Сверхпроводники

Сверхтонкие YBCO пленки с Тс выше 77К. Контакты сверхпроводника с ферромагнетиком. Использование буферного слоя между подложкой и пленкой. Метод лазерного распыления мишени. Исследования ранних стадий роста пленок с помощью атомно-силового микроскопа.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 01.12.2013
Размер файла 14,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

РЕФЕРАТ

ПО ФИЗИКЕ

НА ТЕМУ:

“СВЕРХПРОВОДНИКИ”

Сверхтонкие YBCO пленки с Тс выше 77К

Сверхтонкие (< 10нм) ВТСП пленки представляют интерес, как для физических исследований, так и для практического использования, в частности в СВЧ-электронике: джозефсоновские переходы, полевые приборы, нелинейные элементы микроволновых схем, инфракрасные детекторы и т.п.

Однако критическая температура Тс пленок YBCO резко снижается при уменьшении толщины ниже 10нм. Ответственность за это несут как фундаментальные механизмы (переход Костерлитца - Таулесса, передача заряда подвижных носителей через интерфейс), так и чисто технологические причины - рассогласование параметров решетки подложки и растущей пленки. Стандартный прием улучшения сверхпроводящих свойств сверхтонких пленок - использование буферного слоя между подложкой и пленкой; при этом материал буферного слоя должен иметь неметаллические свойства и максимально близкие к YBCO параметры решетки. Лучшим буферным материалом для YBCO оказался PrBa2Cu3O7 (PBCO); его использование существенно повысило значение Тс, но важный рубеж в 77К так и не был перейден.

Для улучшения сверхпроводящих свойств сверхтонких YBCO пленок в отделе член-корр. РАН Игоря Всеволодовича Грехова (ФТИ им. Иоффе РАН) предложили принципиально новую структуру буферного слоя - композитный диэлектрик, состоящий из кристаллитов изолятора YBa2NbO6 (YBNO) и сверхпроводника (YBCO). Такой слой можно приготовить методом лазерного распыления мишени, синтезированной из окислов Y, Ba, Cu, Nb. Пленка буферного слоя с типичной толщиной ~ 30нм формируется на подложке SrTiO3. Дифракционные рентгеновские спектры показывают, что буферная пленка состоит из смеси фаз YBCO (с пониженным содержанием кислорода) и YBNO, имеющей кубическую структуру в постоянной решетки a=0.84нм. Характерный размер гранул - 100-500нм.

Исследования ранних стадий роста пленок с помощью атомно-силового микроскопа показали, что фаза YBCO в буферном слое демонстрирует 3-D островковый рост, а фаза YBNO формирует ровное плато. Обе фазы сосуществуют бок о бок, и вблизи границы раздела фаз на диэлектрическом плато YBNO всегда присутствует некоторое количество 2-D зародышей YBCO, которые могут являться центрами зародышеобразования нового молекулярного слоя YBCO при осаждении YBCO на YBaCuNbO буферный слой.

Сверхтонкие пленки YBCO, осажденные непосредственно на подложку SrTiO3, формируются путем двумерного зародышеобразования с последующим ростом в плоскости a-b. В то же время как механизмом роста сверхтонких пленок YBCO на YBaCuNbO буферном слое является локальное распространение ступеней. В результате сверхтонкие пленки YBCO, осажденные на SrTiO3 подложку и на YBaCuNbO буферный слой, имеют разную морфологию поверхности. Авторы считают, что именно механизм роста путем локального распространения ступеней позволяет улучшить совершенство кристаллической структуры сверхтонкой YBCO и увеличить критическую температуру.

Применение принципиально нового буферного слоя позволило поднять Тс с 68К до 80К (в пленке толщиной в 3 ячейки) и до 86К (в пленке толщиной в 4 ячейки). Это пока лучший в мире результат для пленок YBCO такой толщины.

Библиография

Physica C, 1997, 276, с.18

Proc.MRS 1998 Fall Meeting, Boston, USA

Контакты сверхпроводника с ферромагнетиком

сверхтонкий пленка сверхпроводник ферромагнетик

Исследование процессов на границе сверхпроводника с ферромагнитным металлом привело к необычным результатам: немонотонная зависимость сверхпроводящей критической температуры многослойных структур ферромагнетик (F) - сверхпроводник (S), нетривиальное поведение магнитосопротивления SFS структур и подавление сверхпроводящих свойств в результате спин-поляризованной инжекции.

