Основні шляхи досягнення граничних можливостей методу елiпсометрiї

Способи подолання труднощів на шляху реалізації однозонної методики елiпсометричних вимірювань. Розрахунок термостійкого компенсатора. Особливості оптичного юстування компенсатора з відмінними від нуля недіагональними елементами його матриці Джонса.

Рубрика Физика и энергетика
Вид автореферат
Язык украинский
Дата добавления 21.11.2013
Размер файла 39,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

СУМСЬКИЙ ДЕРЖАВНИЙ УНІВЕРСИТЕТ

УДК 535.5.511:531.7

АВТОРЕФЕРАТ

дисертації на здобуття наукового ступеня кандидата фізико-математичних наук

ОСНОВНІ ШЛЯХИ ДОСЯГНЕННЯ ГРАНИЧНИХ МОЖЛИВОСТЕЙ МЕТОДУ ЕЛІПСОМЕТРІЇ

Спеціальність 01.04.01- фізика приладів, елементів і систем

БОБРО ВАЛЕРІЙ ВАСИЛЬОВИЧ

СУМИ-1999

Дисертацією є рукопис.

Робота виконана в Інституті прикладної фізики НАН України (м.Суми) та у ВАТ “Феодосійський приладобудівний завод ” (м. Феодосія).

Науковий керівник доктор фізико-математичних наук, професор Семененко Альберт Іванович, Інститут прикладної фізики НАН України, головний науковий співробітник

Офіційні опоненти доктор фізико-математичних наук, професор Шайкевич Ігор Андрійович, Київський національний університет імені Тараса Шевченка, професор кафедри оптики

доктор фізико-математичних наук, професор Погребняк Олександр Дмитрович, Сумський державний університет

Провідна установа - Харківський державний університет.

Захист відбудеться “23” вересня 1999 р. о 15 годині на засіданні спеціалізованої вченої ради Д55.051.02 у Сумському державному університеті за адресою: 244007, м. Суми, вул. Римського-Корсакова, 2, корп.ЕТ, ауд.216.

З дисертацією можна ознайомитися у бібліотеці Сумського державного університету.

Автореферат розісланий “17” серпня 1999 року.

Вчений секретар спеціалізованої ради О.А.Борисенко

еліпсометричний термостійкий компенсатор юстування

ЗАГАЛЬНА ХАРАКТЕРИСТИКА РОБОТИ

Актуальність теми. При застосуванні сучасних технічних засобів еліпсометрія дозволяє розробити цілу низку безконтактних, неруйнівних, чутливих методів дослідження стану поверхні та структури тонких поверхневих плівок. Навіть мінутна точність у вимірюванні поляризаційних кутів та дозволяє визначити товщину поверхневої плівки з точністю до 0,1 нм, а показник заломлення - з точністю до третього знака після коми. Висока чутливість методу дозволяє досліджувати фізико-хімічні процеси на поверхні твердих тіл та рідин, фіксуючи соті частки моношару, однак при цьому основне значення має можливість вимірювання дуже малих зсувів значень кутів та , але не абсолютна точність вимірювання цих кутів. Проте практично важлива задача визначення великої кількості невідомих параметрів багатошарових поверхневих структур для свого задовільного розв'язання потребує використання приладів, які забезпечують секундну (порядку 5-10 секунд) точність вимірювання самих значень кутів та , а не тільки їх зсувів. Така ж сама проблема виникає й при дослідженні надтонких (менше ніж 10 нм) плівок, а також анізотропних матеріалів.

Надзвичайно висока чутливість методу еліпсометрії до зміни стану поверхні, яка, безумовно, є перевагою методу і забезпечує у цілому високу точність, у той же час породжує великі труднощі на шляху практичної реалізації відповідній такій чутливості точності в експериментальному вимірюванні поляризаційних кутів та .

Існуючі еліпсометри не забезпечують достатньої точності. У кращому випадку припустимі для них абсолютні похибки у визначенні та складають відповідно 5 та 6 мінут. Саме така точність закладена у еліпсометрах типу ЛЕФ-ЗМ-1, які були розроблені в Інституті фізики напівпровідників Сибірського відділення Російської академії наук (м. Новосибірськ) та виробляються ВАТ “Феодосійський приладобудівний завод” (м. Феодосія). Але й цю точність з деяких обставин важко реалізувати. Основною перешкодою на цьому шляху була відсутність достатньо розробленої теорії приладу та надійного метрологічного забезпечення.

Розширення можливостей методу еліпсометрії, наближення до його граничних можливостей повязано не лише з підвищенням точності вимірювань поляризаційних кутів та , але й з розвязанням зворотної задачі еліпсометрії, яку можна віднести до класу некоректних математичних задач. Математична некоректність зворотної задачі еліпсометрії особливо яскраво та наочно виявляється при дослідженні надтонких (менше ніж 5 нм) поверхневих плівок. Для розвязання таких задач необхідно залучати спеціальні методи, які дозволяють суттєво розширити рамки сталих моделей.

У звязку з вищевикладеним розробка основних шляхів досягнення граничних можливостей методу еліпсометрії набуває особливої важливості та актуальності.

Звязок роботи з науковими програмами, планами, темами. Дисертаційна робота виконувалась у рамках Програми Національного центру наукового приладобудування України, до складу якого входить ВАТ “Феодосійський приладобудівний завод”.

Мета і задачі дослідження. Метою даної роботи є формулювання та обґрунтування основних шляхів досягнення граничних можливостей методу еліпсометрії. Робота велася за трьома головними напрямками.

Перший напрямок стосується практичної реалізації однозонної методики еліпсометричних вимірювань. У цьому випадку задача полягає в тому, щоб звести розкид експериментальних значень та по вимірювальних зонах до того мінімуму, як диктується необхідною точністю вимірювань, але насамперед можливостями приладу, що використовується в експерименті. Другий напрямок присвячується створенню нової науково обґрунтованої метрології в еліпсометрії, яка дозволяє істотно підвищити точність вимірювання поляризаційних кутів та розробити на цій основі нові прилади, які мають суттєво більші можливості порівняно з існуючими. Даний напрямок безпосередньо повязаний з першим.

Нарешті, третій напрямок стосується розробки нових підходів до розвязання математично некоректної зворотної задачі еліпсометрії. При цьому конкретно розглядається випадок надтонких поверхневих плівок.

Наукова новизна одержаних результатів.

