Различные типы связей и их реакции
Ограничения перемещения какой-либо точки тела поверхности и необходимость поиска реакций различных связей. Аналитический способ нахождения равнодействующей системы сил. Условие равновесия системы сходящихся сил в геометрической и аналитической форме.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 12.12.2013 |
Размер файла | 121,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Учреждение среднего профессионального образования
«Тульский колледж ПРОФЕССИОНАЛЬНЫХ ТЕХНОЛОГИЙ И СЕРВИСА»
Реферат
по дисциплине: «Техническая механика»
тема: Различные типы связей и их реакции
Выполнил:
Золотарев Н.А.
Содержание
1. Различные типы связей и их реакции
2. Аналитический способ нахождения равнодействующей системы сил
Литература
1. Различные типы связей и их реакции
При решении технических задач возникает необходимость поиска реакций различных связей. Общее правило, которое следует применять, состоит в следующем: если ограничиваются перемещения какой-либо точки тела, то реакцию следует прикладывать в этой точке в сторону, противоположную направлению, в котором ограничивается перемещение.
Основные типы связей:
1. Гладкая поверхность или опора. Гладкой считается поверхность, трением о которую можно пренебречь. Реакция гладкой поверхности сводится только к реакции , направленной по общей нормали к контактирующим поверхностям, в предположении, что эта нормаль существует (рис. 1а). Если общей нормали не существует, то есть одна из поверхностей имеет угловую точку или «заострение», реакция направлена по нормали к другой поверхности (рис. 1б).
Рис. 1а
Рис. 1б
2. Шероховатая поверхность - это поверхность трением, по которой пренебрегать нельзя. Реакция шероховатой поверхности складывается из нормальной реакции и силы трения . (рис 2.2). Модуль определяется по формуле:
связь сила геометрический реакция
1. Гибкая связь. К этому типу связи относятся связи, осуществляемые с помощью цепи, троса, каната и т. д. Реакция такой связи всегда направлена вдоль связи (рис. 2).
2. Цилиндрический шарнир (рис. 2.4) и подшипник (опора рис. 2.3). Цилиндрическим шарниром называется соединение двух или более тел посредством цилиндрического стержня, так называемого пальца, вставленного в отверстия в этих телах. Цилиндрический шарнир препятствует перемещению по любому направлению в плоскости . Реакция неподвижного цилиндрического шарнира (шарнирно-неподвижной опоры) представляется в виде неизвестных составляющих и , линии действия которых параллельны или совпадают с осями координат (рис. 2.4).
3. Подпятник (опора рис. 2.5) и сферический шарнир (рис.2. 6). Такой вид связи можно представить в виде стержня, имеющего на конце сферическую поверхность, которая крепится в опоре, представляющей собой часть сферической полости. Сферический шарнир препятствует перемещению по любому направлению в пространстве, поэтому реакция его представляется в виде трех составляющих , , , параллельных соответствующим координатным осям.
4. Шарнирно-подвижная опора. Этот вид связи конструктивно выполняется в виде цилиндрического шарнира, который может свободно перемещаться вдоль поверхности. Реакция шарнирно-подвижной опоры всегда направлена перпендикулярно опорной поверхности (опора рис. 2.7).
5. Шарнирно-неподвижная опора. Реакция шарнирно-неподвижной опоры представляется в виде неизвестных составляющих и , линии действия которых параллельны или совпадают с осями координат (опора рис. 2.7).
6. Невесомый стержень (прямолинейный или криволинейный), закрепленный по концам шарнирами. Реакция такого стержня является определенной и направлена вдоль линии, соединяющей центры шарниров (рис. 2.8).
Жесткая заделка. Это необычный вид связи, так как кроме препятствия перемещению в плоскости , жесткая заделка препятствует повороту стержня (балки) относительно точки . Поэтому реакция связи сводится не только к реакции (, ), но и к реактивному моменту (рис. 2.9).
Плоская система сходящихся сил
Системой сходящихся сил называется система сил, линии, действия которых пересекаются в одной точке. Эту точку называют точкой схода сил.
