Основы технической механики

Точка приложения равнодействующей силы. Исследование зависимости положения центра параллельных сил от координат точек приложения сил. Нахождение координат центра тяжести тел. Определение сил, действующих на точки тел, находящихся вблизи поверхности Земли.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 08.12.2013
Размер файла 118,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

1. Сложение параллельных сил. Центр параллельных сил

2. Центр тяжести тел

Список использованной литературы

1. Сложение параллельных сил. Центр параллельных сил

Пусть даны две параллельные силы и , направленные в одну сторону и приложенные к точкам и (рис.1).

Рис. 1

центр параллельный сила тяжесть

Конечно, величина их равнодействующей . Вектор её параллелен силам и направлен в ту же сторону. С помощью теоремы Вариньона найдём точку приложения равнодействующей - точку С. По этой теореме

Значит

Отсюда То есть точка приложения равнодействующей делит расстояние между точками и на части обратно пропорциональные силам. Если параллельные силы направлены в противоположные стороны (рис. 2), то аналогично можно доказать, что равнодействующая по величине будет равна разности сил: (если ), параллельна им, направлена в сторону большей силы и расположена за большей силой - в точке С. А расстояния от точки С до точек приложения сил обратно пропорциональны силам:

Рис. 2

Следует заметить, что если точка приложения равнодействующей расположена на одной прямой с точками и , точками приложения сил, то, при повороте этих сил в одну сторону на одинаковый угол, равнодействующая также повернётся вокруг точки приложения С в том же направлении, и останется параллельной им.

Такая точка приложения равнодействующей называется центром параллельных сил.

Конечно, если хотя бы одну из сил перенести по своей линии действия в другую точку, то и точка приложения равнодействующей, центр параллельных сил, тоже переместится по линии действия.

Следовательно, положение центра параллельных сил зависит от координат точек приложения сил.

Центром нескольких параллельных сил, найденный последовательным сложением каждых двух сил, будем называть точку С, радиус-вектор которой определяется формулой

, (1)

где - радиусы-векторы точек приложения сил; - величина равнодействующей параллельных сил, равная алгебраической сумме этих сил (знак силы определяется направлением, которое заранее выбирается и считается положительным).

Используя (1), нетрудно найти координаты центра параллельных сил. Если радиусы-векторы откладывать из начала координат, то проекции радиусов-векторов точек на оси будут равны их координатам. Поэтому, проектируя векторное равенство (1) на оси, получим

где - координаты точек приложения сил.

Параллельные силы, распределенные по отрезку прямой

а) общий случай

- интенсивность распределенной силы [Н/м],

- элементарная сила.

- длина отрезка

Распределенная по отрезку прямой сила интенсивности эквивалентна сосредоточенной силе .

Сосредоточенная сила прикладывается в точке С (центре параллельных сил) с координатой

б) постоянная интенсивность

в) интенсивность, меняющаяся по линейному закону

.

2. Центр тяжести тел

На все точки тела, находящегося вблизи поверхности Земли, действуют силы - силы тяжести этих точек или их вес . Вообще эти силы будут сходящимися - линии действия их пересекаются в центре Земли. Но, если пренебречь размерами тела в сравнении с размерами Земли, то можно считать их параллельными.

Центр этих параллельных сил, сил тяжести точек, называется центром тяжести тела.

Значит находить центр тяжести тел можно как центр параллельных сил. Например, координаты его

(2)

где - вес каждой точки тела, а - вес всего тела.

Рис. 3

При определении центра тяжести полезны несколько теорем.

1) Если однородное тело имеет плоскость симметрии, то центр тяжести его находится в этой плоскости.

Если оси х и у расположить в этой плоскости симметрии (рис. 3), то для каждой точки с координатами можно отыскать точку с координатами . И координата по (2), будет равна нулю, т.к. в сумме все члены имеющие противоположные знаки, попарно уничтожаются. Значит центр тяжести расположен в плоскости симметрии.

2) Если однородное тело имеет ось симметрии, то центр тяжести тела находится на этой оси.