1. Розроблено засоби подолання основних труднощів на шляху практичної реалізації однозонної методики еліпсометрічних вимірювань. При цьому одержано наступні нові результати:

розроблено новий тип термостійкого компенсатора, який є пластиною одноосьового кристалу з оптичною віссю, розміщеною під порівняно невеликим кутом до нормалі пластини. Обґрунтовано істотні переваги даного компенсатора порівняно з існуючими;

вивчено проблему, яка повязана з деякою невизначеністю у виборі юстувального параметра Ко, що відповідає збігу швидкої осі компенсатора з площиною падіння. Вперше показано, що суміщення юстувального параметра Ко з показом лімба К1, який визначає положення мінімуму “швидкої” осі поблизу площини падіння (в оптичній системі РКА: поляризатор - компенсатор - аналізатор), приводить до встановлення математичного звязку між параметрами компенсатора , 1 і 2, що істотно змінює та спрощує ситуацію;

вперше при визначенні параметрів компенсатора , 1 і 2 використано математичну умову, яка задовольняє ці параметри при суміщенні Ко і К1. Юстувальний параметр Ко, як правило, завжди збігався з показом лімба К1, але зазначена умова при цьому до уваги не бралась. Урахування даної умови приводить до істотно інших наслідків порівняно з ситуацією, коли ця умова не ураховується.

2. Розроблено нову метрологію еліпсометрії:

запропоновано новий підхід до метрології еліпсометрії, згідно з яким розкид експериментальних значень кутів та по вимірювальних зонах розглядається як обєктивний метрологічний критерій, який визначає точність вимірювання поляризаційних кутів, а отже, і точність визначення фізико-хімічних параметрів приповерхневих шарів;

запропоновано проект із створення на основі нової метрології зразкового лазерного еліпсометра, призначеного для атестації серійних еліпсометрів та оптичних елементів до них. Намічено схему проведення метрологічних робіт.

3. Розвинуто методи розв'язання зворотної задачі еліпсометрії:

доведено, що зворотна задача еліпсометрїї для надтонких поверхневих плівок належить до класу математично некоректних;

показано, що новий підхід до розвязання некоректної зворотної задачі еліпсометрії для надтонких прозорих поверхневих плівок, який пропонує нові критерії вибору оптимальної точки, приводить до сталих результатів і дозволяє успішно досліджувати поверхневі плівки товщиною від 2 до 10 нанометрів. Дійшли висновку про великі перспективи подальшого застосування методів розвязання некоректних математичних задач в еліпсометрії.

Практичне значення одержаних результатів. Безпосереднє практичне значення мають усі основні результати дисертації. Нова метрологія, в основі якої лежить однозонна методика еліпсометричних вимірювань, є основою для створення зразкового лазерного еліпсометра, а також конструкторських розробок нових типів прецизійних приладів.

Новий підхід до розвязання математично некоректної зворотної задачі еліпсометрії для надтонких поверхневих плівок дозволяє отримувати сталі результати для надтонких поверхневих структур напівпровідникової мікроелектроніки та інтегральної оптики. Особистий внесок здобувача. Особистий внесок здобувача полягає у наступному:

1.Розрахунок нового типу термостійкого компенсатора. Розробка технології його виготовлення [1].

2.Аналіз особливостей оптичного юстування компенсатора з відмінними від нуля недіагональними елементами його матриці Джонса. Виведення математичної умови, яку задовольняють параметри компенсатора при використанні стандартної методики оптичного юстування [1,3].

3.Аналіз умов, які забезпечують найбільш точне визначення параметрів компенсатора [1,3].

4.Участь в експериментальній реалізації однозонної методики еліпсометричних вимірювань [5].

5.Обгрунтування нової метрології та проекту із створення на основі нової метрології зразкового лазерного еліпсометра [1,4,5]. Розробка схеми проведення метрологічних робіт [7,8].

6.Теоретичний аналіз та обробка експериментальних результатів, які дозволили встановити характер некоректності зворотної задачі для надтонких поверхневих плівок [2,6]. Участь у розробці математичної програми для розвязання (на підставі нового підходу) некоректної зворотної задачі та обробка експериментальних результатів на основі цієї програми [2,6].

Апробація результатів дисертації. Основні результати дисертації висвітлювалися на 11-й Міжнародній Вавиловській конференції з нелінійної оптики (Новосибірськ, 24-28 червня 1997 р.), а також на наукових семінарах в Інституті фізики напівпровідників СВ РАН (грудень 1995 р.) та в Інституті аналітичного приладобудування РАН (січень1998 р.).

Публікації. Список наукових праць здобувача складається з 11 авторських свідоцтв та 52 друкованих робіт, у тому числі за темою дисертації - 8 публікацій загальним обсягом 1,5 друкованого аркуша, з яких 4 надруковані у періодичних виданнях, які входять до переліку вимог, визначених ВАК України.

Структура та обсяг дисертації. Дисертація складається з вступу, пяти розділів, висновків та списку використаних літературних джерел. Загальний обсяг роботи складає 125 сторінки, у тому числі 10 рисунків, 5 таблиць та список використаних літературних джерел із 112 найменувань.

ОСНОВНИЙ ЗМІСТ РОБОТИ

У вступі до дисертації обґрунтовується актуальність даної тематики, формулюються основні цілі та задачі роботи, розкриваються наукова новизна і практична цінність одержаних результатів.

Перший розділ містить огляд літератури та вибір основних напрямків дослідження.

У підрозділі 1.1 дається загальний огляд літератури з теми, у результаті виділені основні напрямки, з якими завжди вирішувалися проблеми реалізації надзвичайно високих можливостей методу еліпсометрії. Передусім до них належать оптимізація процесу еліпсометричних вимірювань, аналіз та засоби усунення впливу недосконалостей оптичних елементів, створення нових типів приладів, а також розвиток загальної теорії методу.

Однак правильний вибір оптимальних умов проведення еліпсометричних вимірювань, як і способи послаблення впливу недосконалостей оптичних елементів приладу, дозволяючи покращити експериментальну ситуацію, в той же час не дають змоги оцінити реальну точність приладу і, тим більше намітити шляхи досягнення принципових можливостей еліпсометрії. Цю проблему можна вирішити, лише виходячи із загальної теорії методу еліпсометрії, яка базується на таких поняттях, як вимірювальні зони та інваріанти еліпсометрії. У звязку з цим у підрозділах 1.2 -1.5 подано детальний огляд та аналіз загальної теорії, на основі якого намічені головні напрямки дослідження. Вимірювальні зони приладу (еліпсометра) відіграють особливу роль в еліпсометричному досліді.

Для ідеального приладу зонні співвідношення, які визначають для ізотропних середовищ кути та через експериментально виміряні положення гасіння поляризатора та аналізатора, дають результати, які збігаються за всіма вимірювальними зонами. Це будуть, очевидно, правильні результати. Для реального ж приладу через деякі причини спостерігається розкид експериментальних значень та по вимірювальних зонах. І чим грубіше прилад, тим більше виявляється розкид по зонах.

