучения в оптическом диапазоне. Так мир узнал о рождении первого «оптического мазера» - лазера на рубине. Первый образец лазера выглядел достаточно скромно: маленький рубиновый кубик (1x1x1 см), две противоположные грани которого имели серебряное покрытие (эти грани играли роль зеркал резонатора), периодически облучался зеленым светом от лампы-вспышки высокой мощности, которая змеей охватывала рубиновый кубик. Генерируемое излучение в виде красных световых импульсов испускалось через небольшое отверстие в одной из посеребренных граней кубика. В том же 1960 г. американским физикам А. Джавану, В. Беннету, Д. Эрриоту удалось получить генерацию оптического излучения в электрическом разряде в смеси гелия и неона. Так родился первый газовый лазер, появление которого было фактически подготовлено экспериментальными исследованиями В.А. Фабриканта и Ф.А. Бутаевой, выполненными в 1957 г. начиная с 1961 г., лазеры разных типов (твердотельные и газовые) занимают прочное место в оптических лабораториях. Осваиваются новые активные среды, разрабатывается и совершенствуется технология изготовления лазеров. В 1962-1963 гг. в СССР и США одновременно создаются первые полупроводниковые лазеры. Так начался новый, «лазерный» период оптики.

Классификация лазеров и их характеристики

Принято различать два типа лазеров: усилители и генераторы. На выходе усилителя появляется лазерное излучение, когда на его вход (а сам он уже находится в возбужденном состоянии) поступает незначительный сигнал на частоте перехода. Именно этот сигнал стимулирует возбужденные частицы к отдаче энергии. Происходит лавинообразное усиление. Таким образом - на входе слабое излучение, на выходе - усиленное.

С генератором дело обстоит иначе. На его вход излучение на частоте перехода уже не подают, а возбуждают и, более того, перевозбуждают активное вещество. Причем если активное вещество находится в перевозбужденном состоянии, то существенно растет вероятность самопроизвольного перехода одной или нескольких частиц с верхнего уровня на нижний. Это приводит к возникновению стимулированного излучения.

Второй подход к классификации лазеров связан с физическим состоянием активного вещества. С этой точки зрения лазеры бывают твердотельными (например, рубиновый, стеклянный или сапфировый), газовыми (например, гелий-неоновый, аргоновый и т.п.), жидкостными, если в качестве активного вещества используется полупроводниковый переход, то лазер называют полупроводниковым.

Третий подход к классификации связан со способом возбуждения активного вещества. Различают следующие лазеры: с возбуждением за счет оптического излучения, с возбуждением потоком электронов, с возбуждением солнечной энергией, с возбуждением за счет энергий взрывающихся проволочек, с возбуждением химической энергией, с возбуждением с помощью ядерного излучения. Различают также лазеры по характеру излучаемой энергии и ее спектральному составу. Если энергия излучается импульсно, то говорят об импульсных лазерах, если непрерывно, то лазер называют лазером с непрерывным излучением. Есть лазеры и со смешанным режимом работы, например полупроводниковые. Если излучение лазера сосредоточено в узком интервале длин волн, то лазер называют монохроматичным, если в широком интервале, то говорят о широкополосном лазере.

Еще один вид классификации основан на использовании понятия выходной мощности. Лазеры, у которых непрерывная (средняя) выходная мощность более 106 Вт, называют высокомощными. При выходной мощности в диапазоне 105…103 Вт имеем лазеры средней мощности. Если же выходная мощность менее 10-3 Вт, то говорят о маломощных лазерах.

В зависимости от конструкции открытого зеркального резонатора различают лазеры с постоянной добротностью и лазеры с модулированной добротностью - у такого лазера одно из зеркал может быть размещено, в частности, на оси электродвигателя, который вращает это зеркало. В данном случае добротность резонатора периодически меняется от нулевого до максимального значения. Такой лазер называют лазером с Q-модуляцией.

