Магнитное поле

Понятия теории магнитного поля. Закон полного тока. Ферромагнитные материалы и их свойства. Принцип действия однофазного трансформатора. Работа сил вихревого электрического поля при перемещении единичного положительного заряда вдоль замкнутого контура.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 08.12.2013
Размер файла 2,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

магнитный трансформатор ток заряд электрический

1. Основные понятия теории магнитного поля

2. Электромагнитная индукция. ЭДС индукции

3. Закон полного тока

4. Магнитные цепи

5. Ферромагнитные материалы и их свойства

6. Принцип действия однофазного трансформатора

7. Режимы работы трансформатора

Список источников материала

1. Основные понятия теории магнитного поля

Магнитное поле -- составляющая электромагнитного поля, появляющаяся при наличии изменяющегося во времени электрического поля. Кроме того, магнитное поле может создаваться током заряженных частиц, либо магнитными моментами электронов в атомах (постоянные магниты). С точки зрения квантовой теории поля электромагнитное взаимодействие переносится безмассовым бозон-фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля). Основной характеристикой магнитного поля является его сила, определяемая вектором магнитной индукции (вектор индукции магнитного поля). В СИ магнитная индукция измеряется в теслах (Тл), в системе СГС в гауссах.

Магнитное поле -- это особый вид материи, посредством которой осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом.

Направление магнитных линий и направление создающего их тока связаны между собой известным правилом правоходового винта (буравчика), а так же правилом левой руки. (рис. 1).

Рис. 1. Магнитное поле. Правило Буравчика и правило левой руки

Основной величиной, характеризующей интенсивность и направление магнитного поля является - вектор магнитной индукции, которая измеряется в Теслах [Тл].

Магнимтная индумкция -- векторная величина, являющаяся силовой характеристикой магнитного поля (его действия на заряженные частицы) в данной точке пространства. Определяет, с какой силой F магнитное поле действует на заряд q, движущийся со скоростью v.

Более конкретно, B -- это такой вектор, что сила Лоренца F, действующая со стороны магнитного поля[1] на заряд q, движущийся со скоростью v, равна

Вектор направлен по касательной к магнитной линии, направление вектора совпадает с осью магнитной стрелки, помещенной в рассматриваемую точку магнитного поля.

Величина определяется по механической силе, действующей на элемент проводника с током, помещенный в магнитное поле.

Если во всех точках поля имеет одинаковую величину и направление, то такое поле называется равномерным.

Второй важной величиной, характеризующей магнитное поле является - магнитный поток , который измеряется в Веберах [Вб].

Элементарным магнитным потоком Ф сквозь бесконечно малую площадку называется величина (рис. 2)

Рис. 2. Определение магнитного потока, пронизывающего: а) произвольную поверхность; б) плоскую поверхность в равномерном магнитном поле

dФ = B cos a dS,

где a - угол между направлением и нормалью к площадке dS.

Сквозь поверхность S [м2]

Если магнитное поле равномерное, а поверхность S представляет собой плоскость

Ф = B S.

При исследовании магнитных полей и расчете магнитных устройств пользуются расчетной величиной - напряженность магнитного поля [А/м]

где mа - абсолютная магнитная проницаемость среды.

Для неферромагнитных материалов и сред (дерево, бумага, медь, алюминий, воздух) mа не отличается от магнитной проницаемости вакуума и равна

mo = 4p · , Гн/м (Генри/метр).

У ферромагнетиков mа переменная и зависит от В.

Индуктивность

Индуктивность -- это физическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1А за 1с.

- магнитный поток самоиндукции контура,

где L -- индуктивность контура или коэффициент самоиндукции (L зависит от размеров и формы проводника, от магнитных свойств среды).

, при

Единица индуктивности

Индуктивность проводника равна 1 Гн, если в нем при изменении силы тока на 1A за 1с возникает =1 В.

2. Электромагнитная индукция. ЭДС индукции

Работу сил вихревого электрического поля при перемещении единичного положительного заряда вдоль замкнутого контура называют электродвижущей силой индукции ().

Закон электромагнитной индукции

ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром.

ЭДС наводимая в обмотке переменным магнитным полем.

Где w - число витков

(Кси) - потокосцепление

Самоиндукция. При изменении силы тока в катушке происходит изменение магнитного пoтокa, создаваемого этим током. Изменение магнитного потока, пронизывающего катушку, вызывает появление ЭДС индукции в катушке, называемой ЭДС самоиндукции. Под действием ЭДС самоиндукции в катушке появляется ток самоиндукции, который противодействует изменению основного тока в цепи, вызывающего это явление, называемое самоиндукцией.

L - индуктивность

ЭДС индукции и направление индукционного тока в прямолинейном проводнике движущемся в магнитном поле.

B - магнтная индукция

L - длина проводника

V- скорость перемещения проводника

Напрвление ЭДС определяется по правилу правой руки

Если ладонь провой руки расположить так, чтобы вектор магнитной индукции входил в ладонь, а отставленный большой палец совпадал с направлением скорости проводника, то четыре вытянутых пальца укажут направление индукционного тока.