Для підвищення точності експериментального визначення поляризаційних кутів та , як правило, використовують процедуру усереднення виміряних значень та по вимірювальних зонах. Використання двозонної або чотиризонної методики усереднення, безумовно, приводить до поліпшення експериментальних результатів. Але такий підхід, приховуючи дефекти приладу і роблячи неможливим виявлення поверхневої анізотропії відбивних систем, істотно обмежує можливості методу еліпсометрії. Виділення в явній формі похибок приладу з процесу еліпсометричних вимірювань і розробка методів їх істотного зменшення являють собою винятково важливу задачу. І розвязати її можливо лише шляхом вивчення і зменшення розкиду експериментальних значень кутів та по вимірювальних зонах, розробляючи та використовуючи для цього спеціальні методи.

Таким чином, розкид експериментальних значень та по вимірювальних зонах необхідно визнати обєктивним критерієм, який визначає точність їх вимірювання. Тому задача полягає у зведенні цього розкиду до того мінімуму, який диктується потрібною точністю вимірювань, але перш за все можливостями використаного в експерименті приладу. Іншими словами, задача полягає в реалізації однозонної методики еліпсометричних вимірювань, яка передбачає еквівалентність вимірювальних зон, а отже, і достатність вимірювань усього лише в якійсь одній зоні. Практична реалізація однозонної методики еліпсометричних вимірювань стикається з деякими суттєвими труднощами. Насамперед це температурна нестійкість параметрів використовуваних фазових компенсаторів. Ця задача може бути розв'язана шляхом розробки та використання нових типів компенсаторів.

Великі складності пов'язані з необхідністю достатньо точного визначення усіх трьох комплексних параметрів компенсатора, який у цьому випадку повинен бути вже термостійким.

Існують також проблеми принципового характеру, повязані з юстуванням оптично активного фазового компенсатора. Оптична активність компенсатора зумовлює цікаву особливість в оптичному юстуванні цього елемента, яку також необхідно проаналізувати і врахувати при практичній реалізації однозонної методики. Тим більше, що така особливість обумовлена не лише оптичною активністю , але й похибками в установленні просторової орієнтації компенсатора відносно осі світлового пучка, які приводять до зміни недіагональних елементів матриці Джонса компенсатора ( до відмінності від нуля параметрів 1 та 2 навіть за відсутності оптичної активності ).

Серйозні труднощі виникають через наявність поверхневої анізотропії у досліджуваних зразках. Для її урахування і правильного визначення поляризаційних кутів необхідно узагальнення однозонної методики. Це робиться в рамках методу узагальнення вимірювальних зон в еліпсометрії анізотропних середовищ. В дисертації чітко намічено шлях для цього, однак експериментальна реалізація однозонної методики за узагальненою схемою - це предмет особливої розмови.

Велике значення однозонної методики еліпсометричних вимірювань визначається ще й можливістю побудови на її основі нового, науково обґрунтованого, метрологічного забезпечення еліпсометрії, що також забезпечує нові перспективи у розвитку методу еліпсометрії.

Суттєве збільшення можливостей методу еліпсометрії безпосередньо повязане з розвязанням зворотної задачі еліпсометрії. Існує численна література з цього питання. В усіх роботах даного напрямку використовується класичний підхід до розвязання зворотної задачі еліпсометрії. Також багато літератури з цього питання. В той же час зворотна задача еліпсометрії в багатьох випадках може бути віднесена до класу некоректних математичних задач. Математична некоректність зворотної задачі еліпсометрії особливо чітко і наявно виявляється при дослідженні надтонких (менше 5 нанометрів) поверхневих плівок. Для розвязання таких задач необхідно використовувати спеціальні методи, які дозволяють значно розширити рамки сталих моделей.

Таким чином, у першому розділі намічені основні шляхи у розвязанні поставленої в дисертації задачі. Окрім проблеми, яка повязана з практичною реалізацією однозонної методики, це ще й розробка нового метрологічного забезпечення еліпсометрії, в основі якого лежить однозонна методика. До них природно примикає і найважливіша задача з розвитку методів інтерпретації експериментальних еліпсометричних вимірювань.

У другому розділі розроблені способи подолання основних труднощів на шляху практичної реалізації однозонної методики еліпсометричних вимірювань.

Однією з головних труднощів є температурна нестійкість, яка призводить до великих похибок у виміряних значеннях та .

У сучасних еліпсометрах за компенсатор найчастіше використовується пластина одноосьового кристала з оптичною віссю, яка лежить у площині пластини. Температурна нестійкість параметрів даного компенсатора обумовлена його великою товщиною (d=1500-2000 мкм).

З метою усунення температурної нестійкості запропоновано компенсатор, який являє собою пластину одноосьового кристала з оптичною віссю, що розміщена під порівняно невеликим кутом до нормалі пластини. У цьому випадку ефективна товщина пластини, яка визначається формулою

dеф = d sin2, (1)

порiвняно з реальною товщиною може бути зменшена на два порядки, а це означає, що температурнi коливання фазового параметра у розглянутому випадку також знижуються на два порядки.

Обгрунтованi значнi переваги даного термостiйкого компенсатора порiвняно з iснуючими. Використання такого компенсатора може докорiнно змiнити експериментальну ситуацiю в елiпсометрiї, пов'язану з температурними коливаннями.

Проаналiзованi особливостi оптичного юстування приладу (елiпсометра) з оптично активним компенсатором. Одержанi вирази, якi визначають (вiдносно площини падiння) ті положення "швидкої" осi компенсатора, яким вiдповiдає мiнiмум iнтенсивностi свiтлового пучка на виходi оптичної системи РКА, всi три оптичнi елементи якої вiдповiдно до звичайної процедури юстування знаходяться на однiй осi, причому напрямок пропускання поляризатора лежить у площинi падiння, а аналiзатора - перпендикулярно їй. Цi вирази дозволили проаналiзувати ситуацiю, яка пов'язана з деякою невизначенiстю у виборi юстувального параметра К0, що вiдповiдає збігу "швидкої" осi компенсатора з площиною падiння. У загальному випадку такого збігу немає, що зумовлено не лише оптичною активністю компенсатора, але й похибками у встановленнi його просторової орiєнтацiї вiдносно осi свiтлового пучка. Змiна значення К0 тягне за собою i змiну параметрiв 1 та 2 , а також основного фазового параметра , тобто цi двi задачi (встановлення К0 i визначення параметрiв компенсатора) тiсно пов'язанi мiж собою. Бiльш того, з'являється можливiсть найбiльш оптимального вибору К0, при якому певним чином зв'язуються параметри компенсатора.