Одной из характеристик лазеров является длина волны излучаемой энергии. Диапазон волн лазерного излучения простирается от рентгеновского участка до дальнего инфракрасного, т.е. от 10^-3 до 10^2 мкм. За областью 100 мкм лежит, образно говоря, «целина». Но она простирается только до миллиметрового участка, который осваивается радистами. Этот неосвоенный участок непрерывно сужается, и есть надежда, что его освоение завершится в ближайшее время. Доля, приходящаяся на различные типы генераторов, неодинакова. Наиболее широкий диапазон у газовых квантовых генераторов.

Другой важной характеристикой лазеров является энергия импульса. Она измеряется в джоулях и наибольшей величины достигает у твердотельных генераторов - порядка 10^3 Дж. Третьей характеристикой является мощность. Газовые генераторы, которые излучают непрерывно, имеют мощность от 10^-3 до 10^2 Вт. Милливаттную мощность имеют генераторы, использующие в качестве активной среды гелий-неоновую смесь. Мощность порядка 100 Вт имеют генераторы на CO2. С твердотельными генераторами разговор о мощности имеет особый смысл. К примеру, если взять излучаемую энергию в 1 Дж, сосредоточенную в интервале в одну секунду, то мощность составит 1 Вт. Но длительность излучения генератора на рубине составляет 10^-4 с, следовательно, мощность составляет 10000 Вт, т.е. 10 кВт. Если же длительность импульса уменьшена с помощью оптического затвора до 10^-6 с, мощность составляет 10^6 Вт, т.е. мегаватт. Это не предел! Можно увеличить энергию в импульсе до 10^3 Дж и сократить ее длительность до 10^-9 с и тогда мощность достигнет 10^12 Вт. А это очень большая мощность. Известно, что когда на металл приходится интенсивность луча, достигающая 10^5 Вт/смІ, то начинается плавление металла, при интенсивности 10^7 Вт/смІ - кипение металла, а при 10^9 Вт/см^2 лазерное излучение начинает сильно ионизировать пары вещества, превращая их в плазму.

Еще одной важной характеристикой лазера является расходимость лазерного луча. Наиболее узкий луч имеют газовые лазеры. Он составляет величину в несколько угловых минут. Расходимость луча твердотельных лазеров около 1…3 угловых градусов. Полупроводниковые лазеры имеют лепестковый раскрыв излучения: в одной плоскости около одного градуса, в другой - около 10…15 угловых градусов.

Следующей важной характеристикой лазера является диапазон длин волн, в котором сосредоточено излучение, т.е. монохроматичность. У газовых лазеров монохроматичность очень высокая, она составляет 10^-10, т.е. значительно выше, чем у газоразрядных ламп, которые раньше использовались как стандарты частоты. Твердотельные лазеры и особенно полупроводниковые имеют в своем излучении значительный диапазон частот, т.е. не отличаются высокой монохроматичностью.

Очень важной характеристикой лазеров является коэффициент полезного действия. У твердотельных он составляет от 1 до 3,5%, у газовых 1…15%, у полупроводниковых 40…60%. Вместе с тем принимаются всяческие меры для повышения кпд лазеров, ибо низкий кпд приводит к необходимости охлаждения лазеров до температуры 4…77 К, а это сразу усложняет конструкцию аппаратуры.

Области применения лазеров в науке и технике

Лазеры в геодезии

Оптические методы измерения расстояний и углов хорошо известны в промышленной метрологии и геодезической службе, однако их применение было ограничено источниками света. Измерения на открытом воздухе с использованием модулированного света были возможны лишь при небольших расстояниях в несколько километров. С помощью лазеров удалось значительно расширить область применения оптических методов, а в ряде случаев и упростить их.

Лазерная гироскопия

С появлением лазеров роторные гироскопы были заменены лазерными. Это сразу сулило ряд технических достоинств. Во-первых, резко сократились размеры контура из-за того, что в кольцевом лазере оба луча многократно обегают окружность и имеет место накопление фазового сдвига. Во-вторых, лучи не ослабляются в среде, как это было в эксперименте А. Майкельсона, а усиливаются за счет получения энергии от активного вещества.

Лазерные гироскопы находят применение в зарубежных устройствах измерительной техники, в системах наземной ориентации, в системах ориентации воздушных и космических аппаратов, а также при создании бесплатформенных инерциальных систем (БИС) навигации.