Действительно, в этом случае, если ось z провести по оси симметрии, для каждой точки с координатами можно отыскать точку с координатами и координаты и , вычисленные по формулам (2), окажутся равными нулю.

Аналогично доказывается и третья теорема.

3) Если однородное тело имеет центр симметрии, то центр тяжести тела находится в этой точке.

И ещё несколько замечаний.

Первое. Если тело можно разделить на части, у которых известны вес и положение центра тяжести, то незачем рассматривать каждую точку, а в формулах (2) - определять как вес соответствующей части и - как координаты её центра тяжести.

Второе. Если тело однородное, то вес отдельной части его , где - удельный вес материала, из которого сделано тело, а - объём этой части тела. И формулы (1) примут более удобный вид. Например,

И аналогично, где - объём всего тела.

Третье замечание. Если тело состоит из однородных пластин одинаковой, малой толщины, то объём каждой пластины где - площадь пластины, d - толщина. И координаты центра тяжести будут определяться только с помощью площадей:

где - координаты центра тяжести отдельных пластин; - общая площадь тела.

Четвёртое замечание. Если тело состоит из стержней, прямых или криволинейных, однородных и постоянного сечения, то вес их где li - длина, - вес единицы длины (погонного метра), а координаты центра тяжести будут определяться с помощью длин отдельных участков:

где - координаты центра тяжести -го участка;

Отметим, что согласно определению центр тяжести - это точка геометрическая; она может лежать и вне пределов данного тела (например, для кольца).

Список использованной литературы

1. Журавлева Л.Р. Основы технической механики: электронный учебник //www.cross-kpk.ru/ims/02708/OTM/avtor.html

2. Тарг, С.М. Краткий курс теоретической механики: учеб. пособие / С.М. Тарг. - 12-е изд., стер. - М.: Высш. шк., 2002. - 416 с.

3. Теоретическая механика: электронный учебный курс для студентов очной и заочной форм обучения/ сост. к.т.н. Каримов И. // www.teoretmeh.ru/

Размещено на Allbest.ru

...

Подобные документы

  • Определение равнодействующей плоской системы сил. Вычисление координат центра тяжести шасси блока. Расчёт на прочность элемента конструкции: построение эпюр продольных сил, прямоугольного и круглого поперечного сечения, абсолютного удлинения стержня.

    курсовая работа [136,0 K], добавлен 05.11.2009

  • Кинематика как раздел механики, в котором движение тел рассматривается без выяснения причин, его вызывающих. Способы определения координат центра тяжести. Статические моменты площади сечения. Изменение моментов инерции при повороте осей координат.

    презентация [2,0 M], добавлен 22.09.2014

  • Построение графиков координат пути, скорости и ускорения движения материальной точки. Вычисление углового ускорения колеса и числа его оборотов. Определение момента инерции блока, который под действием силы тяжести грузов получил угловое ускорение.

    контрольная работа [125,0 K], добавлен 03.04.2013

  • Сущность и физическое обоснование момента силы как вращательного усилия, создаваемого вектором силы относительно другого объекта. Разложение плоскопараллельного движения на поступательное и вращательное. Способы нахождения мгновенного центра скоростей.

    контрольная работа [24,5 K], добавлен 04.11.2015

  • Изучение основных теорем о движении материальной точки. Расчет момента количества движения точки относительно центра и в проекции на оси. Первые интегралы в случае центральной силы. Закон площадей. Примеры работы силы в виде криволинейных интегралов.

    презентация [557,8 K], добавлен 28.09.2013

  • Понятие массы тела и центра масс системы материальных точек. Формулировка трех законов Ньютона, лежащих в основе классической механики и позволяющих записать уравнения движения для любой механической системы. Силы гравитационного притяжения и тяжести.

    презентация [636,3 K], добавлен 21.03.2014

  • Ускорение на поверхности Земли. Астрономо-гравиметрическое нивелирование. Спутниковая альтиметрия. Карта аномалий силы тяжести, рассчитанная по модели EGM2008. Формула Стокса. Аномалии силы тяжести. Применение спутниковой альтиметрии в батиметрии.

