Резонансные фильтры
Предназначение полосовых резонансных частотных фильтров. Элементы последовательного и параллельного колебательного контура. Анализ частотных свойств различных цепей с помощью амплитудно-частотных характеристик. Пример расчета полосового LC-фильтра.
Рубрика | Физика и энергетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 21.11.2013 |
Размер файла | 550,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Полосовые резонансные фильтры
Полосовые резонансные частотные фильтры - предназначены для выделения, или режекции (вырезания) определённой полосы частот. Резонансные частотные фильтры могут состоять из одного, двух, или трех колебательных контуров, настроенных на определённую частоту. Резонансные фильтры обладают наиболее крутым подъёмом (или спадом) АЧХ, по сравнению с другими (не резонансными) фильтрами. Полосовые резонансные частотные фильтры могут быть одноэлементными - с одним контуром, Г-образными - с двумя контурами, Т и П-образными - с тремя контурами, многозвенными - с четырьмя и более контурами.
На рисунке представлена схема Т-образного полосового резонансного фильтра, предназначенного для выделения определённой частоты. Состоит он из трёх колебательных контуров. C1L1 и C3L3 - последовательные колебательные контуры, на резонансной частоте имеют малое сопротивление протекающему току, а на других частотах наоборот - большое. Параллельный контур C2L2 наоборот, имеет большое сопротивление на резонансной частоте, обладая малым сопротивлением на других частотах. Для расширения ширины полосы пропускания такого фильтра, уменьшают добротность контуров, изменяя конструкцию катушек индуктивности, расстраивая контура "вправо, влево" на частоту, немного отличающуюся от центральной резонансной, параллельно контуру C2L2 подключают резистор.
На следующем рисунке представлена схема Т-образного режекторного резонансного фильтра, предназначенного для подавления определённой частоты. Он, как и предыдущий фильтр состоит из трёх колебательных контуров, но принцип выделения частот у такого фильтра другой. C1L1 и C3L3 - параллельные колебательные контуры, на резонансной частоте имеют большое сопротивление протекающему току, а на других частотах - маленькое. Параллельный контур C2L2 наоборот, имеет малое сопротивление на резонансной частоте, обладая большим сопротивлением на других частотах. Таким образом, если предыдущий фильтр резонансную частоту выделяет, а остальные частоты подавляет, то этот фильтр, беспрепятственно пропускает все частоты, кроме резонансной частоты.
Порядок расчёта полосовых резонансных фильтров основан всё на том же делителе напряжения, где в качестве единичного элемента выступает LC контур с его характеристическим сопротивлением. Как рассчитывается колебательный контур, определяются его резонансная частота, добротность и характеристическое (волновое) сопротивление вы можете найти в статье Колебательный контур.
Последовательный колебательный контур
Последовательный колебательный контур является простейшей резонансной (колебательной) цепью. Состоит последовательный колебательный контур, из последовательно включенных катушки индуктивности и конденсатора. При воздействии на такую цепь переменного (гармонического) напряжения, через катушку и конденсатор будет протекать переменный ток, величина которого вычисляется по закону Ома: I = U / ХУ , гдеХУ - сумма реактивных сопротивлений последовательно включенных катушки и конденсатора (используется модуль суммы). Для освежения памяти, вспомним как зависят реактивные сопротивления конденсатора и катушки индуктивности от частоты приложенного переменного напряжения. Для катушки индуктивности, эта зависимость будет иметь вид:
Из формулы видно, что при увеличении частоты, реактивное сопротивление катушки индуктивности увеличивается. Для конденсатора зависимость его реактивного сопротивления от частоты будет выглядеть следующим образом:
В отличии от индуктивности, у конденсатора всё происходит наоборот - при увеличении частоты, реактивное сопротивление уменьшается. На следующем рисунке графически представлены зависимости реактивных сопротивлений катушки XL и конденсатора ХC от циклической (круговой) частоты щ, а также график зависимости от частоты щ их алгебраической суммы ХУ. График, по сути, показывает зависимость от частоты общего реактивного сопротивления последовательного колебательного контура.