Лазерный гироскоп не свободен и от недостатков. К ним относятся необходимость оснащения прибора рядом вспомогательных систем, трудности калибровки и т.п. Их наличие позволяет сделать вывод. Что лазерный гироскоп не сможет полностью заменить роторный. Скорее всего он будет применяться в комплексе измерителей первичной информации и лишь в отдельных случаях использоваться самостоятельно.

Обработка материалов и сварка

Обработка материалов с помощью лазеров вылилась в последнее время в мощное направление, которое получило название лазерной технологии. Вот что говорит об этом направлении академик Н.Г. Басов: «Лазерный луч - это уникальный тепловой источник, способный нагреть облучаемый участок детали до высоких температур за столь малое время, в течение которого тепло не успевает «растрескаться». Нагреваемый участок может быть при этом размягчен, рекристаллизован, расплавлен, наконец, его можно испарить. Дозируя тепловые нагрузки путем регулирования мощности и продолжительности лазерного облучения, можно обеспечить практически любой температурный режим и реализовать различные виды термообработки. Лазерный нагрев используется для поверхностей закалки и легирования металлов, для плавления при сварке, для плавления и испарения с выбросом паров при резке и сверлении».

Можно сформулировать основные достоинства, которые имеет лазерная обработка материалов:

во-первых, большое разнообразие процессов обработки самых различных видов материалов (и даже таких, которые не поддаются механической обработке);

во-вторых, высокая скорость выполнения операций по обработке (иногда в 1000 раз большая, чем при механической);

в-третьих, высокое качество обработки (гладкость срезов, прочность сварных швов, чистота обработки и др.);

в-четвертых, возможность высокоточной прецизионной обработки (изготовление фильер в алмазе, необходимых для волочения проволоки, изготовление отверстий в рубиновых камнях, необходимых для изготовления часовых механизмов и др.);

в-пятых, селективность воздействия на отдельные участки обрабатываемой поверхности и возможность дистанционной обработки (в том числе и поверхностей, расположенных за стеклянной перегородкой);

в-шестых, сравнительная легкость автоматизации операций, способствующая существенному повышению производительности труда.

Лазерная хирургия

Свойством лазерного луча сверлить и сваривать различные материалы заинтересовались не только инженеры, но и медики. Они решили использовать его в качестве скальпеля. По сравнению с обычным такой скальпель обладает целым рядом достоинств:

во-первых, лазерный скальпель отличается постоянством режущих свойств, надежностью в работе;

во-вторых, лазерный луч рассекает ткань на расстоянии, не оказывая на нее какого-либо механического давления;

в-третьих, лазерный скальпель имеет абсолютную стерильность, поскольку с тканью взаимодействует только излучение, причем в области рассечения возникает высокая температура;

в-четвертых, лазерный луч производит почти бескровный разрез, поскольку с рассечением тканей коагулируют края раны, как бы «заваривая» мелкие сосуды;

в-пятых, лазерный луч позволяет хирургу хорошо видеть оперируемый участок, в то время как скальпель загораживает рабочее поле.

Кроме того, рана от лазерного скальпеля (как показали клинические наблюдения) почти не болит и относительно скоро заживляется. Все это привело к тому. Что лазерный скальпель был применен на внутренних органах грудной и брюшной полостей. Им делают операции на желудке, делают кожно-пластические операции. Широко используют в офтальмологии при лечении глазных болезней. Исторически сложилось так, что окулисты первые обратили внимание на возможность использования лазера и внедрили его в клиническую практику.