    контрольная работа [52,8 K], добавлен 17.04.2014

  • Определение реакции шарнира и стержня в закрепленной определенным образом балке. Расчет места положения центра тяжести сечения, составленного из прокатных профилей. Вычисление силы натяжения троса при опускании груза. Расчет мощности и вращающих моментов.

    контрольная работа [85,6 K], добавлен 03.11.2010

  • Движение материальной точки в неинерциальной системе координат. Относительный покой точки. Маятник с двумя потенциальными ямами. Перевернутый вибрирующий маятник. Уклонение линии отвеса от направления радиуса Земли. Отклонение падающих тел к Востоку.

    презентация [462,5 K], добавлен 28.09.2013

  • Опорные реакции балки. Уравнение равновесия в виде моментов всех сил относительно точек. Как находится проекция силы на ось. Равновесие системы сходящихся сил. Как находится момент силы относительно точки. Направление реакции в подвижном шарнире.

    контрольная работа [658,8 K], добавлен 15.04.2015

  • Сравнительный анализ существующих методов построения моделей малых движений точки вблизи положения равновесия. Особенности применения математического аппарата операционного исчисления к построению таких моделей, алгоритм построения в в программе MatLab.

    курсовая работа [1,3 M], добавлен 20.03.2012

  • Порядок вычисления тангенциального ускорения точки по заданным данным. Нахождение положения точки и ее координат. Расчет отношения времени скатывания заданных тел. Расчет коэффициента сопротивления плоскости шару. Амплитуда и начальная фаза колебаний.

    контрольная работа [396,3 K], добавлен 07.02.2012

  • Кинематика точки. Способы задания движения. Определение понятия скорости точки и методы ее нахождения. Выявление ее значения при естественном способе задания равномерного движения. Способ графического представления скорости в декартовой системе координат.

    презентация [2,3 M], добавлен 24.10.2013

  • Давление – физическая величина, результат действия силы, направленной перпендикулярно к поверхности, на которую она действует; изменение и зависимость. Сила как мера взаимодействия тел; направление, точка приложения; единицы измерения силы и давления.

    презентация [1,8 M], добавлен 10.02.2012

  • Построение траектории движения точки. Определение скорости и ускорения точки в зависимости от времени. Расчет положения точки и ее кинематических характеристик. Радиус кривизны траектории. Направленность вектора по отношению к оси, его ускорение.

    задача [27,6 K], добавлен 12.10.2014

  • Понятие и характерные свойства геометрического вектора. Правило сложения векторов по треугольнику. Сущность и методика исследования траектории движения. Скорость и ускорение движения, их оценка и относительность. Система координат и точки в ней.

    реферат [141,3 K], добавлен 24.12.2010

  • Понятия и устройства измерения абсолютного и избыточного давления, вакуума. Определение силы и центра давления жидкости на цилиндрические поверхности. Границы ламинарного, переходного и турбулентного режимов движения. Уравнение неразрывности для потока.

    контрольная работа [472,2 K], добавлен 08.07.2011

  • Основные понятия и определения теоретической механики. Типы и реакции связей. Момент силы относительно точки, ее кинематика и виды движения в зависимости от ускорения. Динамика и колебательное движение материальной точки. Расчет мощности и силы трения.

    курс лекций [549,3 K], добавлен 17.04.2013

  • Представления о гравитационном взаимодействии. Сущность эксперимента Кавендиша. Кинематика материальной точки. Определение ускорения силы тяжести с помощью математического маятника. Оценка абсолютной погрешности косвенных измерений периода его колебаний.

    лабораторная работа [29,7 K], добавлен 19.04.2011

  • Границы применимости классической и квантовой механики. Исследование одиночных атомов. Сила и масса. Международная система единиц. Определение секунды и метра. Сущность законов Ньютона. Инерциальные системы отсчета. Уравнение движения материальной точки.

    презентация [1,7 M], добавлен 29.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.