Така ситуацiя виникає, якщо сумiстити юстувальний параметр К0 з показом лiмба компенсатора К1, який вiдповiдає положенню мiнiмуму "швидкої" осi поблизу площини падiння, вiдмовившись тим самим вiд спроб сумiщення початкового положення цiєї осi з площиною падiння. У цьому випадку доцiльно ввести ефективну "швидку" вісь, яка при К0 = К1 збігається з площиною падiння i, таким чином, вiдхиляється вiд неї на кут к (0,900), який вiдраховується вiд показів лiмба К1. А це означає, що для положення мiнiмуму ефективної "швидкої" осi, яке вiдповiдає показу К1,

к = 0. (2)

Як випливає з отриманої в дисертацiї формули, яка визначає положення мiнiмуму К1 (у даному випадку положення мiнiмуму ефективної "швидкої" осi) вiдносно площини падiння, умова (2) виконується лише у тому випадку, якщо параметри компенсатора , 1 та 2 пов'язанi спiввiдношенням

(1 - * ) ( 1 - 2) + (1 - ) (*1 - *2) = 0. (3)

Таким чином, суміщаючи юстувальний параметр К0 з показом лiмба К1, ми добиваємося виконання спiввiдношення (3), що суттєво змiнює i спрощує ситуацiю.

Також данi рекомендацiї стосовно вибору позитивного напрямку обертання оптичних елементiв, який у загальному випадку (1 i 2 0 ) не може бути довiльним.

У цьому питаннi доцiльно керуватися наступними мiркуваннями. Якщо параметри компенсатора 1 та 2 визначенi при заданому (загальному для усіх оптичних елементiв) позитивному напрямку, то з цими параметрами можна працювати лише при даному позитивному напрямку. Змiнивши цей напрямок на зворотний, ми повиннi помiняти знаки величин 1 та 2 .

При практичній реалiзації однозонної методики елiпсометричних вимiрювань особлива увага має бути придiлена проблемi достатньо точного визначення трьох комплексних параметрiв компенсатора , 1 та 2. Проведений аналiз показав, що для розвязання цiєї проблеми використання iнварiантiв елiпсометрiї iзотропних середовищ виявляється недостатнiм, необхiдно використовувати iнварiантнi спiввiдношення елiпсометрiї анiзотропних середовищ, щоб врахувати поверхневу анiзотропiю відбиваних систем. При цьому применшити роль параметра 2 або знехтувати його неприпустимо.

Особливу роль при визначеннi параметрiв , 1 та 2 вiдiграє врахування математичної умови (3), яку задовольняють цi параметри при сумiщеннi К0 та К1. Юстувальний параметр К0, як правило, завжди сумiщався з показом лiмба К1, але зазначена умова при цьому не враховувалась. Iнварiантнi спiввiдношення елiпсометрiї анiзотропних середовищ, якi ігнорують умову (3), при наявностi незначних помилок у вимiрюваннi вхідних у ці співвідношення кутових положень гасiння оптичних елементiв визначають тi значення , 1 та 2, якi вiдрiзняються вiд значень цих параметрiв, одержаних з тих же рiвнянь, але при врахуванні умови (3). Враховуючи умову (3), ми не лише зменшуємо кількість незалежних невiдомих параметрiв у рiвняннях, знижуючи тим самим i роль експериментальних помилок, але, передусім, змiнюємо в потрібному напрямку функцiональну залежнiсть вiд параметрiв , 1 та 2 в iнварiантних спiввiдношеннях, звужуючи її в просторi цих параметрiв. А це й приводить до iнших поліпшених результатiв.

У третьому роздiлi розглянуто практичну реалiзацiю однозонної методики елiпсометричних вимiрювань та новий метрологiчний критерiй.

Можливiсть практичної реалiзацiї однозонної методики елiпсометричних вимiрювань перевірена на приладi ЛЕФ-3М-1. Експериментальнi вимiрювання проведенi на п`яти зразках, чотири з яких являють собою надтонкi плiвки двоокису кремнiю на кремнiї, а один - надтонку плiвку телуру на кремнiї. При цьому для кожного зразка використанi кути падiння свiтлового пучка вiд 500 до 750 через 2,50 (всього 11 кутiв).

Параметри компенсатора визначенi в результатi чисельного розвязання системи рiвнянь, якi являють собою iнварiантнi спiввiдношення елiпсометрiї анiзотропних середовищ. Розроблено математичну програму для розвязання вiдповiдної зворотної задачi. При цьому було враховано спiввiдношення (3), яке дало змогу отримати бiльш надiйне розвязання зворотної задачi.

Наведенi у пiдроздiлi 3.1 результати (див. таблицю 1., в якій і максимальні відхилення кутів і по вимірювальних зонах від їх середніх значень ср і ср ). якi характеризують ступiнь практичної реалiзацiї однозонної методики елiпсометричних вимiрювань, на перший погляд є не досить задовiльними. Однак на сьогоднiшнiй день - це кращi результати, яких вдалося досягти завдяки виконанню усіх перелiчених у попередньому роздiлi рекомендацiй i вимог, пов'язаних із термостiйкістю фазового компенсатора, визначенням повного набору його параметрiв, а також з оптичним юстуванням компенсатора. Цi результати можна суттєво покращити, якщо бiльш ретельно пiдiйти до пiдбору зразкiв, за вимiрюваннями на яких визначаються параметри компенсатора. Результати помiтно покращуються i в тому випадку, якщо при дослiдженнi iзотропних зразкiв враховується поверхнева анiзотропiя цих зразкiв, для чого використовується метод узагальнених вимiрювальних зон, який реалiзує однозонну методику за узагальненою схемою.

Таблиця 1 Розкид поляризаційних кутів і по вимірювальних зонах

Кут

Номер

ср

ср

падіння

зразка

1

270 47'

1780 33'

6'

12'

2

270 49'

1770 15'

9'

18'

550

3

270 47'

1750 27'

11'

19'

4

270 45'

1750 11'

11'

22'

5

270 59'

1660 56'

10'

19'

1

230 16'

1780 04'

7'

13'

2

230 17'

1760 11'

10'

24'

600

3

230 18'

1730 44'

14'

20'

4

230 20'

1730 25'

11'

21'

5

230 36'

1610 58'

13'

19'

1

170 37'

1770 02'

8'

20'

2

170 39'

1740 15'

11'

23'

650

3

170 46'

1700 35'

12'

21'

4

170 48'

1690 51'

12'

20'

5

180 33'

1530 33'

18'

25'

Якi характеризують ступiнь практичної реалiзацiї однозонної методики елiпсометричних вимiрювань, на перший погляд є не досить задовiльними. Однак на сьогоднiшнiй день - це кращi результати, яких вдалося досягти завдяки виконанню усіх перелiчених у попередньому роздiлi рекомендацiй i вимог, пов'язаних із термостiйкістю фазового компенсатора, визначенням повного набору його параметрiв, а також з оптичним юстуванням компенсатора. Цi результати можна суттєво покращити, якщо бiльш ретельно пiдiйти до пiдбору зразкiв, за вимiрюваннями на яких визначаються параметри компенсатора. Результати помiтно покращуються i в тому випадку, якщо при дослiдженнi iзотропних зразкiв враховується поверхнева анiзотропiя цих зразкiв, для чого використовується метод узагальнених вимiрювальних зон, який реалiзує однозонну методику за узагальненою схемою.