Лазеры в ретинопатии

Исследования показали, что лазерное излучение оказывает сильное воздействие на ткани злокачественных опухолей, а воздействие их на здоровые ткани минимально. Не было замечено каких-либо изменений в работе сердечно-сосудистых систем, внутренних органов, изменений кожи. Зато установлено, что лазерное излучение хорошо использовать для уничтожения меланомы - сильно пигментированного рака. В Англии ведутся исследования по применению лазеров в нейрохирургии. Поскольку сама излучающая головка тяжелая, то используют волоконную оптику для подведения лучистого потока к оперируемому участку. Волоконная оптика и лазерное излечение используются при операциях на желудке и пищеводе. Этому служит тонкий жгут, который вводят больному через рот. В жгуте размещаются: волокна, обеспечивающие передачу на экран анализируемого и оперируемого участков, волокна, обеспечивающие подсветку участков обычным светом, волокна, обеспечивающие передачу лазерного излучения, необходимого для выполнения операции. Обнаружено весьма эффективное биологическое воздействие красного гелий-неонового лазера. Его стали использовать для лечения заболеваний слизистой оболочки рта, для сращивания костей после переломов, для лечения заболевания вен, приводящего к трофическим язвам, для лечения послеожоговых ран.

Лазерная связь

Известно, что предельная скорость передачи определяется длительностью одного периода колебаний используемых волн. Чем короче период, тем больше скорость передачи сообщений. Это справедливо и для передачи сообщений с помощью азбуки Морзе, с помощью телефонной связи, радио связи, с помощью телевидения. Таким образом, канал связи (передатчик, приемник и связывающая их линия) может передавать со скоростью не больше, чем частота собственных колебаний всего канала. Но это еще не достаточное условие. Для характеристики канала связи требуется такой параметр, как ширина полосы канала, т.е. диапазон частот, который используется в этом канале связи. Чем больше скорость передачи, тем шире полоса частот, на которых следует передавать. Оба этих параметра вынуждают осваивать все более высокие частоты электромагнитных колебаний. Ведь с увеличением частоты увеличивается не только скорость передачи по одному каналу, но и число каналов связи.

Техника связи стала забираться во все более коротковолновую область, используя сначала дециметровые, потом метровые и, наконец, сантиметровые волны. А дальше произошла остановка из-за того, что не было подходящего источника несущих электромагнитных колебаний. Ранее существовавшие источники давали широкий спектр с очень малой мощностью, приходящейся на отдельные частоты колебаний. Световые волны небыли когерентными, а это исключало использование их для передачи сложных сигналов, требующих модуляции излучения. Положение резко изменилось с появлением лазеров. Когерентность и монохроматичность лазерного излучения позволяет модулировать и детектировать луч таким образом что используется вся ширина оптического диапазона. Оптический участок спектра гораздо шире и вместительнее, чем радиоволновой.

лазер свет квантовый техника

Размещено на Allbest.ru

...

Подобные документы

  • История создания квантовых усилителей и генераторов электромагнитных волн. Роль лазера в современной науке, технике, медицине, индустрии развлечений. Создание шоу-программ с помощью лазерных проекторов; их виды. Параметры и принципы работы оборудования.

    реферат [23,9 K], добавлен 28.11.2013

  • Характеристика лазеров — приборов, создающих интенсивный пучок света. Создание Теодором Мейманом первого аналогичного прибора, работающего в оптическом диапазоне. Принципы работы газового лазера. Главное преимущество лазерной работы с металлами.

    презентация [1,4 M], добавлен 01.04.2015

  • Основа принципа работы лазеров. Классификация лазеров и их основные характеристики. Использование лазера при маркировке товаров. Способ возбуждения активного вещества. Расходимость лазерного луча. Диапазон длины волн. Области применения лазера.

    творческая работа [17,5 K], добавлен 24.02.2015

  • История создания лазера. Принцип работы лазера. Некоторые уникальные свойства лазерного излучения. Применение лазеров в различных технологических процессах. Применение лазеров в ювелирной отрасли, в компьютерной технике. Мощность лазерных пучков.

    реферат [610,1 K], добавлен 17.12.2014

  • Тлеющий газовый разряд как один из видов стационарного самостоятельного электрического разряда в газах. Применение его как источника света в неоновых лампах, газосветных трубках и плазменных экранах. Создание квантовых источника света, газовых лазеров.

    презентация [437,2 K], добавлен 13.01.2015

  • Лазер - квантовый генератор, излучающий в диапазоне видимого и инфракрасного излучения. Схема устройства лазера и принцип его действия. Временные режимы работы прибора, частота поступления энергии. Применение лазеров в различных отраслях науки и техники.

