Определение углового расхождения лазерного излучения
Дифракционная картина от препятствий небольшого размера. Случай дифракции света, когда препятствие оставляет открытой лишь малую часть 1-й зоны Френеля. Размер дифракционных изображений. Расширение лазерного пучка с помощью телескопической системы.
Рубрика | Физика и энергетика |
Вид | лабораторная работа |
Язык | русский |
Дата добавления | 07.11.2013 |
Размер файла | 430,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Лабораторная работа №4
Определение углового расхождения лазерного излучения
Цель: определить угловое расхождение пучка света испускаемого лазером.
Оборудование: лазер, линейка, измерительная лента (рулетка), лист черной бумаги.
Теоретические данные
Для практики наиболее интересен случай дифракции света, когда препятствие оставляет открытой лишь малую часть 1-й зоны Френеля. Этот случай реализуется при условии
т. е. дифракционную картину от препятствий небольшого размера следует в этом случае наблюдать на очень больших расстояниях. Например, если R = 1 мм,? = 550 нм (зеленый свет), то расстояние L до плоскости наблюдения должно быть значительно больше 2 метров (т. е. минимум 10 метров или больше). Лучи проведенные в далекую точку наблюдения от различных элементов волнового фронта, практически можно считать параллельными. Этот случай дифракции так и называется - дифракция в параллельных лучах или дифракция Фраунгофера - по имени немецкого физика И. Фраунгофера, современника Френеля. Если на пути лучей за препятствием поставить собирающую линзу, то параллельный пучок лучей, дифрагировавший на препятствии под углом ?, соберется в некоторой точке фокальной плоскости (рис. 1). Следовательно, любая точка в фокальной плоскости линзы эквивалентна бесконечно удаленной точке в отсутствие линзы.
Рисунок 1.
Дифракция в параллельных лучах. Зеленая кривая - распределение интенсивности в фокальной плоскости (масштаб по оси x сильно увеличен)
В фокальной плоскости линзы наблюдается дифракционная картина Фраунгофера. Но, согласно геометрической оптике, в фокусе линзы должно располагаться точечное изображение удаленного точечного предмета. На самом деле изображение точечного предмета оказывается размытым из-за дифракции. В этом проявляется волновая природа света.
Никакая оптическая система не может дать точечного изображения. В случае дифракции Фраунгофера на круглом отверстии диаметра D дифракционное изображение состоит из центрального светлого пятна (диск Эйри), на которое приходится приблизительно 85 % энергии света, и окружающих его светлых и темных колец (рис. 2). Это дифракционное пятно и принимается за изображение точечного источника. Радиус центрального пятна в фокальной плоскости линзы равен
Если лучи света от удаленного источника падают на линзу непосредственно, то роль экрана, на котором дифрагирует свет, выполняет оправа линзы. В этом случае под D нужно понимать диаметр линзы.
Рисунок 2
Дифракционное изображение точечного источника (дифракция на круглом отверстии). В центральное пятно попадает приблизительно 85 % энергии света
Размер дифракционных изображений очень мал. Например, радиус центрального светлого пятна в фокальной плоскости линзы диаметром D = 5 см с фокусным расстоянием F = 50 см в монохроматическом свете с длиной волны ? = 500 нм приблизительно равен 0,006 мм. Во многих оптических устройствах (фотоаппараты, проекторы и т. д.) дифракционное размытие изображений маскируется значительно более сильными искажениями из-за несовершенства оптики. Но в высокоточных астрономических приборах реализуется дифракционный предел качества изображений. Вследствие дифракционного размытия изображения двух близких точек объекта могут оказаться неотличимы от изображения одной точки. Рассмотрим в качестве примера объектив астрономического телескопа, нацеленного на две близкие звезды, находящиеся на угловом расстоянии ? друг от друга.
Предполагается, что все дефекты и аберрации устранены, и в фокальной плоскости объектива наблюдаются дифракционные изображения звезд (рис. 3).
свет дифракция лазерный телескопический
Рисунок 3.