Дiюча у нинiшнiй час в елiпсометрiї метрологiя базується на використаннi еталонного зразка та усередненнi експериментальних значень поляризацiйних кутiв та по чотирьох вимiрювальних зонах. Проте усередненi значення кутiв та , не зважаючи на деяке їх поліпшення, усе ж таки помiтно обмеженi у своїй точностi i не вiдображають iстинних властивостей зразка. Така направленiсть метрологiї не стимулює пiдвищення точностi приладів, приховує властивостi анiзотропiї відбиваних систем і, зрештою, суттєво обмежує можливостi методу елiпсометрiї. В основному з цiєї причини до цього часу не був створений для метрологiчних потреб елiпсометр збiльшеної чутливостi, який одночасно мiг би бути використаний як для проведення наукових дослiджень, так i з технологiчною метою.

У дисертацiї запропоновано новий пiдхiд до метрологiї елiпсометрiї вiдповiдно до якого розкид експериментальних значень кутiв та по вимiрювальних зонах розглядається як об'єктивний метрологiчний критерiй, який визначає точнiсть вимiрювання поляризацiйних кутiв i, таким чином, точнiсть знаходження фiзико-хiмiчних параметрiв приповерхневих шарiв. Цей пiдхiд лежить в основi однозонної методики елiпсометричних вимiрювань, яка передбачає зменшення розкиду експериментальних значень поляризацiйних кутiв та по вимiрювальних зонах до того мiнiмуму, який диктується необхiдною точнiстю вимiрювань.

На особливу увагу заслуговує те, що будь-який відбивний об'єкт якою мiрою має анiзотропiю, нехтування якою неминуче призводить до зниження точностi визначення елiпсометричних параметрiв. Для врахування анiзотропiї відбивних середовищ необхiдно використовувати метод узагальнених вимiрювальних зон, який реалiзує однозонну методику, але вже за узагальненою схемою.

Реалiзацiя однозонної методики в рамках єдиної елiпсометричної теорiї, яка охоплює як iзотропнi, так i анiзотропнi відбитки системи, кінець кінцем дозволить проводити атестацiю елiпсометрiв будь-якого класу точностi. У зв'язку з цим особливого значення набуває розробка та створення метрологiчного елiпсометра пiдвищеної точностi для атестацiї елiпсометрiв та оптичних елементiв до них, якi випускаються серiйно.

Однозонна методика, таким чином, є теоретичною основою для створення надiйного метрологiчного забезпечення елiпсометрiї та конструкторських розробок нових типiв прецизiйних приладiв.

Запропоновано проект із створення на основi нової метрологiї зразкового лазерного елiпсометра, призначеного для атестацiї серiйних елiпсометрiв та оптичних елементiв до них.

Дослiдний зразок науково - метрологічного елiпсометра буде створюватися на базi елiпсометра ЛЕФ-3М-1. У цьому приладi будуть використанi оптичнi елементи, якi задовольняють досить жорсткі вимоги, та високочутливий фотодетектор. Суттєвiй переробцi пiдлягатиме вузол компенсатора, що дасть змогу жорстко контролювати просторове положення компенсатора. Сам компенсатор буде термостiйким. Будуть вдосконаленi також i лiмби оптичних елементiв.

Контроль просторового положення компенсатора вкрай необхiдний. Такий контроль дасть змогу проводити атестацiю фазових компенсаторiв призначених для елiпсометрiв, якi випускаються серiйно.

Намiчено схему проведення метрологiчних робiт. Для розвязання суто метрологiчної задачi необхiдно мати досить повний набiр якiсних зразкiв, якi вiдповiдними їм значеннями кутiв та охоплювали б усю видiлену частину координатної площини (, ). Спочатку на метрологiчному елiпсометрi за такими зразками проводяться вимiрювання в усіх зонах та встановлюється ступiнь реалiзацiї однозонної методики. Потiм такi ж вимiрювання здійснюються на серiйному приладi, i за ступенем реалізації однозонної методики робиться висновок про реальну точнiсть серiйного приладу. У разі необхiдностi проводяться роботи щодо подальшої доводки даного приладу.

Така процедура потребує зразкiв найвищої якостi, причому їх якiсть визначається ступенем реалiзацiї однозонної методики на метрологiчному елiпсометрi. I тодi з'являється можливiсть оцiнювати якiсть реальних зразкiв, якi вимiрюються на серiйному приладi. У цьому разi погiршення на даному приладi ступеня реалiзацiї однозонної методики (порiвняно з вимiрюваннями на якiсних зразках) може бути безпосередньо пов'язаним з неодноріднiстю зразкiв за поверхнею, шорсткiстю меж роздiлу тощо.

Четвертий роздiл присвячений розвитку методiв iнтерпретацiї експериментальних елiпсометричних результатiв. Реалiзацiя граничних можливостей методу елiпсометрiї забезпечується не лише пiдвищенням точностi вимiрювань поляризацiйних кутiв та , але й суттєво залежить вiд надiйностi методiв iнтерпретацiї експериментальних результатiв. Мова iде передусім про методи розвязання зворотної задачi елiпсометрiї. Це дуже важка проблема. Особливі труднощi виникають при дослiдженнi надтонких поверхневих шарiв.

У дисертацiї вивчено характер математичної некоректностi зворотної задачi елiпсометрiї для надтонких (менше 10 нанометрiв) прозорових поверхневих плiвок на однорiднiй пiдкладцi. Показано, що математична некоректнiсть у цьому випадку обумовлена не тiльки експериментальними помилками у вимiрюваннi поляризацiйних кутiв, а також i неадекватним вибором моделi відбиваного середовища, який виявляється у неточному завданнi параметрiв пiдкладки, якi в вважаються вiдомими, i у знехтуваннi навiть дуже тонким (порядку 0,1 нанометра) перехiдним шаром на межi мiж плiвкою та пiдкладкою. Цi висновки носять не лише якiсний характер, вони пiдтверджуються i чисельним експериментом, який проведено за допомогою спецiальної математичної програми.

Теоретичний аналiз математичної некоректностi зворотної задачi для надтонких поверхневих плiвок знайшов також яскраве пiдтвердження при експериментальному дослiдженнi надтонких плiвок двоокису кремнiю на кремнiї. Були дослiдженi двi групи кремнiєвих зразкiв з надтонкими плiвками SiO2. Для зразкiв першої групи показник заломлювання плiвки n 1, а її товщина d досягає значень 30-35 нанометрiв. Особливо рiзко це виявляється для надтонких плiвок з реальними товщинами 1,6-3 нм. Зi збiльшенням товщини ефект цього роду зменшується, зберiгаючись до реальних товщин 15 нм. Щодо надтонких плiвок SiO2 на зразках другої групи, то результати тут також нереальнi, хоча й дещо iншого характеру. У цьому випадку для кожного кута падiння n 3, а товщина d змiнюється вiдносно мало. Цей ефект також особливо чiтко виявляється для надтонких плiвок, зберiгаючись до товщин 15 нм.