Из графика видно, что на некоторой частоте щ=щр , на которой реактивные сопротивления катушки и конденсатора равны по модулю (равны по значению, но противоположны по знаку), общее сопротивление цепи обращается в ноль. На этой частоте в цепи наблюдается максимум тока, который ограничен только омическими потерями в катушке индуктивности (т.е. активным сопротивлением провода обмотки катушки) и внутренним сопротивлением источника тока (генератора). Такую частоту, при которой наблюдается рассмотренное явление, называемое в физике резонансом, называют резонансной частотой или собственной частотой колебаний цепи. Также из графика видно, что на частотах, ниже частоты резонанса реактивное сопротивление последовательного колебательного контура носит емкостной характер, а на более высоких частотах - индуктивный. Что касается самой резонансной частоты, то она может быть вычислена при помощи формулы Томсона, которую мы можем вывести из формул реактивных сопротивлений катушки индуктивности и конденсатора, приравняв их реактивные сопротивления друг к другу:
На рисунке справа, изображена эквивалентная схема последовательного резонансного контура с учетом омических потерь R, подключенного к идеальному генератору гармонического напряжения с амплитудой U. Полное сопротивление (импеданс) такой цепи определяется: Z = v(R2+XУ2), где XУ = щ L-1/щC. На резонансной частоте, когда величины реактивных сопротивлений катушки XL = щL и конденсатора ХС= 1/щС равны по модулю, величина XУ обращается в нуль (следовательно, сопротивление цепи чисто активное), а ток в цепи определятся отношением амплитуды напряжения генератора к сопротивлению омических потерь: I= U/R. При этом на катушке и на конденсаторе, в которых запасена реактивная электрическая энергия, падает одинаковое напряжение UL = UС = IXL = IXС.
На любой другой частоте, отличной от резонансной, напряжения на катушке и конденсаторе неодинаковы - они определяются амплитудой тока в цепи и величинами модулей реактивных сопротивлений XL и XС.Поэтому резонанс в последовательном колебательном контуре принято называть резонансом напряжений. Резонансной частотой контура называют такую частоту, на которой сопротивление контура имеет чисто активный (резистивный) характер. Условие резонанса - это равенство величин реактивных сопротивлений катушки индуктивности и ёмкости.
Одними из наиболее важных параметров колебательного контура (кроме, разумеется, резонансной частоты) являются его характеристическое (или волновое) сопротивление с и добротность контура Q. Характеристическим (волновым) сопротивлением контура сназывается величина реактивного сопротивления емкости и индуктивности контура на резонансной частоте: с = ХL = ХC при щ =щр . Характеристическое сопротивление может быть вычислено следующим образом: с = v(L/C). Характеристическое сопротивление с является количественной мерой оценки энергии, запасенной реактивными элементами контура - катушкой (энергия магнитного поля) WL = (LI2)/2 и конденсатором (энергия электрического поля) WC=(CU2)/2. Отношение энергии, запасенной реактивными элементами контура, к энергии омических (резистивных) потерь за период принято называть добротностью Q контура, что в буквальном переводе с английского языка обозначает "качество". Добротность колебательного контура - характеристика, определяющая амплитуду и ширину АЧХ резонанса и показывающая, во сколько раз запасы энергии в контуре больше, чем потери энергии за один период колебаний. Добротность учитывает наличие активного сопротивления нагрузки R. Для последовательного колебательного контура в RLC цепях, в котором все три элемента включены последовательно, добротность вычисляется:
где R, L и C -- сопротивление, индуктивность и ёмкость резонансной цепи, соответственно. Величину, обратную добротности d = 1 / Qназывают затуханием контура. Для определения добротности обычно пользуются формулой Q = с / R, где R-сопротивление омических потерь контура, характеризующее мощность резистивных (активных потерь) контура Р = I2R. Добротность реальных колебательных контуров, выполненных на дискретных катушках индуктивности и конденсаторах, составляет от нескольких единиц до сотни и более. Добротность различных колебательных систем, построенных на принципе пьезоэлектрических и других эффектов (например, кварцевые резонаторы) может достигать нескольких тысяч и более.
Частотные свойства различных цепей в технике принято оценивать с помощью амплитудно-частотных характеристик (АЧХ), при этом сами цепи рассматривают как четырёхполюсники. На рисунках ниже представлены два простейших четырехполюсника, содержащих последовательный колебательный контур и АЧХ этих цепей, которые приведены (показаны сплошными линями). По вертикальной оси графиков АЧХ отложена величина коэффициента передачи цепи по напряжению К, показывающая отношение выходного напряжения цепи к входному.