Дифракционные изображения двух близких звезд в фокальной плоскости объектива телескопа
На рис. 3 расстояние ?l между центрами дифракционных изображений звезд превышает радиус r центрального светлого пятна - в этом случае изображения звезд воспринимаются наблюдателем раздельно и, следовательно, объектив телескопа позволяет разрешить две близкие звезды. При уменьшении углового расстояния ? между звездами дифракционные изображения могут сильно перекрыться и перестанут отличаться от изображения одиночной звезды. В этом случае объектив телескопа не разрешает близкие звезды. Английский физик Дж. Релей в конце XIX в. предложил условно считать разрешение полным, когда расстояния?l между центрами изображений равно (или превышает) радиус r диска Эйри (рис. 4). Условие ?l = r называют критерием разрешения Релея. Из этого критерия следует
Телескоп с диаметром объектива D = 1 м способен разрешать две звезды, находящиеся на угловом расстоянии ?min = 6,7·10-7 рад (для ? = 550 нм).
Рисунок 4
Предел разрешения по Релею. Красная кривая - распределение суммарной интенсивности света
Космический телескоп Хаббла, выведенный на орбиту в 1990 году, имеет зеркало диаметром D = 2,40 м. Предельное угловое разрешение этого телескопа на длине волны ? = 550 нм равно: ?min = 2,8·10-7 рад. На работу космического телескопа не оказывают влияния атмосферные возмущения. Для характеристики объектива телескопа можно ввести величину R, обратную предельному углу ?min. Эту величину называют разрешающей силой телескопа
Для увеличения разрешающей способности телескопа следует увеличивать диаметр объектива (либо переходить к более коротким волнам). Все сказанное выше о разрешающей способности телескопа применимо и к невооруженному глазу. Глаз при рассматривании удаленных предметов действует так же, как и объектив телескопа. Роль D играет диаметр зрачка глаза dзр. Полагая dзр = 3 мм, ? = 550 нм, найдем для предельного углового разрешения глаза
Этот результат хорошо согласуется с физиологической оценкой разрешающей способности глаза, выполненной исходя из размеров светочувствительных элементов сетчатки (палочек и колбочек).
Теперь можно сделать один общий вывод: световой пучок с диаметром D и длиной волны ? вследствие волновой природы света испытывает дифракционное уширение. Угловая полуширина ? пучка оказывается порядка ? / D, так что полная ширина d пучка на расстоянии L приблизительно равна
Рис. 5 качественно показывает, как по мере удаления от препятствия трансформируется пучок света.
Рисунок 5
Пучок света, расширяющийся вследствие дифракции. Область I - понятие луча света, законы геометрической оптики. Область II - зоны Френеля, пятно Пуассона. Область III - дифракция в параллельных лучах
Оценки, выполненные на рис. 3.9.5, показывают, что угловое расхождение пучка уменьшается при увеличении его первоначального поперечного размера D. Этот вывод справедлив для волн любой физической природы. Чтобы, например, послать «узкий» пучок лазерного излучения на Луну, нужно сначала его расширить. Это достигается с помощью телескопа: лазерный пучок направляется в окуляр и затем, пройдя через телескоп, выходит из объектива, имея диаметр D (рис. 6).
Рисунок 6
Расширение лазерного пучка с помощью телескопической системы.
Такой расширенный пучок, дойдя до Луны, «засветит» на ее поверхности пятно радиусом где L - расстояние до Луны. Приняв D = 2,5 м (телескоп-рефлекторКрымскойобсерватории),? = 550 нм,L = 4·106 м,получим R ? 90 м.
Если бы на Луну был направлен первоначальный пучок лазерного света, имеющий диаметр порядка 1 см, то он «засветил» бы на Луне пятно, радиус которого оказался бы в 250 раз больше.