Геометрический метод сложения сил
Теорема. Система сходящихся сил на плоскости эквивалентна равнодействующей, приложенной в точке схода и равной геометрической сумме сил.
Доказательство:
Пусть {, , , …} система сходящихся сил, а точка - точка схода (рис. 2.10). Пользуясь аксиомами статики, приведем систему сил к точке схода, и заменим систему сил {, } , то есть получим {, , , …} эквивалентную {, , , …}. Затем заменим {, } и т. д., в итоге получим одну силу, приложенную в точке О, то есть {, , , …} .
Рис. 2.10
2. Аналитический способ нахождения равнодействующей системы сил
Геометрический способ нахождения равнодействующей системы сил сопряжен с определенными трудностями, особенно в случае большого числа сил. Поэтому предпочтительнее аналитический метод нахождения равнодействующей.
Пусть {, , , …} система сходящихся сил на плоскости имеет равнодействующую . Обозначим через и проекции этой равнодействующей на оси системы координат , а через , ; , ;... , ; проекции сил , , , … на те же оси. Из математики известно, что проекция суммы векторов на какую - либо ось равна алгебраической сумме проекций слагаемых векторов на ту же ось. Тогда:
Модуль равнодействующей равен:
Направляющие косинусы вектора можно найти по формулам:
Условие равновесия системы сходящихся сил в геометрической и аналитической форме.
В геометрической форме: для равновесия свободного твердого тела, находящегося под действием плоской сходящейся системы сил необходимо и достаточно, чтобы силовой многоугольник был замкнут (рассмотрим на примере плоской сходящейся системы сил {, , , } (рис. 2.11).
Рис. 2.11
В аналитической форме: Для равновесия свободного твердого тела, находящегося под действием плоской сходящейся системы сил необходимо и достаточно, чтобы сумма проекций всех сил на каждую из осей равнялась нулю:
Литература
1. Данилевский В.В. «Технология машиностроения». М., «Высшая школа», 2008. Черпаков Б.И. «технологическая оснастка». М.: Издательский центр «Академия», 2003.
Размещено на Allbest.ru
...Подобные документы
Постановка второй основной задачи динамики системы. Законы движения системы, реакций внутренних и внешних связей. Вычисление констант и значений функций. Составление дифференциального уравнения движения механизма с помощью принципа Даламбера-Лагранжа.
курсовая работа [287,3 K], добавлен 05.11.2011Линия действия силы. Основные аксиомы статики. Принцип освобождаемости от связей. Геометрический способ сложения сил. Разложить силу на составляющие. Теорема о проекции вектора суммы. Равновесие системы сходящихся сил. Момент силы относительно точки.
презентация [262,9 K], добавлен 09.11.2013Опорные реакции балки. Уравнение равновесия в виде моментов всех сил относительно точек. Как находится проекция силы на ось. Равновесие системы сходящихся сил. Как находится момент силы относительно точки. Направление реакции в подвижном шарнире.
контрольная работа [658,8 K], добавлен 15.04.2015Определение усилия в стержнях, удерживающих центр невесомого блока (пренебрегая его размерами и трением в нем) от действия веса данного груза. Проверка решения графоаналитическим способом. Проведение расчета реакций связей и размеров погрешностей.
задача [80,5 K], добавлен 11.10.2011Изучение причин изменения скорости тела, результата взаимодействия и графического изображения сил. Описания нахождения равнодействующей сил, принципа действия динамометра. Определение направления векторов скорости бруска, его ускорения и перемещения.
презентация [1,8 M], добавлен 23.04.2011Изучение траектории колебания механической системы с одной степенью свободы, на которую действуют момент сопротивления и возмущающая гармоническая сила. Определение закона движения первого тела и расчет реакции внешних и внутренних связей системы.
курсовая работа [374,7 K], добавлен 03.09.2011Классификация связей, возможные перемещения системы. Принцип возможных перемещений и возможная работа. Общие уравнения динамики. Появление сил реакции. Возможное перемещение механической системы. Число степеней свободы и число независимых координат.