Для пассивных цепей (т.е. не содержащих усилительных элементов и источников энергии), величина К никогда не превышает единицу. Сопротивление переменному току изображённой на рисунке цепи, будет минимально при частоте воздействия, равной резонансной частоте контура. В этом случае коэффициент передачи цепи близок к единице (определяется омическими потерями в контуре). На частотах, сильно отличающихся от резонансной, сопротивление контура переменному току достаточно велико, а следовательно, и коэффициент передачи цепи будет падать практически до нуля.
При резонансе в этой цепи, источник входного сигнала оказывается фактически замкнутым накоротко малым сопротивлением контура, благодаря чему коэффициент передачи такой цепи на резонансной частоте падает практически до нуля (опять-таки в силу наличия конечного сопротивления потерь). Наоборот, при частотах входного воздействия, значительно отстоящих от резонансной, коэффициент передачи цепи оказывается близким к единице. Свойство колебательного контура в значительной степени изменять коэффициент передачи на частотах, близких к резонансной, широко используется на практике, когда требуется выделить сигнал с конкретной частотой из множества ненужных сигналов, расположенных на других частотах. Так, в любом радиоприемнике при помощи колебательных цепей обеспечивается настройка на частоту нужной радиостанции. Свойство колебательного контура выделять из множества частот одну принято называть селективностью или избирательностью. При этом интенсивность изменения коэффициента передачи цепи при отстройке частоты воздействия от резонанса принято оценивать при помощи параметра, называемого полосой пропускания. За полосу пропускания принимается диапазон частот, в пределах которого уменьшение (или увеличение - в зависимости от вида цепи) коэффициента передачи относительно его значения на резонансной частоте, не превышает величины 0,7 (3дБ).
Пунктирными линиями на графиках показаны АЧХ точно таких же цепей, колебательные контуры которых имеют такие же резонансные частоты, как и для случая рассмотренного выше, но обладающие меньшей добротностью (например, катушка индуктивности намотана проводом, обладающим большим сопротивлением постоянному току). Как видно из рисунков, при этом расширяется полоса пропускания цепи и ухудшаются ее селективные (избирательные) свойства. Исходя из этого, при расчете и конструировании колебательных контуров нужно стремиться к повышению их добротности. Однако, в ряде случаев, добротность контура, наоборот, приходится занижать (например, включая последовательно с катушкой индуктивности резистор небольшой величины сопротивления), что позволяет избежать искажений широкополосных сигналов. Хотя, если на практике требуется выделить достаточно широкополосный сигнал, селективные цепи, как правило, строятся не на одиночных колебательных контурах, а на более сложных связанных (многоконтурных) колебательных системах, в т.ч. многозвенных фильтрах.
2. Параллельный колебательный контур
В различных радиотехнических устройствах наряду с последовательными колебательными контурами часто (даже чаще, чем последовательные) применяют параллельные колебательные контуры На рисунке приведена принципиальная схема параллельного колебательного контура. Здесь параллельно включены два реактивных элемента с разным характером реактивности Как известно, при параллельном включении элементов складывать их сопротивления нельзя - можно лишь складывать проводимости. На рисунке приведены графические зависимости реактивных проводимостей катушки индуктивности BL = 1/щL, конденсатора ВC = -щC, а также суммарной проводимостиВУ, этих двух элементов, являющаяся реактивной проводимостью параллельного колебательного контура. Аналогично, как и для последовательного колебательного контура, имеется некоторая частота, называемая резонансной, на которой реактивные сопротивления (а значит и проводимости) катушки и конденсатора одинаковы. На этой частоте суммарная проводимость параллельного колебательного контура без потерь обращается в нуль. Это значит, что на этой частоте колебательный контур обладает бесконечно большим сопротивлением переменному току.
Если построить зависимость реактивного сопротивления контура от частоты XУ = 1/BУ, эта кривая, изображённая на следующем рисунке, в точке щ = щр будет иметь разрыв второго рода. Сопротивление реального параллельного колебательного контура (т.е с потерями), разумеется, не равно бесконечности - оно тем меньше, чем больше омическое сопротивление потерь в контуре, т.е уменьшается прямо пропорционально уменьшению добротности контура. В целом, физический смысл понятий добротности, характеристического сопротивления и резонансной частоты колебательного контура, а также их расчетные формулы, справедливы как для последовательного, так и для параллельного колебательного контура. Для параллельного колебательного контура, в котором индуктивность, емкость и сопротивление включены параллельно, добротность вычисляется:
где R, L и C -- сопротивление, индуктивность и ёмкость резонансной цепи, соответственно.