Разрешающая способность микроскопа. С помощью микроскопа наблюдают близко расположенные объекты, поэтому его разрешающая способность характеризуется не угловым, а линейным расстоянием между двумя близкими точками, которые еще могут восприниматься раздельно. Наблюдаемый объект располагается вблизи переднего фокуса объектива. Часто пространство перед объективом заполняется специальной прозрачной жидкостью - иммерсией(рис. 7). В плоскости, геометрически сопряженной объекту, располагается его увеличенное изображение, которое рассматривается глазом через окуляр. Изображение каждой точки оказывается размытым вследствие дифракции света.
Впервые предел разрешения объектива микроскопа был определен в 1874 г. Немецким физиком Г. Гельмгольцем. Формула Гельмгольца имеет вид
Здесь ? - длина волны, n - показатель преломления иммерсионной жидкости, ? - так называемый апертурный угол (рис. 7).
Величина n sin ? называется числовой апертурой.
У хороших микроскопов апертурный угол ? близок к своему пределу: ? ? ? / 2.
Рисунок 7. Иммерсионная жидкость перед объективом микроскопа
Как видно из формулы Гельмгольца, применение иммерсии несколько улучшает предел разрешения. Полагая для оценок sin ? ? 1, n ? 1,5, получим:
lmin ? 0,4 ?.
Таким образом, с помощью микроскопа принципиально невозможно рассмотреть какие-либо детали, размер которых значительно меньше длины волны света. Волновые свойства света определяют предел качества изображения объекта, полученного с помощью любой оптической системы.
Модель. Дифракционный предел разрешения
Порядок выполнения работы
1. Закрепите лист черной бумаги на стене.
2. Освещая лист бумаги лазером, измерьте с помощью линейки ширину пучка светаdизм, располагая лазер на расстоянии: 1 см; 50 см; 1 м; 1,5м; 2м; 2,5 м; 3 мот листа бумаги.
3. Используя формулу , рассчитайте теоретически значение шириныпучка для каждого расстояния.
4. Данные занесите в таблицу.
?, нм |
||||||||
D, м |
||||||||
L,м |
||||||||
dизм, м |
||||||||
dтеор, м |
5. Постройте графики зависимости dизм=f(L)и dтеор=f(L)
6. Сделайте вывод по работе
Размещено на Allbest.ur
...Подобные документы
Расчет параметров воздействия отраженного или рассеянного лазерного излучения на органы зрения персонала, который обслуживает лазерные установки. Применение лазерного излучения в медицине. Параметры лазерного пучка, преобразованного оптической сиcтемой.
дипломная работа [1,5 M], добавлен 20.07.2015Определение мощности лазерного излучения, подаваемого на образец. Вычисление размеров лазерного пучка на образце. Разработка системы измерения мощности излучения и длительности лазерного импульса, системы измерения температуры в зависимости от времени.
лабораторная работа [503,2 K], добавлен 11.07.2015Взаимодействие лазерного излучения с атомами. Пробой жидкостей под действием лазерного излучения. Туннельный эффект в лазерном поле. Модель процессов ионизации вещества под воздействием лазерного излучения. Методика расчета погрешностей измерений.
дипломная работа [7,4 M], добавлен 10.09.2010Основы теории дифракции света. Эксперименты по дифракции света, условия ее возникновения. Особенности дифракции плоских волн. Описание распространения электромагнитных волн с помощью принципа Гюйгенса-Френеля. Дифракция Фраунгофера на отверстии.
презентация [1,5 M], добавлен 23.08.2013Принцип работы лазера. Классификация современных лазеров. Эффекты, в виде которых в тканях организма реализуется биологическое действие высокоинтенсивного лазерного излучения. Действующие факторы лазерного излучения. Последствия действия светового потока.
презентация [690,8 K], добавлен 19.05.2017Изучение особенностей распространения световой волны с помощью принципа Гюйгенса-Френеля. Характеристика разных видов дифракции Фраунгофера. Структура и методы изготовления дифракционных решеток. Конструкция дифракционных спектрографов и монохроматоров.