3. Закон полного тока

В основе расчета магнитных цепей лежит закон полного тока (рис. 3.)

Рис. 3

где: Н - напряженность магнитного поля в данной точке пространства;

dl - элемент длины замкнутого контура L;

S I - алгебраическая сумма токов, пронизывающих контур L.

Для обмотки

Для однородной магнитной цепи

Lср - длнина ср силовой линии

Lw - магнитодвижущая сила

Для неоднородной магнитной цепи с водушным зазором

Н - напряжонность в сердечнике

Нd -напряжонность МП в зазоре

4. Магнитные цепи

Всякий электромагнит состоит из стального сердечника - магнитопровода и намотанной на него катушки с витками изолированной проволоки, по которой проходит электрический ток.

Совокупность нескольких участков: ферромагнитных (сталь) и неферромагнитных (воздух), по которым замыкаются линии магнитного потока, составляют магнитную цепь.

5. Ферромагнитные материалы и их свойства

Известно, что магнитная проницаемость mа ферромагнитных материалов переменная величина и зависит от В. Это влечет за собой непостоянство магнитного сопротивления Rм и значительно усложняет расчеты магнитных цепей. Поэтому для расчета магнитных цепей, содержащих ферромагнитные участки, необходимо располагать кривыми намагничивания, представляющими собой зависимость B = f(H). Эти зависимости получают экспериментальным путем - испытанием замкнутых магнитопроводов с распределенной обмоткой.

Первоначальному намагничиванию образца соответствует кривая a, называемая кривой первоначального намагничивания (рис. 4).

Рис. 4. Зависимость В(Н) - петля гистерезиса

Если образец подвергать циклическому намагничиванию при изменении напряженности магнитного поля в пределах +Нх до -Нх, то график будет представлять замкнутую кривую, известную под названием петли гистерезиса.

Если процесс циклического намагничивания повторять для постепенно увеличивающихся значений напряженности магнитного поля, то можно получить семейство петель гистерезиса, и так называемую предельную петлю гистерезиса, которой соответствует изменение напряженности магнитного поля в пределах от +Нmax до -Нmax, увеличение Н сверх Нmax не повлечет за собой увеличение площади петли гистерезиса. Предельная петля гистерезиса определяет значение остаточной магнитной индукции и коэрцетивной силы Нс. Кривая, соединяющая вершины петель гистерезиса, называется основной кривой намагничивания. Эти кривые приводятся в справочных руководствах и используются в расчетах магнитных цепей.

Процесс циклического перемагничивания требует затраты энергии, как известно из курса физики, пропорциональной площади петли гистерезиса.

В связи с этим магнитопроводы электротехнических устройств, работающих в условиях непрерывного перемагничивания (например, трансформаторы), целесообразно выполнять из ферромагнитных материалов, имеющих узкую петлю гистерезиса (на рис. 5, кривые a). Такие ферромагнитные материалы называют магнитомягкими (листовая электротехническая сталь и ряд специальных сплавов, например пермаллой, состоящий из никеля, железа и других компонентов).

Рис. 5. Петли гистерезиса магнитомягих (кривые a) и магнитотвердых (кривые d) материалов

Для изготовления постоянных магнитов рекомендуется использовать ферромагнитные материалы с широкой петлей гистерезиса (кривые d), имеющих большую остаточную индукцию и большую коэрцетивную силу. Такие ферромагнитные материалы называют магнитотвердыми (ряд сплавов железа с вольфрамом, хромом и алюминием).

6. Принцип действия однофазного трансформатора

7. Режимы работы трансформатора

Режим холостого хода

Режим короткого замыкания

Режим нагрузки

Список источников материала

1. http://model.exponenta.ru/electro/0050.htm.

2. http://www.in-nov.ru/doc/_Lantsev/Fizika/mag_pole.pdf.

3. http://sfiz.ru/page.php?id=62.

Размещено на Allbest.ru

...

Подобные документы

  • Магнитное поле — составляющая электромагнитного поля, появляющаяся при наличии изменяющегося во времени электрического поля. Магнитные свойства веществ. Условия создания и проявление магнитного поля. Закон Ампера и единицы измерения магнитного поля.

    презентация [293,1 K], добавлен 16.11.2011

  • Анализ источников магнитного поля, основные методы его расчета. Связь основных величин, характеризующих магнитное поле. Интегральная и дифференциальная формы закона полного тока. Принцип непрерывности магнитного потока. Алгоритм расчёта поля катушки.

    дипломная работа [168,7 K], добавлен 18.07.2012

  • Основные понятия теории магнитного поля - особого вида материи, посредством которой осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом. Закон Ома для магнитной цепи. Ферромагнитные материалы.

    реферат [850,7 K], добавлен 05.04.2011

  • Работа сил электрического поля при перемещении заряда. Циркуляция вектора напряжённости электрического поля. Потенциал поля точечного заряда и системы зарядов. Связь между напряжённостью и потенциалом электрического поля. Эквипотенциальные поверхности.

