Барометрическая формула. Закон Больцмана распределения частиц
Л. Больцман как австрийский физик-теоретик, основатель статистической механики и молекулярно-кинетической теории. Общая характеристика закона Больцмана распределения частиц, анализ особенностей. Знакомство с линейными функциями распределения Максвелла.
Рубрика | Физика и энергетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 29.11.2013 |
Размер файла | 212,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
"Барометрическая формула. Закон Больцмана распределения частиц"
1.Барометрическая формула
Зависимость давления или плотности газа от высоты в поле силы тяжести.
Для идеального газа, имеющего постоянную температуру и находящегося в однородном поле тяжести (во всех точках его объёма ускорение свободного падения одинаково), барометрическая формула имеет следующий вид:
где -- давление газа в слое, расположенном на высоте , -- давление на нулевом уровне (), -- молярная масса газа, -- универсальная газовая постоянная, -- абсолютная температура. Из барометрической формулы следует, что концентрация молекул (или плотность газа) убывает с высотой по тому же закону:
где -- масса молекулы газа, -- постоянная Больцмана.
Барометрическая формула может быть получена из закона распределения молекул идеального газа по скоростям и координатам в потенциальном силовом поле (см. Статистика Максвелла -- Больцмана). При этом должны выполняться два условия: постоянство температуры газа и однородность силового поля. Аналогичные условия могут выполняться и для мельчайших твёрдых частичек, взвешенных в жидкости или газе. Основываясь на этом, французский физик Ж.Перрен в 1908 году применил барометрическую формулу к распределению по высоте частичек эмульсии, что позволило ему непосредственно определить значение постоянной Больцмана.
Барометрическая формула показывает, что плотность газа уменьшается с высотой по экспоненциальному закону. Величина , определяющая быстроту спада плотности, представляет собой отношение потенциальной энергии частиц к их средней кинетической энергии, пропорциональной . Чем выше температура , тем медленнее убывает плотность с высотой. С другой стороны, возрастание силы тяжести (при неизменной температуре) приводит к значительно большему уплотнению нижних слоев и увеличению перепада (градиента) плотности. Действующая на частицы сила тяжести может изменяться за счёт двух величин: ускорения и массы частиц .
Следовательно, в смеси газов, находящейся в поле тяжести, молекулы различной массы по-разному распределяются по высоте.
Реальное распределение давления и плотности воздуха в земной атмосфере не следует барометрической формуле, так как в пределах атмосферы температура и ускорение свободного падения меняются с высотой и географической широтой. Кроме того, атмосферное давление увеличивается с концентрацией в атмосфере паров воды.
Барометрическая формула лежит в основе барометрического нивелирования -- метода определения разности высот между двумя точками по измеряемому в этих точках давлению ( и ). Поскольку атмосферное давление зависит от погоды, интервал времени между измерениями должен быть возможно меньшим, а пункты измерения располагаться не слишком далеко друг от друга. Барометрическая формула записывается в этом случае в виде: (в м), где -- средняя температура слоя воздуха между точками измерения, -- температурный коэффициент объёмного расширения воздуха. Погрешность при расчётах по этой формуле не превышает 0,1--0,5 % от измеряемой высоты.
Рис.
Разность давления на высотах h и h+dh мы можем определить как вес молекул воздуха заключённого в объёме с площадью основания равного 1 и высотой dh.
плотность на высоте h, и так как , то = const.
Тогда
Из уравнения Менделеева-Клапейрона.
Тогда
Или
С изменением высоты от h1 до h2 давление изменяется от p1 до p2
Пропотенцируем данное выражение (
Барометрическая формула, показывает, как меняется давление с высотой
При
Тогда
n концентрация молекул на высоте h,
n0 концентрация молекул на высоте h =0.
Т.к , а
То
Т.к То
потенциальная энергия молекул в поле тяготения
Рис.
распределение Больцмана во внешнем потенциальном поле. Из него следует, что при T = const плотность газа больше там, где меньше потенциальная энергия молекул.
2.Распределение Больцмана
Людвиг Больцман - австрийский физик-теоретик, основатель статистической механики и молекулярно-кинетической теории. Одним из первых его достижений было получение в 1866 формулы для равновесного распределения по импульсам и координатам молекул идеального газа, находящегося во внешнем потенциальном поле, в дальнейшем именуемое Распределение Больцмана.