Рассмотрим цепь, состоящую из генератора гармонических колебаний и параллельного колебательного контура. В случае, когда частота колебаний генератора совпадает с резонансной частотой контура его индуктивная и емкостная ветви оказывают равное сопротивление переменному току, в следствие чего токи в ветвях контура будут одинаковыми. В этом случае говорят, что в цепи имеет место резонанс токов. Как и в случае последовательного колебательного контура, реактивности катушки и конденсатора компенсируют друг друга, и сопротивление контура протекающему через него току становится чисто активным (резистивным). Величина этого сопротивления, часто называемого в технике эквивалентным, определяется произведением добротности контура на его характеристическое сопротивление Rэкв = Q·с. На частотах, отличных от резонансной, сопротивление контура уменьшается и приобретает реактивный характер на более низких частотах - индуктивный (поскольку реактивное сопротивление индуктивности падает при уменьшении частоты), а на более высоких - наоборот, емкостной (т к реактивное сопротивление емкости падает с ростом частоты).
В процессе работы контура, дважды за период колебаний, происходит энергетический обмен между катушкой и конденсатором (смотри рисунок). Энергия поочередно накапливается, то в виде энергии электрического поля заряженного конденсатора, то в виде энергии магнитного поля катушки индуктивности. При этом в контуре протекает собственный контурный ток Iк, превосходящий по величине ток во внешней цепиI в Q раз. В случае идеального контура (без потерь), добротность которого теоретически бесконечна, величина контурного тока также будет бесконечно большой. Но на практике, такого не бывает. В любом случае, качество элементов контура, их паразитные характеристики, электрические цепи, служащие для подвода энергии и отбора энергии из контура, не позволят контурному току расти.
Рассмотрим, как зависят коэффициенты передачи четырехполюсников от частоты, при включении в них не последовательных колебательных контуров, а параллельных.
Четырехполюсник, изображенный на рисунке, на резонансной частоте контура представляет собой огромное сопротивление току, поэтому при щ=щр его коэффициент передачи будет близок к нулю (с учетом омических потерь). На частотах, отличных от резонансной, сопротивление контура будет уменьшатся, а коэффициент передачи четырехполюсника - возрастать.
Для четырехполюсника, приведенного на рисунке выше, ситуация будет противоположной - на резонансной частоте контур будет представлять собой очень большое сопротивление и практически все входное напряжение поступит на выходные клеммы (т.е коэффициент передачи будет максимален и близок к единице). При значительном отличии частоты входного воздействия от резонансной частоты контура, источник сигнала, подключаемый к входным клеммам четырехполюсника, окажется практически закороченном накоротко, а коэффициент передачи будет близок к нулю.
3. Пример расчета полосового LC-фильтра
Согласно заданию на курсовую работу на входе полосового фильтра действуют периодические радиоимпульсы (рис. 1.1) с параметрами: период следования импульсов Tи = 800 мкс; длительность импульсов tи = 200 мкс; период несущей частоты Tн = 33,3 мкс; амплитуда колебаний несущей частоты Um.н = 5 В. Фильтр должен обеспечить максимально допустимое ослабление в полосе пропускания Аmax = ?A = 3 дБ. Полное ослабление на границах полос непропускания Апол = 24,2 дБ. Сопротивления нагрузок фильтра слева и справа Rг =Rн = 1 кОм (рис. 2.2). Характеристика фильтра аппроксимируется полиномом Чебышева.
Расчет амплитудного спектра радиоимпульсов
Прежде чем приступать непосредственно к расчету фильтра, необходимо определить частотный состав сигнала, поступающего на вход фильтра, т. е. рассчитать и построить график амплитудного спектра периодических радиоимпульсов, взяв за основу рис. 1.2.
Вначале находится несущая частота:
Затем рассчитывают частоты нулей огибающей спектра. Они зависят от длительности импульса:
Максимальное значение огибающей в виде напряжения, соответствующее частоте fн, находится по формуле
(3.1)
Зная максимальное значение и расположение нулей по оси частот, строим огибающую дискретного спектра периодических радиоимпульсов в виде пунктирной кривой в масштабе по оси частот (рис. 1.2).
Внутри огибающей находятся спектральные составляющие или гармоники спектра с частотами fi, где i - номер гармоники. Они располагаются симметрично относительно несущей частоты, зависят от периода следования импульсов и находятся по формуле
.