    реферат [56,7 K], добавлен 15.02.2008

  • Появление вихревого электрического поля - следствие переменного магнитного поля. Магнитное поле как следствие переменного электрического поля. Природа электромагнитного поля, способ его существования и конкретные проявления - радиоволны, свет, гамма-лучи.

    презентация [779,8 K], добавлен 25.07.2015

  • История открытия магнитного поля. Источники магнитного поля, понятие вектора магнитной индукции. Правило левой руки как метод определения направления силы Ампера. Межпланетное магнитное поле, магнитное поле Земли. Действие магнитного поля на ток.

    презентация [3,9 M], добавлен 22.04.2010

  • Электрический заряд и закон его сохранения в физике, определение напряженности электрического поля. Поведение проводников и диэлектриков в электрическом поле. Свойства магнитного поля, движение заряда в нем. Ядерная модель атома и реакции с его участием.

    контрольная работа [5,6 M], добавлен 14.12.2009

  • Введение в магнитостатику, сила Лоренца. Взаимодействие токов. Физический смысл индукции магнитного поля и его графическое изображение. Сущность принципа суперпозиции. Примеры расчета магнитного поля прямого тока и равномерно движущегося заряда.

    лекция [324,8 K], добавлен 24.09.2013

  • Содержание закона Ампера. Напряженность магнитного поля, её направление. Закон Био-Савара-Лапласа, сущность принципа суперпозиции. Циркуляция вектора магнитного напряжения. Закон полного тока (дифференциальная форма). Поток вектора магнитной индукции.

    лекция [489,1 K], добавлен 13.08.2013

  • Исследование электрического поля методом зонда. Температурная зависимость сопротивления проводников и полупроводников. Определение удельного заряда электрона. Магнитное поле кругового тока и измерение горизонтальной составляющей магнитного поля Земли.

    учебное пособие [4,6 M], добавлен 24.11.2012

  • Сущность магнетизма, поле прямого бесконечно длинного тока. Форма правильных окружностей, описываемых силовыми линиями электрического поля элемента тока. Структура латентного поля тока. Закон Био-Савара, получение "магнитного" поля из электрического.

    реферат [2,2 M], добавлен 04.09.2013

  • Характеристики магнитного поля и явлений, происходящих в нем. Взаимодействие токов, поле прямого тока и круговой ток. Суперпозиция магнитных полей. Циркуляция вектора напряжённости магнитного поля. Действие магнитных полей на движущиеся токи и заряды.

    курсовая работа [840,5 K], добавлен 12.02.2014

  • Введение в магнитостатику. Сила Лоренца. Взаимодействие токов. Физический смысл индукции магнитного поля, его графическое изображение. Примеры расчета магнитных полей прямого тока и равномерно движущегося заряда. Сущность закона Био–Савара-Лапласа.

    лекция [324,6 K], добавлен 18.04.2013

  • Понятие и основные свойства магнитного поля, изучение замкнутого контура с током в магнитном поле. Параметры и определение направления вектора и линий магнитной индукции. Биография и научная деятельность Андре Мари Ампера, открытие им силы Ампера.

    контрольная работа [31,4 K], добавлен 05.01.2010

  • Электродинамическое взаимодействие электрических токов. Открытие магнитного действия тока датским физиком Эрстедом - начало исследований по электромагнетизму. Взаимодействие параллельных токов. Индикаторы магнитного поля. Вектор магнитной индукции.

    презентация [11,7 M], добавлен 28.10.2015

  • Элементарный электрический заряд. Закон сохранения электрического заряда. Напряженность электрического поля. Напряженность поля точечного заряда. Линии напряженности силовые линии. Энергия взаимодействия системы зарядов. Циркуляция напряженности поля.

    презентация [1,1 M], добавлен 23.10.2013

  • Магнитное поле Земли и его характеристики. Понятие геомагнитных возмущений и их краткая характеристика. Механизм возмущения магнитного поля Земли. Влияние ядерных взрывов на магнитное поле. Механизм влияния различных факторов на геомагнитное поле Земли.

    контрольная работа [30,6 K], добавлен 07.12.2011

  • Расчет магнитной индукции поля. Определение отношения магнитного поля колебательного контура к энергии его электрического поля, частоты обращения электрона на второй орбите атома водорода, количества тепла при охлаждении газа при постоянном объёме.

    контрольная работа [249,7 K], добавлен 16.01.2012

  • Электрический заряд. Взаимодействие заряженных тел. Закон Кулона. Закон сохранения заряда. Електрическое поле. Напряженность электрического поля. Электрическое поле точечного заряда. Принцип суперпозиции полей. Электромагнитная индукция. Магнитный поток.

    учебное пособие [72,5 K], добавлен 06.02.2009

  • Гравитационное поле и его свойства. Направленность гравитационных сил, силовая характеристика гравитационного поля. Действие магнитного поля на движущийся заряд. Понятие силы Лоренца, определение ее модуля и направления. Расчет обобщенной силы Лоренца.

    контрольная работа [1,7 M], добавлен 31.01.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.