Дослiджуючи реальнi зразки з надтонкими плiвками, не можна забувати про вплив чисто експериментальних помилок у визначеннi поляризацiйних кутiв та . Для надтонких плiвок цей вплив, звичайно, дуже суттєвий. У той же час систематичнiсть кидкiв у значеннях параметрiв плiвки, яка спостерiгається як для зразкiв першої, так i для зразкiв другої групи, може бути пояснена передусім сумарним впливом неврахованого перехiдного шару i помилок у завданнi оптичних сталих пiдкладинок.

Таким чином, виявленi нереальнi i навiть абсурднi результати як чисельного, так i реального експериментiв говорять про математичну некоректнiсть задачi з визначення параметрiв надтонких поверхневих плiвок.

Зроблено висновок про необхiднiсть вiдмови вiд класичного пiдходу до розвязання зворотної задачi для надтонких поверхневих плiвок i доцiльностi залучення для цього випадку методiв розвязання некоректних математичних задач. I передусім показано, що найбiльш розповсюджений i очевидний критерiй зупинки (при виборi оптимальної точки)

S0 2 , (4)

де S0 - функцiонал нев'язки, а - середня помилка у вимiрюваннi та , для надтонких плiвок практично непридатний. Необхiднi iншi критерiї зупинки.

Для розвязання математично некоректної зворотної задачi елiпсометрiї для надтонких поверхневих плiвок обрано статистичний пiдхiд, який використовує основне положення теорiї регуляризацiї про iснування оптимальної точки. При цьому головна увага придiляється обґрунтуванню та використанню нових критерiїв зупинки поблизу оптимальної точки.

Запропонованi новi критерiї вибору оптимальної точки, пов'язанi з похiдними вiд функцiоналу нев'язки S0 та середньоквадратичного розкиду G параметрiв плiвки d та n по перемiщенню вздовж траєкторії спуску та по складових загального перемiщення.

У результатi показано, що новий пiдхiд до розвязання некоректної зворотної задачi елiпсометрiї для надтонких прозорових поверхневих плiвок, який пропонує новi критерiї вибору оптимальної точки, приводить до сталих результатiв i дозволяє успішно дослiджувати поверхневi плiвки товщиною вiд 2 до 10 нанометрiв.

Зроблено висновок про великi перспективи подальшого використання методiв розвязання некоректних математичних задач в елiпсометрiї. Важливо вiдзначити, що i тоді, коли задача не є iстинно некоректною, використання методiв розвязання некоректних математичних задач приводить до суттєвого поліпшення результатiв.

У п'ятому роздiлi наведено узагальнений аналiз дисертацiйної роботи. Видiлено три головнi напрямки, за якими вирішується проблема реалiзацiї граничних можливостей методу елiпсометрiї. Дається коротка характеристика основних результатiв.

ОСНОВНІ РЕЗУЛЬТАТИ І ВИСНОВКИ

Основнi результати роботи, якi вiдповiдають трьом головним напрямкам дослiджень, можна сформулювати наступним чином.

1. Розроблено способи подолання основних труднощiв на шляху практичної реалiзацiї однозонної методики елiпсометричних вимiрювань:

для усунення температурної нестiйкостi результатiв запропоновано компенсатор, який являє собою пластину одноосьового кристала з оптичною віссю, розташованою пiд порiвняно невеликим кутом до нормалi пластини. Обґрунтовано значнi переваги даного термостiйкого компенсатора порiвняно з iснуючими;

проаналiзовано особливостi оптичного юстування елiпсометра з оптично активним компенсатором. Наданi рекомендацiї щодо вибору позитивного напрямку обертання оптичних елементiв, важливiсть яких визначається iснуванням вiдмiнних вiд нуля недiагональних елементiв матрицi Джонса компенсатора (параметрiв 1 та 2 );

вперше показано, що сумiщення юстувального параметра K0 з показом лiмба K1, який визначає положення мiнiмуму "швидкої" осi поблизу площини падiння (в оптичнiй системi РКА) приводить до встановлення математичного зв'язку (3) мiж параметрами компенсатора , 1 та 2 , що суттєво змiнює i спрощує ситуацiю;

вивчено проблему досить точного визначення параметрiв компенсатора , 1 та 2 . Зроблений аналiз показав, що для розвязання цiєї проблеми недостатньо використання iнварiантiв елiпсометрiї iзотропних середовищ, необхiдно залучати iнварiантнi спiввiдношення елiпсометрiї анiзотропних середовищ для урахування поверхневої анiзотропiї відбиваних систем;

вперше при визначеннi параметрiв компенсатора , 1 та 2 використано математичну умову (3), яку задовольняють цi параметри при сумiщеннi K0 та К1. Юстувальний параметр K0, як правило, завжди суміщається з показом лiмба K1, але названа умова при цьому до уваги не бралася. Урахування умови (3) приводить до суттєво iнших результатiв порiвняно з ситуацiєю, коли ця умова не враховується;

на прикладi зразкiв кремнiй-двоокис кремнiю перевiрено ступiнь реалiзацiї однозонної методики елiпсометричних вимiрювань. Отриманi результати, завдяки виконанню усіх розроблених у дисертацiї рекомендацiй та вимог, являють собою помiтний крок уперед в цьому напрямку.

2. Розроблено нову метрологiю елiпсометрiї:

запропоновано новий пiдхiд до метрологiї елiпсометрiї, вiдповiдно до якого розкид експериментальних значень кутiв та по вимiрювальних зонах розглядається як об'єктивний метрологiчний критерiй, який визначає точнiсть вимiрювання поляризацiйних кутiв та, як наслідок, точнiсть знаходження фiзико-хiмiчних параметрiв приповерхневих шарiв;

запропоновано проект із створення на основi нової метрологiї зразкового лазерного елiпсометра, призначеного для атестацiї серiйних елiпсометрiв та оптичних елементiв до них. Особливу увагу в зразковому елiпсометрi, як i в серiйних елiпсометрах, буде придiлено контролю просторового положення компенсатора вiдносно осi свiтлового пучка;

дано рекомендацiї стосовно атестацiї фазових компенсаторiв на зразковому елiпсометрi. Намiчено схему проведення метрологiчних робiт, яка дозволить не лише атестувати серiйнi елiпсометри, а й оцiнювати з бiльшою точнiстю якiсть реальних зразкiв, якi вимiрюються на серiйному приладi.