Под распределением Больцмана понимают зависимость концентрации частиц газа от их потенциальной энергии во внешнем поле. Закон распределения молекул газа по скоростям, теоретически установленный Максвеллом, определяет, какое число молекул газа из общего числа его молекул в единице объема имеет при данной температуре скорости, заключенные в интервале от u до u+du. Максвелловское распределение устанавливается в результате парных столкновений хаотически движущихся молекул газа. При этом распределение молекул по объему сосуда определяется законом Больцмана.
Основное уравнение МКТ и максвелские распределения молекул по скорости были получены предположением, что молекулы равномерно распределены по объему и все направления движения молекул равномерно распределены по объему и все направления движения молекул равновероятны. Такие условия могут быть реализованы только в том случае, если на молекулы не действуют никакие внешние силовые поля. Однако молекулы любого газа в земных условиях находятся в потенциальном гравитационном поле Земли, что приводит к нарушению равномерного распределения молекул по объему.
Распределение Больцмана описывает распределение частиц по высоте в гравитационном поле, а не только в гравитационном поле Земли. Это распределение приемлемо к частицам, находящимся в состоянии хаотического теплового движения.
До сих пор рассматривалось поведение идеального газа, не подверженного воздействию внешних силовых полей. Из опыта хорошо известно, что при действии внешних сил равномерное распространение частиц в пространстве может нарушиться. Так под действием силы тяжести молекулы стремятся опуститься на дно сосуда. Интенсивное тепловое движение препятствует осаждению, и молекулы распространяются так, что их концентрация постепенно уменьшается по мере увеличения высоты.
Согласно распределению, число частиц ni с полной энергией Ei равно:
ni =A*щi *eEi /Kt (1)
где щi - статистический вес (число возможных состояний частицы с энергией ei). Постоянная А находится из условия, что сумма ni по всем возможным значениям i равна заданному полному числу частиц N в системе (условие нормировки):
В случае, когда движение частиц подчиняется классической механике, энергию Ei можно считать состоящей из кинетической энергии Eiкинчастицы (молекулы или атома), её внутренней энергии Eiвн (напр., энергии возбуждения электронов) и потенциальной энергии Ei,пот во внешнем поле, зависящей от положения частицы в пространстве:
Ei = Ei, кин + E i, вн + Ei, пот (2)
Распределение частиц по скоростям является частным случаем распределения Больцмана. Оно имеет место, когда можно пренебречь внутренней энергией возбуждения
Ei,вн и влиянием внешних полей Ei,пот. В соответствии с (2) формулу (1) можно представить в виде произведения трёх экспонент, каждая из которых даёт распределение частиц по одному виду энергии.
В постоянном поле тяжести, создающем ускорение g, для частиц атмосферных газов вблизи поверхности Земли (или др. планет) потенциальная энергия пропорциональна их массе m и высоте H над поверхностью, т.е. Ei, пот = mgH. После подстановки этого значения в распределение Больцмана и суммирования по всевозможным значениям кинетической и внутренней энергий частиц получается барометрическая формула, выражающая закон уменьшения плотности атмосферы с высотой.
В астрофизике, особенно в теории звёздных спектров, распределение Больцмана часто используется для определения относительной заселённости электронами различных уровней энергии атомов. Если обозначить индексами 1 и 2 два энергетических состояния атома, то из распределения следует:
n2/n1 = (щ2/щ1)*e-(E2-E1)/kT (3) (ф-ла Больцмана).
Разность энергий E2-E1 для двух нижних уровней энергии атома водорода >10 эВ, а значение kT, характеризующее энергию теплового движения частиц для атмосфер звёзд типа Солнца, составляет всего лишь 0,3-1 эВ. Поэтому водород в таких звёздных атмосферах находится в невозбуждённом состоянии. Так, в атмосферах звёзд, имеющих эффективную температуру Тэ > 5700 К (Солнце и др. звёзды), отношение чисел атомов водорода во втором и основном состояниях равно 4,2*10-9.
Распределение Больцмана было получено в рамках классической статистики. В 1924-26 гг. была создана квантовая статистика. Она привела к открытию распределений Бозе - Эйнштейна (для частиц с целым спином) и Ферми - Дирака (для частиц с полуцелым спином). Оба эти распределения переходят в распределение, когда среднее число доступных для системы квантовых состояний значительно превышает число частиц в системе, таким образом, когда на одну частицу приходится много квантовых состояний или, другими словами, когда степень заполнения квантовых состояний мала. Условие применимости распределении Больцмана можно записать в виде неравенства:
где N - число частиц, V - объём системы.