курсовая работа [3,0 M], добавлен 24.03.2013Исследование распределения интенсивности света на экране с целью получения информации о свойствах световой волны - задача изучения дифракции света. Принцип Гюйгенса-Френеля. Метод зон Френеля, увеличение интенсивности света с помощью зонной пластинки.
презентация [146,9 K], добавлен 18.04.2013Понятие дифракции световых волн. Распределение интенсивности света в дифракционной картине при освещении щели параллельным пучком монохроматического света. Дифракционная решетка, принцип Гюйгенса - Френеля, метод зон. Дифракция Фраунгофера одной щели.
реферат [43,7 K], добавлен 07.09.2010Назначение, состав и работа лазерного однокомпонентного измерителя вибрации. Пространственное моделирование рассеянного когерентного излучения на сферических микрочастицах. Расчет прохождения неполяризованного лазерного пучка по методу Мюллера и Джонса.
курсовая работа [2,7 M], добавлен 25.04.2012Рассмотрение дифракции - отклонения световых лучей от прямолинейного распространения при прохождении сквозь узкие щели, малые отверстия или при огибании малых препятствий. Волновые свойства света. Принцип Гюйгенса–Френеля. Строение дифракционной решетки.
презентация [1,4 M], добавлен 04.08.2014Понятие об оптическом волокне. Прохождение светового излучения через границу раздела сред, а также в оптических волокнах, определение окон прозрачности. Стабильность мощности лазерного излучения. Принципы измерения мощности на разных длинах волн.
курсовая работа [832,5 K], добавлен 07.01.2014Принцип действия и разновидности лазеров. Основные свойства лазерного луча. Способы повышения мощности лазерного излучения. Изучение особенностей оптически квантовых генераторов и их излучения, которые нашли применение во многих отраслях промышленности.
курсовая работа [54,7 K], добавлен 20.12.2010Волновые и квантовые аспекты теории света. Теоретические вопросы интерференции и дифракции. Оценка технических возможностей спектральных приборов, дифракционной решетки. Методика определения длины волны света по спектру от дифракционной решетки.
методичка [211,1 K], добавлен 30.04.2014Обзор дифракции в сходящихся лучах (Френеля). Правила дифракции световых волн на круглом отверстии и диске. Схема дифракции Фраунгофера. Исследование распределения интенсивности света на экране. Определение характерных параметров дифракционной картины.
презентация [135,3 K], добавлен 24.09.2013Характеристика методик испытаний, используемых для целей сертификации. Принципы эллипсометрического измерения температуропроводности наноструктурированных материалов. Процессы температуропроводности в нанопокрытиях при воздействии лазерного излучения.
курсовая работа [642,1 K], добавлен 13.12.2014Проведение измерения длины световой волны с помощью бипризмы Френеля. Определение расстояний между мнимыми источниками света и расчет пути светового излучения от мнимых источников до фокальной плоскости микроскопа. Расчет ширины интерференционных полос.
лабораторная работа [273,5 K], добавлен 14.12.2013Принцип Гюйгенса-Френеля. Метод зон Френеля. Дифракция Френеля на круглом отверстии, на краю экрана, Фраунгофера от щели. Дифракционная решетка как спектральный прибор, принцип ее действия и сферы применения. Понятие и содержание голографии, ее значение.
презентация [1,3 M], добавлен 16.11.2012Исследование распределения интенсивности света на экране с целью получения информации о свойствах световой волны. Основные виды дифракции. Объяснение проникновения световых волн в область геометрической тени с помощью принципа Гюйгенса. Метод фон Френеля.
презентация [146,9 K], добавлен 24.09.2013Принцип Гюйгенса-Френеля и направления его практического применения. Метод зон Френеля: содержание и значение. Специфические особенности и обоснование дифракции от простейших преград и в параллельных лучах (Фраунгофера), на пространственных решетках.
презентация [3,8 M], добавлен 07.03.2016Исследование дифракции, явлений отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий. Характеристика огибания световыми волнами границ непрозрачных тел и проникновения света в область геометрической тени.
презентация [1,4 M], добавлен 07.06.2011