    реферат [439,5 K], добавлен 28.02.2011

  • Создание оптического квантового генератора или лазера - великое открытие физики. Принцип работы лазеров. Вынужденное и спонтанное излучение. Газовый, полупроводниковый непрерывного действия, газодинамический, рубиновый лазер. Сферы применения лазеров.

    презентация [4,4 M], добавлен 13.09.2016

  • Рассмотрение специфики оптической накачки активной среды лазера. Описание квантовых приборов с оптической накачкой, работающих по трёхуровневой и четырёхуровневой схеме. Параметрическая генерация света. Принцип действия полупроводниковых лазеров.

    контрольная работа [442,2 K], добавлен 20.08.2015

  • Основные законы оптических явлений. Законы прямолинейного распространения, отражения и преломления света, независимости световых пучков. Физические принципы применения лазеров. Физические явления и принципы квантового генератора когерентного света.

    презентация [125,6 K], добавлен 18.04.2014

  • Устройство и назначение простейшего твердотельного лазера; их изготовление из рубинов, молибдатов, гранатов. Ознакомление с оптическими свойствами кристаллов и особенностями генерации света. Определение энергетических характеристик импульсного лазера.

    реферат [1,5 M], добавлен 12.10.2011

  • Ознакомление с историей создания генераторов электромагнитного излучения. Описание электрической схемы и изучение принципов работы полупроводникового лазера. Рассмотрение способов применения лазера для воздействия на вещество и для передачи информации.

    курсовая работа [708,7 K], добавлен 08.05.2014

  • Лазер - источник электромагнитного излучения видимого, инфракрасного и ультрафиолетового диапазонов, основанный на вынужденном излучении атомов и молекул, их виды. История создания генераторов электромагнитного излучения; области применения лазеров.

    презентация [4,0 M], добавлен 13.05.2013

  • Сущность и области применения в науке и технике поляризации света. Закон Малюса, выражающий зависимость интенсивности линейно-поляризованного света после его прохождения через поляризатор. Вращение плоскости поляризации оптически активными веществами.

    реферат [490,8 K], добавлен 01.09.2014

  • Физический механизм рассеяния отдельной частицей. Взаимное усиление или подавление рассеянных волн. Многократное рассеивание света. Полная интенсивность рассеяния скоплением частиц. Поляризация света при рассеянии. Применение поляризованного света.

    курсовая работа [283,2 K], добавлен 05.06.2015

  • Понятие интерференции света, ее история открытия, области применения. Схема когерентных волн. Использование специальных устройств для измерений интерференционным методом - интерферометров, их разновидности, методы получения когерентных пучков в них.

    курсовая работа [816,6 K], добавлен 07.12.2015

  • Способы создания активной среды электроразрядных эксимерных лазеров. Системы прокачки рабочей смеси. Реакции на галогенидах газов. Характеристики электроразрядного XeCl лазера. Формирование излучения с узкой спектральной линии в селективном резонаторе.

    дипломная работа [2,4 M], добавлен 10.05.2014

  • Изучение история открытия, назначения и механизмов работы лазеров - источников когерентного оптического излучения, принцип действия которых основан на использовании явления индуцированного излучения. Лазеры в технологии, в авиации, в медицине и науке.

    реферат [121,0 K], добавлен 20.12.2010

  • Источники тепла и энергий химической природы, их неэффективность. Изобретение восковой свечи и развитие электрических источников света. Создание первой дуговой лампы. Разновидности ламп накаливания и их широкое применение, характеристика светодиодов.

    реферат [22,1 K], добавлен 16.01.2010

  • Теоретические основы оптико-электронных приборов. Химическое действие света. Фотоэлектрический, магнитооптический, электрооптический эффекты света и их применение. Эффект Комптона. Эффект Рамана. Давление света. Химические действия света и его природа.

    реферат [1,0 M], добавлен 02.11.2008

  • Исторический обзор развития электрических источников света. Виды электрических источников света, их сравнительные энергетические и технические характеристики, применение. Особенности ламп накаливания, светодиодных, люминесцентных, газоразрядных ламп.

    контрольная работа [35,9 K], добавлен 07.08.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.