Это неравенство выполняется при высокой темп-ре и малом числе частиц в ед. объёма (N/V). Из этого следует, что чем больше масса частиц, тем для более широкого интервала изменений Т и N/V справедливо распределение Больцмана.
Подтверждением больцмановского распределения частиц служит опыт Ж. Перрена (французкий ученый),который в 1909 г. исследовал поведение броуновских частиц в эмульсии гуммигута (сок деревьев) с размерами осматривались с помощью микроскопа, который имел глубину поля - 1мкм. Перемещая микроскоп в вертикальном направлении можно было исследовать распределение броуновских частиц по высоте.
Применив к ним распределение Больцмана можно записать
n= - где m-масса частицы
m - масса вытесненной жидкости:
Если n1 и n2 концентрация частиц на уровнях h1 и h2, а k=R/NA, то
Значение хорошо согласуется со справочным значением , что подтверждает больцмановское распределение частиц.
3.Вывод распределения Больцмана в МКТ
Покажем, что в состоянии термодинамического равновесия влияние силового поля сказывается только на изменении средней концентрации молекул газа от точки к точке. Скорости молекул в каждой точке пространства Распределены по закону Максвелла с температурой Т, общей для всего газа.
Рассмотрим молекулу. Скорость которой направлена от поверхности земли вверх. Вертикальная составляющая начальной скорости равна. Изменение этой составляющей с высотой можно определить с помощью закона сохранения энергии.
Фактически молекула наверняка столкнется на этом пути с другими молекулами и изменит направление движения. Однако среди огромного множества молекул, который будут достигать высоты h, всегда найдется какая-то молекула, обладающая скоростью и направлением движения согласно вышеупомянутой формуле, если бы она достигала высоты h без столкновения c другими молекулами.
Максимальная высота, которую достигают молекулы с начальной вертикальной компонентой скорости равна.
Средняя концентрация молекул на поверхности земли, имеющих скорости в интервале от до равна
Где -функция распределения молекул по z-составляющей скорости, которая может отличаться в соответствующей функции распределения Максвелла.
Среднее число молекул в единице объема, покидающих нулевой уровень и достигающих рассматриваемой поверхности в единицу времени равно
В соответствии с законом сохранения энергии, полагая что vz =0
Найдем, что в среднем разность между количеством молекул, которые в единицу времени приходят снизу в слой dh уходят из него наверх, равна
С другой стороны, эту же разность Z0, можно вычислить с помощью барометрической формулы, продифференцировав ее, и полученный результат умножить на среднее арифметическое значение z-компоненты скорости молекулы, которая равна. В итоге получим
Таким образом,
Эта функция тождественная линейной функции распределения Максвелла. Таким образом, распределение молекул по скоростям не изменится в однородном поле силы тяжести. Этот вывод остается верным и в общем случае.
Следовательно, среднее число молекул в единице объема на высоте h от поверхности со скоростью определяется следующим выражением
статистический механика кинетический
1. Размещено на Allbest.ru
...Подобные документы
Критерий применимости классического приближения. Каноническое распределение и статистические интегралы. Распределения Максвелла и Максвелла – Больцмана для идеального классического газа. Статистический интеграл.
лекция [109,3 K], добавлен 26.07.2007Равновесное состояние идеального газа. Краткая характеристика главных особенностей распределения Максвелла. Барометрическая формула, распределение Больцмана. Микро- и нанозагрязнения. Понятие о термодинамическом равновесии. Внутренняя энергия системы.
презентация [106,8 K], добавлен 29.09.2013Скорости газовых молекул. Обзор опыта Штерна. Вероятность события. Понятие о распределении молекул газа по скоростям. Закон распределения Максвелла-Больцмана. Исследование зависимости функции распределения Максвелла от массы молекул и температуры газа.
презентация [1,2 M], добавлен 27.10.2013Рассмотрение способов определения коэффициентов амбиполярной диффузии. Общая характеристика уравнения непрерывности. Анализ пространственного распределения частиц. Знакомство с особенностями транспортировки нейтральных частиц из объема к поверхности.
презентация [706,1 K], добавлен 02.10.2013Уравнения Больцмана, которое описывает статистическое распределение частиц в газе или жидкости. Принципиальные свойства уравнения Лиувилля. Безразмерная форма уравнений Боголюбова. Факторизация и корреляционные функции. Свободно-молекулярное течение.
реферат [76,9 K], добавлен 19.01.2011Рассмотрение основных особенностей изменения поверхности зонда в химически активных газах. Знакомство с процессами образования и гибели активных частиц плазмы. Анализ кинетического уравнения Больцмана. Общая характеристика гетерогенной рекомбинации.