В конце 1998 - начале 1999 года появился ряд новых интригующих публикаций. Так, в работе экспериментально исследовались тонкопленочные наноструктуры, образованные кобальтом или никелем со свинцом. Основная идея заключается в том, что андреевское отражение на FS границе очень чувствительно к поляризации электронов проводимости в ферромагнетике. Действительно, согласно стонеровской зонной модели ферромагнетизм в металлах обусловлен различным заполнением подзон, образуемых электронами с противоположными направлениями спинов. В то же время для прохождения электрона из нормальной обкладки в сверхпроводящую “подлетающий” к NS границе электрон должен захватить с собой другой электрон с противоположным импульсом и спином, чтобы образовать в сверхпроводнике куперовскую пару (на языке андреевского отражения это означает, что электронное состояние рассеивается в дырочное с противоположным спином и импульсом, практически совпадающим с импульсом исходного электрона).

Однако, если “подлетающий” электрон принадлежит, например, к доминирующей подзоне ферромагнетика, то у него могут возникнуть проблемы с поиском партнера, так как плотность электронов на поверхности Ферми для другой подзоны (с противоположным спином) заметно меньше. В результате андреевское рассеяние должно подавляться в ферромагнитных металлах вплоть до полного исчезновения, если мы имеем дело со 100% поляризованной зонной структурой. Именно явление подавления андреевского отражения в NS контактах при замене обычного нормального металла на ферромагнетик и было подтверждено данными авторов. В другой экспериментальной работе изучен собственно эффект близости, т.е. проникновение сверхпроводящих свойств вглубь ферромагнетика. Как известно, в грязном пределе энергетической характеристикой, определяющей эффект близости, является величина, равная h D/L , где D - коэффициент диффузии, а L - размер образца. Верно и обратное утверждение: расстояние, на которое проникает сверхпроводимость, по порядку величины равно O h D/E, здесь E - это характерная энергия, определяющая подавление сверхпроводящего спаривания в нормальном материале. В случае ферромагнетика в качестве E следует взять энергию обменного взаимодействия, которую в свою очередь можно положить равной температуре Кюри. Так вот, выполненная таким образом оценка дала для контакта кобальта со сверхпроводящим алюминием очень заниженные результаты, т.е. реальная длина затухания сверхпроводящих свойств в кобальте оказалась намного больше теоретически предсказанной.

Упомянем еще теоретические расчеты проводимости мезоскопических FS структур, выполненные R. Seviour и C. J. Lambert из Великобритани совместно с А. Ф. Волковым из ИРЭ, а также I. Zutic и O. T. Valls из США. Ими предсказано немонотонное поведение дифференциальной проводимости как функции напряжения при напряжениях, отвечающих зеемановскому расщеплению, в районе нулевых смещений и пр. И, наконец, остановимся на цикле работ T. W. Clinton и M. Johnson из Naval Research Laboratory (Washington), которые предложили управляемый джозефсоновский элемент на основе простой двуслойной геометрии, где тонкая ферромагнитная пленка локально подавляет своим магнитным полем сверхпроводимость в полоске, на которую она нанесена, порождая тем самым слабую связь. Наблюдение ступенек Шапиро подтвердило наличие нестационарного эффекта Джозефсона в данной структуре, которую авторы считают перспективным элементом будущей криоэлектроники.

Библиография

J. Low Temp. Phys., 1986, 63, с.307

J. Phys. Condens. Matter, 1996, 39, с.L563

Phys. Rev. Lett., 1997, 78, с.1134

Phys. Rev. Lett., 1998, 81, с.3247

Phys. Rev. Lett., 1995, 74, с.16570

Phys. Rev. B, 1998, 58, с.R11872

Appl. Phys. Lett., 1997, 70, с.1170

J. Appl. Phys., 1998, 83, с.6777

Размещено на Allbest.ru

...

Подобные документы

  • Создание атомного силового микроскопа, принцип действия, преимущества и недостатки. Методы атомно-силовой микроскопии. Технические возможности атомного силового микроскопа. Применение атомно-силовой микроскопии для описания деформаций полимерных пленок.

    курсовая работа [2,5 M], добавлен 14.11.2012

  • Общие сведения об атомно-силовой микроскопии, принцип работы кантилевера. Режимы работы атомно-силового микроскопа: контактный, бесконтактный и полуконтактный. Использование микроскопа для изучения материалов и процессов с нанометровым разрешением.

    реферат [167,4 K], добавлен 09.04.2018

  • Сканирующий туннельный микроскоп, применение. Принцип действия атомного силового микроскопа. Исследование биологических объектов – макромолекул (в том числе и молекул ДНК), вирусов и других биологических структур методом атомно-силовой микроскопии.

    курсовая работа [2,7 M], добавлен 28.04.2014

  • Столкновительный характер движения атомных частиц в газе. Ионная бомбардировка мишени. Особенности ионного распыления в присутствии реакционного газа. Вакуумное технологическое оборудование. Перспективы магнетронного распыления и его дальнейшее развитие.

    курсовая работа [1,2 M], добавлен 21.03.2015

  • Определение температуры бериллиевой мишени и термических напряжений, возникающих в связи с изменением теплового состояния тела с помощью метода конечных элементов. Расчет времени выхода на стационарный режим. Оценка безопасности режима работы мишени.