3. Розроблено методи розвзання зворотної задачi елiпсометрiї:

теоретично та експериментально доведено, що зворотна задача елiпсометрiї для надтонких (менше 10 нм) поверхневих плiвок належить до класу математично некоректних;

для розвзання математично некоректної зворотної задачi елiпсометрiї для надтонких поверхневих плiвок запропоновано статистичний пiдхiд, який використовує основне положення теорiї регуляризацiї про iснування оптимальної точки. При цьому головну увагу придiлено обґрунтуванню та використанню нових критерiїв зупинки поблизу оптимальної точки;

запропоновано новi критерiї вибору оптимальної точки, пов'язанi з похiдними вiд функцiоналу нев'язки S0 та середньоквадратичного розкиду G параметрiв плiвки d та n по перемiщенню вздовж траєкторiї спуску та по складових загального перемiщення;

показано, що новий пiдхiд до розвязання некоректної зворотної задачi елiпсометрiї для надтонких прозорих поверхневих плiвок, який пропонує новi критерiї вибору оптимальної точки, приводить до сталих результатiв та дозволяє успішно дослiджувати поверхневi плiвки товщиною вiд 2 до 10 нанометрiв.

СПИСОК ОПУБЛІКОВАНИХ ПРАЦЬ

1. Семененко А. И., Бобро В. В. О метрологическом обеспечении эллипсометрии (общий подход) // Автометрия.- 1997.- № 1.- С.43-49.

2. Семененко А. И., Бобро В. В., Мардежов А. С. О некоторых критериях выбора оптимальной точки при решении некорректной обратной задачи эллипсометрии // Автометрия.- 1998.- № 1.- С.56-60.

3. Бобро В.В., Семененко А.И. Об особенностях оптической юстировки фазового компенсатора эллипсометра // Вісник Сумського державного університету.- 1999.- № 2(13).- С.32-35.

4. А.с. 1355869 СССР, МКИ G 01 B 21/08. Устройство для измерения толщины тонкой пленки на прозрачной подложке / Алферьев Н.Н., Бобро В.В., Вязанкин В.И., Кочкин В.Д., Шунин В.А. (СССР).- № 4055531/24-28; Заявлено 15.04.86; Опубл.30.11.87, Бюл. №44.- 7с.

5. Semenenko A. I., Bobro V. V., Mardezhov A. S., Semenenko E. M. A new metrological criterion in ellipsometry // Proc. SPIE.- 1998.- V. 3485.- P.336-342.

6. Bobro V. V., Mardezhov A. S., Semenenko A. I. On the solution of incorrect inverse ellipsometric problem // Proc. SPIE.- 1998.- V. 3485.- P.354-358.

7. Бобро В.В. Устройство для аттестации штриховых мер // Сборник “Новое делительное оборудование и технологические процессы для изготовления прецизионных оптических элементов”.- Москва: ЦНИИ информации, 1980.- С.40-41.

8. Бобро В.В. Фотоэлектрическое устройство для автоматической аттестации штриховых мер // Сборник “Средства контроля оптических деталей и узлов”.- Москва: ЦНИИ информации, 1980.- С.61-62.

АНОТАЦІЇ

Бобро В. В. Основнi шляхи досягнення граничних можливостей методу елiпсометрiї. - Рукопис.

Дисертацiя на здобуття наукового ступеня кандидата фiзико-математичних наук за фахом 01.04.01 - фiзика приладiв, елементiв та систем. - Сумський державний унiверситет, Суми, 1999.

Дисертацiя присвячена обґрунтуванню та розробцi основних шляхiв досягнення граничних можливостей методу елiпсометрiї. Робота виконувалася за трьома головними напрямками. Розробленi способи подолання основних труднощiв на шляху практичної реалiзацiї однозонної методики елiпсометричних вимiрювань та нову науковообгрунтовану метрологiю в елiпсометрiї, в основi якої лежить однозонна методика. Намiчена схема проведення метрологiчних робiт. Розроблено методи розвязання зворотної задачi елiпсометрiї. Показано, що статистичний пiдхiд до розвязання некоректної задачi елiпсометрiї для надтонких поверхневих плiвок, який пропонує новi критерiї вибору оптимальної точки, приводить до сталих результатiв i дозволяє успішно дослiджувати поверхневi плiвки товщиною вiд 2 до 10 нанометрiв.

Ключовi слова: елiпсометрiя, вимiрювальнi зони, iнварiанти елiпсометрiї, однозонна методика, метрологiя, оптичне юстування, зворотна задача.

Бобро В. В. Основные пути достижения предельных возможностей метода эллипсометрии. Рукопись.

Диссертация на соискание ученой степени кандидата физико-математических наук по специальности 01.04.01 физика приборов, элементов и систем. Сумский государственный университет, Сумы, 1999. Диссертация посвящена обоснованию и разработке основных путей достижения предельных возможностей метода эллипсометрии. Работа велась в трех главных направлениях. Первое направление связано с практической реализацией однозонной методики эллипсометрических измерений. В целях преодоления основных трудностей на этом пути осуществлены следующие разработки. Предложен новый тип термоустойчивого компенсатора, обладающий значительными преимуществами по сравнению с существующими. Изучена проблема, связанная с особенностями в оптической юстировке фазового

компенсатора, при этом впервые получено математическое соотношение, которому при определенных условиях удовлетворяют параметры компенсатора. Показано, что данное соотношение существенно изменяет и упрощает процедуру по определению параметров компенсатора. Изучена проблема достаточно точного определения параметров компенсатора , 1 и 2. Сделанный анализ показал, что для решения этой проблемы использование инвариантов эллипсометрии изотропных сред оказывается недостаточным, необходимо привлекать инвариантные соотношения эллипсометрии анизотропных сред, чтобы учесть поверхностную анизотропию отражающих систем. При этом пренебрежение или умаление роли параметра 2 недопустимо.

Второе направление посвящено разработке новой научно обоснованной метрологии в эллипсометрии, в основе которой лежит однозонная методика эллипсометрических измерений. Данная метрология позволяет существенно повысить точность измерения поляризационных углов и разработать на этой основе новые приборы, обладающие гораздо большими возможностями по сравнению с существующими. Предложен проект по созданию на основе новой метрологии образцового лазерного эллипсометра, предназначенного для аттестации серийных эллипсометров и оптических элементов к ним. Намечена схема проведения метрологических работ. Третье направление связано с развитием методов интерпретации экспериментальных результатов. Показано, что статистический подход к решению некорректной обратной задачи эллипсометрии для сверхтонких прозрачных поверхностных пленок, предлагающий новые критерии выбора оптимальной точки, приводит к устойчивым результатам и позволяет успешно исследовать поверхностные пленки толщиной от 2 до 10 нанометров.

Ключевые слова: эллипсометрия, измерительные зоны, инварианты эллипсометрии, однозонная методика, метрология, оптическая юстировка, обратная задача.

Bobro V. V. Main ways of achieving maximum capabilities of the ellipsometry method. - Manuscript.

Thesis for the degree of the candidate of sciences in physics and mathematics. Speciality 01.04.01 - physics of instruments structural elements and systems. Sumy State University, Sumy, 1999.