презентация [1,9 M], добавлен 26.09.2013Требования к выполнению расчетно-графических работ. Примеры типовых задач: система сходящихся сил в плоскости; равновесие тела в плоскости; определение реакций двухопорной балки; равновесие системы тел в плоскости; равновесие пространственной системы сил.
методичка [204,4 K], добавлен 22.03.2010Основные понятия и определения теоретической механики. Типы и реакции связей. Момент силы относительно точки, ее кинематика и виды движения в зависимости от ускорения. Динамика и колебательное движение материальной точки. Расчет мощности и силы трения.
курс лекций [549,3 K], добавлен 17.04.2013Рассчётно-графическая работа по определению реакции опор твёрдого тела. Определение скорости и ускорения точки по заданным уравнениям её траектории. Решение по теореме об изменении кинетической энергии системы. Интегрирование дифференциальных уравнений.
контрольная работа [317,3 K], добавлен 23.11.2009Уравнение равновесия для стержней, направление сил, действующих на точку равновесия, в противоположную сторону. Построение графиков перемещения, ускорения точки, движущейся прямолинейно. Запись уравнения скорости на каждом участке представленного графика.
контрольная работа [5,2 M], добавлен 08.11.2010Плоская система сходящихся сил. Момент пары сил относительно точки и оси. Запись уравнения движения в форме уравнения равновесия (метод кинетостатики). Принцип Даламбера. Проекция силы на координатную ось. Расчетная формула при растяжении и сжатии.
контрольная работа [40,6 K], добавлен 09.10.2010Определение реакций связей в точках, вызываемых действующими нагрузками. Определение главного вектора и главного момента системы относительно начала координат. Расчет скорости и ускорения точки в указанный момент времени; радиус кривизны траектории.
контрольная работа [293,6 K], добавлен 22.01.2013Вывод дифференциального уравнения движения с использованием теоремы об изменении кинетической энергии механической системы. Определение реакций внутренних связей. Уравнение динамики системы как математическое выражение принципа Даламбера-Лагранжа.
курсовая работа [477,8 K], добавлен 05.11.2011Реакции в точках, вызываемые действующими нагрузками. Плоская система сил. Точки приложения сил. Уравнение равновесия действующей на плиту пространственной системы сил. Уравнение траектории точки. Касательное и нормальное ускорения и радиус кривизны.
контрольная работа [91,5 K], добавлен 19.10.2013Определение реакции связей, вызываемых заданными нагрузками. Решение задачи путем составления уравнения равновесия рамы и расчета действующих сил. Сущность закона движения груза на заданном участке, составление уравнения траектории и его решение.
задача [136,1 K], добавлен 04.06.2009Определение несвободного движения материальной точки. Принцип освобождаемости, уравнения связей и их классификация. Движение точки по гладкой неподвижной поверхности и по гладкой кривой. Метод множителей Лагранжа. Уравнения математического маятника.
презентация [370,6 K], добавлен 28.09.2013Структура кристаллов. Роль, предмет и задачи физики твердого тела. Кристаллические и аморфные тела. Типы кристаллических решеток. Типы связей в кристаллах. Кристаллические структуры твердых тел. Жидкие кристаллы. Дефекты кристаллов.
лекция [2,0 M], добавлен 13.03.2007Виды систем: неизменяемая, с идеальными связями. Дифференциальные уравнения движения твердого тела. Принцип Даламбера для механической системы. Главный вектор и главный момент сил инерции системы. Динамические реакции, действующие на ось вращения тела.
презентация [1,6 M], добавлен 26.09.2013Решение задачи на нахождение скорости тела в заданный момент времени, на заданном пройденном пути. Теорема об изменении кинетической энергии системы. Определение скорости и ускорения точки по уравнениям ее движения. Определение реакций опор твердого тела.
контрольная работа [162,2 K], добавлен 23.11.2009