Учитывая, что
рассчитываем частоты гармоник, лежащих только справа от fн:
Частоты гармоник, лежащих слева от fн, будут:
Амплитуды напряжения i-ых гармоник находятся по формуле
(3.2)
где K = tи/Tн - количество периодов несущих колебаний косинусоидальной формы в импульсе. Например, на рис. 1.1 К = 4, а в рассматриваемом примере К = 6.
Из анализа рис. 1.2 видно, что главный "лепесток спектра" занимает диапазон частот от 25 до 35 кГц. Крайние частоты диапазона совпадают с нулями огибающей, поэтому их амплитуды равны нулю, в частности Um.4 = 0, Um.(-4) = 0.
После расчета амплитуд по (3.2) их значения отражаются в виде дискретных составляющих внутри огибающей спектра (рис. 1.2).
Полезно обратить внимание на характерную особенность спектра, связанную с понятием скважности импульсов. Если скважность q, т.е. отношение периода следования импульсовTи к длительности импульсов tи, равна целому числу, то в спектре отсутствуют гармоники с номерами, кратными скважности. В рассматриваемом примере q = 4, поэтому в спектре будут отсутствовать (совпадать с нулями огибающей) 4, 8, 12 и т.д. гармоники слева и справа от несущей частоты.
Формирование требований к полосовому фильтру
Учитывая, что амплитуды спектральных составляющих на частотах 25 и 35 кГц равны нулю, примем за эффективную часть спектра, которую нужно выделить полосовым фильтром, диапазон частот от 26,25 кГц до 33,75 кГц. Следовательно, эти частоты будут определять частоты границы полосы пропускания фильтра fп1 иfп2 соответственно (рис. 2.1, б). Граничную частоту полосы непропускания fз2 выбираем равной частоте первой гармоники спектра сигнала, находящейся после частоты (fн + 1/tи) = 35 кГц. Этой частотой является частота f5 = 36,25 кГц. Следовательно, fз2 = = f5 = 36,25 кГц.
Используя (2.1), найдем центральную частоту ПП:
Тогда граничная частота fз.1 полосы непропускания будет
Минимально-допустимое ослабление фильтра в ПН зависит от разницы амплитуд гармоник f3 и f5 спектра сигнала на выходе фильтра, выраженной в децибелах и заданной величинойАпол - полного ослабления:
(3.3)
(3.4)
исходная разница амплитуд третьей и пятой гармоник в децибелах, найденная в ходе расчета спектра радиоимпульсов.
Согласно (3.2):
По (3.4) находим
а из (3.3)
Таким образом, требования к полосовому фильтру сводятся к следующему:
Аппроксимация передаточной функции должна быть выполнена с помощью полинома Чебышева.
Формирование передаточной функции НЧ-прототипа
Используя (2.2), находим граничные частоты ПП и ПН НЧ-прототипа.
По формулам (2.3) получаем значения нормированных частот
Требования к НЧ-прототипу могут быть проиллюстрированы рисунком 3.1.
Находим коэффициент неравномерности ослабления фильтра в ПП из рассмотрения (2.5) при A =??A и W = 1, когда y(1) = Тm(1) = 1:
Порядок фильтра Чебышева находится также из рассмотрения (2.5), но при A = Aminи ??=?з, т. е. ослабление рассматривается в полосе непропускания. А в ПН полином ЧебышеваТm(?) = chmarch?, поэтому
(3.5)
Для вычисления функции archх рекомендуется соотношение
После подстановки в (3.5) исходных данных и вычислений получим m = 2,9. Расчетное значение m необходимо округлить в бoльшую сторону до целого числа. В данном примере принимает m = 3.
Примечание. При достаточно точных расчетах значение m во всех вариантах задания должно лежать в пределах 2 < m < 3. Если так не получилось необходимо обратиться за консультацией на кафедру.
Пользуясь таблицей 3.1, находим полюсы нормированной передаточной функции НЧ-прототипа:
(3.6)
Обратить внимание на то, что полюсы расположены в левой полуплоскости комплексной переменной р.
Формируем нормированную передаточную функцию НЧ-прототипа в виде
где ?(р) - полином Гурвица, который можно записать через полюсы:
Производя вычисления, получим
(3.7)
Обратить внимание на то, что в (3.7) числитель равен свободному члену полинома знаменателя.