The thesis outlines and develops new ways of achiving the maximum

capabilities of the ellipsometry method. The investigations follow three principal directions. It is shown how to overcome problems encountered in the implementation of the one-zone procedure in ellipsometry measurements. New well-grounded ellipsometry metrology is presented based on the one-zone procedure. A scheme is described for the metrology operations. The techniques are proposed for the solution of the inverse problem in ellipsometry. The statistical approach to the solution of the ellipsometry incorrect inverse problem for ultrathin films which includes new criteria for the choice of the optium point is shown to provide reliable data permitting surface films of thickness ranging from 2 to 10 nm to be examined.

Key words: ellipsometry, measurement zones, ellipsometry invariants, one-zone procedure, metrology, optical adjustment, inverse problem.

Размещено на Allbest.ru

...

Подобные документы

  • Пуск синхронного компенсатора, представляющей собой синхронный двигатель облегчённой конструкции, предназначенный для работы на холостом ходу. Защита от замыканий на землю в одной точке цепи возбуждения компенсатора. Схема защиты минимального напряжения.

    реферат [309,0 K], добавлен 07.12.2016

  • Особливості та принципи виконання електричних вимірювань неелектричних величин. Контактні та безконтактні методи вимірювань. Особливості вимірювання температури, рівня, тиску, витрат матеріалів. Основні різновиди перетворювачів неелектричних величин.

    контрольная работа [24,6 K], добавлен 12.12.2013

  • Способы компенсации реактивной мощности в электрических сетях. Применение батарей статических конденсаторов. Автоматические регуляторы знакопеременного возбуждения синхронных компенсаторов с поперечной обмоткой ротора. Программирование интерфейса СК.

    дипломная работа [2,5 M], добавлен 09.03.2012

  • Векторные диаграммы работы синхронного компенсатора. Типы турбо-, гидрогенераторов. Характеристика систем охлаждения и возбуждения. Параметры охлаждающей среды. Автоматическое гашение магнитного поля генераторов. Расчет самозапуска электродвигателей.

    реферат [502,2 K], добавлен 14.07.2016

  • Порівняльний аналіз варіантів реалізації науково-технічної проблеми. Розробка покажчика фаз напруги – пристрою з високою точністю, основні принципи його дії. Контроль стану акумулятора. Розрахунок прямих витрат. Карта пошуку та усунення несправностей.

    курсовая работа [2,1 M], добавлен 19.05.2010

  • Определение допустимого отклонения на входе стабилизатора от номинального значения в сторону увеличения и уменьшения. Номинальное и максимальное напряжение на входе стабилизатора с учетом допустимых отклонений. Расчет мощности рассеивания резисторов.

    контрольная работа [81,3 K], добавлен 19.09.2012

  • Влияние величины нагрузки на значение тока ударного, периодического, апериодического. Действие токов короткого замыкания (КЗ), их величина в зависимости от удаленности точки КЗ от источника питания. Особенности влияния синхронного компенсатора на токи КЗ.

    лабораторная работа [1,6 M], добавлен 30.05.2012

  • Расчет токов, сопротивления и напряжений на элементах при отключенном компенсаторе, мощностей потребителей и общей мощности всей сети. Определение в фазе С трехфазной цепи закона изменения тока при переходном процессе при подключении компенсатора к сети.

    курсовая работа [1,5 M], добавлен 04.09.2012

  • Сложение двух когерентных световых волн, поляризованных в двух взаимноперпендикулярных направлениях. Рассмотрение частного случая поляризации света. Обнаружение эллиптически- и циркулярно-поляризованного света. Пластинки для компенсации разности фаз.

    курсовая работа [1,2 M], добавлен 13.04.2012

  • Расчет численности населения по району города. Определение расходов тепла. График теплопотреблений. Гидравлический расчет водяной тепловой сети. Подбор сетевых, подпиточных насосов. Определение усилий на неподвижную опору. Расчет параметров компенсатора.

    курсовая работа [61,3 K], добавлен 05.06.2013

  • Разработка алгоритма управления режимом реактивной мощности при асимметрии системы электроснабжения промышленного предприятия. Источники реактивной мощности. Адаптивное нечеткое управление синхронного компенсатора с применением нейронной технологии.

    дипломная работа [1,6 M], добавлен 20.05.2017

  • Математические модели оптимизационных задач электроснабжения. Обзор способов повышения коэффициента мощности и качества электроэнергии. Выбор оптимальных параметров установки продольно-поперечной компенсации. Принцип работы тиристорного компенсатора.

    дипломная работа [986,2 K], добавлен 30.07.2015

  • Анализ влияния компенсации реактивной мощности на параметры системы электроснабжения промышленного предприятия. Адаптивное нечеткое управление синхронного компенсатора с применением нейронной технологии. Моделирование измерительной части установки.

    дипломная работа [1,7 M], добавлен 02.06.2017

  • Системи рівнянь для розрахунку струмів і напруг в простому і складному електричних колах. Умови використання методу обігу матриці і формул Крамера. Оцінка вірогідності значення струмів згідно закону Кіргхофа. Знаходження комплексного коефіцієнта передачі.

    курсовая работа [255,3 K], добавлен 28.11.2010

  • Розрахунок стержневого трансформатора з повітряним охолодженням. Визначення параметрів і маси магнітопроводу, значення струму в обмотках, його активної потужності. Особливості очислення параметрів броньового трансформатора, його конструктивних розмірів.

    контрольная работа [81,7 K], добавлен 21.03.2013

  • Фотоефект у р-n-переходах. Поняття та принцип дії фотодіоду, його функціональні особливості, різновиди та оцінка чутливості. Вибір матеріалу для виготовлення фотодіодів, опис конструкції, розрахунок можливості реалізації рівня фотоелектричних параметрів.

    дипломная работа [933,5 K], добавлен 14.07.2013

  • Історія розробки секціонованих дзеркал в астрономічному приладобудуванні. Вплив величини зазору між елементами складеного дзеркала на якість формування оптичного променя. Амплітуда переміщення поверхні для суцільних дзеркал. П'єзоелектричні приводи.

    реферат [24,5 K], добавлен 06.03.2011

  • Теоретичні та фізичні аспекти проблеми визначення швидкості світла. Основні методи, що застосовуються для її визначення. Історія перших вимірювань. Науковці, які проводили досліди. Фізична основа виникнення та розповсюдження світлу, його хвильова природа.

    презентация [359,4 K], добавлен 26.10.2013

  • Вивчення проблеми управління випромінюванням, яка виникає при освоєнні діапазону спектру електромагнітних коливань. Особливості модуляції світла і його параметрів, що включає зміну поляризації, напрямку поширення, розподілу лазерних мод і сигналів.

    контрольная работа [53,7 K], добавлен 23.12.2010

  • Впровадження автоматизації в котельних установках та оцінка його економічного ефекту. Основні напрямки автоматизації систем теплопостачання. Характеристика БАУ-ТП-1 "Альфа", його функціональні особливості, принцип роботи та основні елементи пристрою.

    реферат [1,4 M], добавлен 05.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.