презентация [971,2 K], добавлен 02.10.2013Распределение Максвелла, по вектору. Функция распределения вероятностей. Вычисление средних значений. Наиболее вероятная скорость. Заданный интервал скоростей. Барометрическая формула. Плотность вероятности скоростей молекул для благородных газов.
презентация [1,4 M], добавлен 23.10.2013Правила выполнения контрольных работ. Кинематика поступательного движения. Силы в механике. Закон сохранения импульса. Затухающие и вынужденные колебания. Волны, механизм их возникновения. Звук, его характеристики. Распределения Максвелла и Больцмана.
методичка [253,8 K], добавлен 02.06.2011Соотношения неопределенностей. Волна де Бройля, ее свойства. Связь кинетической энергии с импульсом релятивистской частицы. Изучение закона Ньютона и Максвелла. Теория Бора. Действие магнитной силы Лоренца. Молекулярно-кинетическая теория идеальных газов.
презентация [255,3 K], добавлен 27.11.2014Ускорители заряженных частиц как устройства, в которых под действием электрических и магнитных полей создаются и управляются пучки высокоэнергетичных заряженных частиц. Общая характеристика высоковольтного генератора Ван-де-Граафа, знакомство с функциями.
презентация [4,2 M], добавлен 14.03.2016Значимость кинетических уравнений типа Больцмана и Власова. Сдвиг плотности вдоль траекторий динамической системы. Уравнения геодезических и эволюция функции распределения на римановом многообразии. Одномерная модельная задача для уравнения Власова.
дипломная работа [1,8 M], добавлен 16.05.2011Основные свойства стандартного случайного числа. Потенциал парного взаимодействия частиц. Изучение метода Монте-Карло на примере работы алгоритма Метрополиса-Гастингса для идеальной Леннард-Джонсовской жидкости. Радиальная функция распределения частиц.
курсовая работа [1,2 M], добавлен 27.08.2016Понятие и основные положения молекулярно-кинетической теории. Диффузия как самопроизвольное перемешивание соприкасающихся веществ. Броуновское движение – беспорядочное движение частиц. Молекула - система из небольшого числа связанных друг с другом атомов.
презентация [123,0 K], добавлен 06.06.2012Основные формулы кинематики, механики жидкостей и газов и молекулярно-кинетической теории. Сила всемирного тяготения и сила тяжести. Закон Архимеда и Гука. Расчеты по электричеству и магнетизму. Последовательное и параллельное соединение проводников.
шпаргалка [130,3 K], добавлен 18.01.2009Молекулярная физика как раздел физики, в котором изучаются свойства вещества на основе молекулярно-кинетических представлений. Знакомство с основными особенностями равновесной термодинамики. Общая характеристика молекулярно-кинетической теории газов.
курсовая работа [971,8 K], добавлен 01.11.2013Изучение сущности, вероятностных характеристик идеального газа, выведение его уравнения. Рассмотрение понятий теплообмена и температуры. Ознакомление с плотностью равновесного распределения молекул в потенциальном силовом поле и распределением Максвелла.
курс лекций [86,0 K], добавлен 29.03.2010Характеристика законов Бойля-Мариотта, Бойля-Мариотта, Авогадро. Парциальное давление как давление, которое оказывал бы каждый газ смеси, если бы он один занимал объем, равный объему смеси. Знакомство с положениями молекулярно-кинетической теории газа.
презентация [625,5 K], добавлен 06.12.2016Газообразное состояние вещества. Молекулярно-кинетическая теория. Идеальный газ. Квантовая статистика при низких температурах. Уравнение Менделеева-Клайперона, Бойля-Мариотта, Гей-Люссака. Каноническое распределение Гиббса, Максвелла и Больцмана.
презентация [353,7 K], добавлен 22.10.2013Изучение корпускулярной концепции описания природы, сущность которой в том, что все вещества состоят из молекул - минимальных частиц вещества, сохраняющих его химические свойства. Анализ молекулярно-кинетической теории газа. Законы для идеальных газов.
контрольная работа [112,2 K], добавлен 19.10.2010Движение несвободной частицы. Силы реакции и динамика частиц. Движение центра масс, закон сохранения импульса системы. Закон сохранения кинетического момента системы. Закон сохранения и превращения механической энергии системы частиц. Теорема Кёнига.
доклад [32,7 K], добавлен 30.04.2009