При расчетах необходимо придерживаться точности не менее шести значащих цифр после запятой.
Реализация LC-прототипа
Для получения схемы НЧ-прототипа воспользуемся методом Дарлингтона, когда для двусторонне нагруженного фильтра (рис. 2.2) составляется выражение для входного сопротивления Zвх.1(р) (2.8). Подставляя в (2.8) значение ?(р) из (3.7) и значение h(p) из (2.10), после преобразований получим
(3.8)
Формула (3.8) описывает входное сопротивление двухполюсника (согласно схеме на рис. 2.2 фильтр, нагруженный на сопротивление Rн, это действительно двухполюсник). А если известно выражение для входного сопротивления, то можно построить схему двухполюсника, воспользовавшись, например, методом Кауэра [1?10]. По этому методу формула дляZвх(р) разлагается в непрерывную дробь путем деления полинома числителя на полином знаменателя. При этом степень числителя должна быть больше степени знаменателя. Исходя из последнего, (3.8) преобразуется к виду
(3.9)
после чего производится ряд последовательных делений. Вначале числитель делим на знаменатель:
Затем первый делитель делим на первый остаток:
Второй делитель делим на второй остаток:
Третий делитель делим на третий остаток:
Получили четыре результата деления, которые отражают четыре нормированных по частоте и по сопротивлению элемента схемы в виде значений их проводимостей: pC, 1/pL, 1/R. Из анализа первого результата деления следует, что он отражает емкостную проводимость, поэтому все выражение (3.9) можно записать в виде цепной дроби:
(3.10)
По формуле (3.10) составляем схему (рис. 3.2), на которой С1н = 3,349; L2н = 0,712; С3н = 3,349; Rг.н = Rн.н = Rнор.
Денормируем элементы схемы НЧ-прототипа, используя соотношения:
(3.11)
где ?н = ?п.нч - нормирующая частота;
Rг - нормирующее сопротивление, равное внутреннему сопротивлению источника сигнала.
Используя соотношения (3.11) и значения ?н иRг получаем реальные значения элементов схемы НЧ-прототипа:
Реализация пассивного полосового фильтра
Из теории фильтров известно [1?10], что между частотами НЧ-прототипа и частотами ?пф полосового фильтра существует соотношение
(3.12)
где??0 находится по (2.1).
На основании (3.12) индуктивное сопротивление НЧ-прототипа заменяется сопротивлением последовательного контура с элементами
(3.13)
а емкостное сопротивление НЧ-прототипа заменяется сопротивлением параллельного контура с элементами
(3.14)
Тогда, на основании схемы ФНЧ, изображенной на рис. 3.2 может быть построена схема полосового фильтра так, как это показано на рис. 3.3. Элементы этой схемы рассчитываются по формулам (3.13) и (3.14).
резонансный фильтр колебательный частотный
На этом расчет полосового LC-фильтра заканчивается.
Размещено на Allbest.ru
...Подобные документы
Исследование последовательного и параллельного колебательного контура. Получение амплитудно-частотных и фазово-частотнх характеристик. Определение резонансной частоты. Добротности последовательного и параллельного контура, различия между их значениями.
лабораторная работа [277,5 K], добавлен 16.04.2009Построение амплитудно-частотных и фазово-частотных характеристик элементарных звеньев радиотехнических цепей, последовательно и параллельно соединенных. Рассмотрение переходных процессов в цепях, спектральных преобразований и электрических фильтров.
курсовая работа [1,4 M], добавлен 07.01.2011Экспериментальное исследование частотных и резонансных характеристик последовательного контура. Анализ влияния активного сопротивления на вид резонансных кривых. Особенности и методика настройки последовательного контура на резонанс с помощью емкости.
лабораторная работа [341,2 K], добавлен 17.05.2010Анализ частотных и переходных характеристик электрических цепей. Расчет частотных характеристик электрической цепи и линейной цепи при импульсном воздействии. Комплексные функции частоты воздействия. Формирование и генерирование электрических импульсов.
контрольная работа [1,1 M], добавлен 05.01.2011Исследование частотных и переходных характеристик линейной электрической цепи. Определение электрических параметров ее отдельных участков. Анализ комплексной передаточной функции по току, графики амплитудно-частотной и фазово-частотной характеристик.
курсовая работа [379,2 K], добавлен 16.10.2021Входные и передаточные комплексные функции цепи, особенности их исследования и получения. Расчет частотных характеристик по выражениям амплитудно-частотных характеристик на основе карты нулей и полюсов. Использование автоматического метода анализа цепей.