    контрольная работа [1,1 M], добавлен 21.06.2014

  • Сверхпроводники. У начала пути. Сверхпроводники первого второго рода. Абрикосовские вихри. Свойства сверхпроводников. Микроскопическая теория сверхпроводимости Бардина - Купера - Шриффера (БКШ) и Боголюбова. Теория Гинзбурга - Ландау.

    курсовая работа [60,1 K], добавлен 24.04.2003

  • Исследование методами комбинационного рассеяния света ультрананокристаллических алмазных пленок. Влияние мощности лазерного излучения на информативность спектров. Перспективность UNCD пленок как нового наноматериала для применения в электронике.

    курсовая работа [3,9 M], добавлен 30.01.2014

  • Вариант принципиальной схемы ЭЭР с основными системами и элементами оборудования, входящими в её состав. Величины разницы потенциалов, между поверхностью Земли и точкой расположенной на определенной высоте над ней. Электрическое поле Земли, его параметры.

    статья [1,9 M], добавлен 11.09.2017

  • Способы нанесения оксидных пленок. Физические основы работы магнетронных распылительных систем. Особенности нанесения оксидов дуальной магнетронной распылительной системы. Процессы роста и параметры тонких пленок. Ионно-плазменная установка "Яшма".

    дипломная работа [2,8 M], добавлен 15.06.2012

  • Теоретические основы сканирующей зондовой микроскопии. Схемы сканирующих туннельных микроскопов. Атомно-силовая и ближнепольная оптическая микроскопия. Исследования поверхности кремния с использованием сканирующего зондового микроскопа NanoEducator.

    дипломная работа [2,8 M], добавлен 16.08.2014

  • Ознакомление с методами измерения показателя преломления с помощью микроскопа. Вычисление погрешности измерений для пластинок из обычного стекла и оргстекла. Угол отражения луча. Эффективность определения коэффициента преломления для твердого тела.

    лабораторная работа [134,3 K], добавлен 28.03.2014

  • Тонкопленочные слои; назначение тонких пленок, методы их нанесения. Устройство вакуумного оборудования для получения тонких пленок. Основные стадии осаждения пленок и механизмы их роста. Контроль параметров технологических процессов и осажденных слоев.

    курсовая работа [2,2 M], добавлен 11.09.2014

  • Дифракция быстрых электронов на отражение как метод анализа структуры поверхности пленок в процессе молекулярно-лучевой эпитаксии. Анализ температурной зависимости толщины пленки кремния и германия на слабо разориентированой поверхности кремния.

    курсовая работа [1,0 M], добавлен 07.06.2011

  • Компьютерное исследование поведения ультратонких пленок аргона, сжатых между алмазными поверхностями с периодическим атомарным рельефом. Его сравнение с поведением ультратонких пленок воды и аргона, заключенных между гладкими и шероховатыми пластинами.

    дипломная работа [6,5 M], добавлен 27.03.2012

  • История микроскопа - прибора для получения увеличенного изображения объектов, не видимых невооруженным глазом. Методы световой микроскопии. Принцип действия и устройство металлографического микроскопа. Методы микроскопического исследования металлов.

    реферат [3,3 M], добавлен 10.06.2009

  • Проведение измерения длины световой волны с помощью бипризмы Френеля. Определение расстояний между мнимыми источниками света и расчет пути светового излучения от мнимых источников до фокальной плоскости микроскопа. Расчет ширины интерференционных полос.

    лабораторная работа [273,5 K], добавлен 14.12.2013

  • Традиционные системы отопления, их типы и значение на современном этапе. Преимущества использования инфракрасных отопительных приборов, характер влияния соответствующего излучения на человека. Принцип работы инфракрасной пленки, расчет энергопотребления.

    дипломная работа [2,0 M], добавлен 02.06.2015

  • Физические процессы, лежащие в основе электронной оже-спектроскопии (ЭОС). Механизмы ЭОС, область ее применения. Относительная вероятность проявления оже-эффекта. Глубина выхода оже-электронов. Анализ тонких пленок, преимущества ионного распыления.

    реферат [755,3 K], добавлен 17.12.2013

  • Основные модели токопереноса и фоточувствительности поликристаллических пленок сульфида свинца. Технология получения и физические свойства тонких пленок PbS. Вольтамперные характеристики пленок сульфида свинца. Температурные зависимости образцов PbS31.

    дипломная работа [1,6 M], добавлен 19.01.2012

  • Зондові наноскопічні установки з комп'ютерним управлінням і аналізом даних. Метод атомно-силової мікроскопії; принцип і режими роботи, фізичні основи. Зондові датчики АСМ: технологія виготовлення, керування, особливості застосування до нанооб’єктів.

    курсовая работа [4,7 M], добавлен 22.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.