курсовая работа [1,1 M], добавлен 21.10.2012Нормирование фильтра низких частот - прототипа для полосового фильтра. Аппроксимация по Баттерворту и по Чебышеву. Реализация схемы ФНЧ методом Дарлингтона. Денормирование и расчет элементов схемы заданного фильтра. Расчет частотных характеристик ПФ.
курсовая работа [1,6 M], добавлен 04.09.2012Классификация фильтров по виду амплитудно-частотной характеристики. Особенности согласованной и несогласованной нагрузки. Частотная зависимость характеристического и входного сопротивлений фильтра. Расчет коэффициентов затухания тока и фазы тока.
контрольная работа [243,7 K], добавлен 16.02.2013Фильтрация сигналов на фоне помех в современной радиотехнике. Понятие электрического фильтра как цепи, обладающей избирательностью реакции на внешнее воздействие. Классификация фильтров по типу частотных характеристик. Этапы проектирования фильтра.
курсовая работа [1,3 M], добавлен 23.01.2010Аппроксимация частотной характеристики рабочего ослабления фильтра. Переход от нормированной схемы ФНЧ-прототипа к схеме заданного фильтра. Расчет характеристик фильтра аналитическим методом. Расчет и построение денормированных частотных характеристик.
курсовая работа [444,5 K], добавлен 04.12.2021Вывод операторных передаточных функций. Составление системы уравнений в матричной форме на базе метода узловых потенциалов для вывода функции коэффициента передачи по напряжению. Расчет и построение карты особых точек, частотных, переходных характеристик.
курсовая работа [488,5 K], добавлен 07.06.2012Изучение гармонических процессов в линейных цепях, описание амплитудно-частотных характеристик четырехполюсников. Основные методы расчета и проектирования электрических цепей и современных средств вычислительной техники и программного обеспечения.
курсовая работа [1,3 M], добавлен 16.11.2013Расчет схемы и частотных характеристик пассивного четырехполюсника, активного четырехполюсника и их каскадного соединения. Нули и полюса пассивного четырехполюсника. Амплитудно-частотные и фазо-частотные характеристики пассивного четырехполюсника.
курсовая работа [511,6 K], добавлен 14.01.2017Сущность и порядок внедрения экспериментального метода построения частотных характеристик для сложного объекта автоматического регулирования, его особенности и расчеты. Применение аппаратных средств определения амплитудно-фазовых характеристик звеньев.
лабораторная работа [399,5 K], добавлен 26.04.2009Расчет и построение денормированных частотных характеристик рабочего ослабления и фазы электрического фильтра. Аппроксимация рабочей передаточной функции. Переход к фильтру нижней частоты, прототипу и нормирование по частоте. Реализация схемы ФНЧ.
курсовая работа [1,3 M], добавлен 27.02.2015Исследование модели транзистора с обобщенной нагрузкой. Определение амплитудно- и фазо-частотных характеристик входной и передаточной функции. Представление входного сопротивления полной цепи последовательной и параллельной моделями на одной из частот.
курсовая работа [1,0 M], добавлен 08.04.2015Законы Ома и Кирхгофа. Определение частотных характеристик: функции передачи электрической цепи и резонансной частоты. Нахождение амплитудно-частотной и фазово-частотной характеристики для заданной электрической цепи аналитически и в среде MicroCap 8.
курсовая работа [1,3 M], добавлен 06.08.2013Изучение принципа работы универсального электронно-лучевого осциллографа. Получение и графическое изображение амплитудно-частотных и фазочастотных характеристик делителя напряжения. Проведение градуировки генератора по частоте. Наблюдение фигур Лиссажа.
лабораторная работа [1,9 M], добавлен 13.11.2010Построение схем пассивного четырехполюсника, активного четырехполюсника, их каскадного соединения. Нахождение коэффициента передачи по напряжению. Расчет частотных характеристик и переходного процесса в электрической цепи. Анализ цепи в переходном режиме.
курсовая работа [236,4 K], добавлен 23.09.2014Определению законов изменения токов и напряжений вдоль цепи. Исследование частотных и временных характеристик цепи относительно внешних зажимов. Графики изменения токов. Расчет переходного процесса операторным методом. Исчисление резонансных частот.
реферат [531,3 K], добавлен 04.12.2012