Неравномерное движение воды в призматических руслах с прямым уклоном дна

Исследование кривых свободной поверхности потока воды в открытых призматических руслах. Построение кривой свободной поверхности. Определение ее характеристики методами Чарновского и Павловского. Гидравлический прыжок. Изучение форм свободной поверхности.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 13.12.2013
Размер файла 71,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

1. Неравномерное движение воды в призматических руслах с прямым уклоном дна

В призматических руслах при i>0 движение с расходом Q может быть как неравномерным, так и равномерным. Расход буде определяться по формуле

Q = k0

k0 - расходная характеристика при нормальной глубине h, тогда в формулу уклона на трение можно подставить k02i, имеем

il = ik02/k2

i - il =

основное дифференциальное уравнение неравномерного движения в открытом призматическом русле при прямом уклоне дня.

2. Неравномерное движение воды с нулевым и обратным уклоном

Равномерное движение может устанавливаться только в русле с прямым уклоном дна, поэтому в руслах с нулевым и обратным уклоном нормальной глубины не существует. Таким образом, формулу мы не сможем применять.

где ik; kk - критический уклон и расходная характеристика при критическом уклоне.

Исследование кривых свободной поверхности потока в открытых призматических руслах.

При неравномерном движении кривые свободной поверхности приближаются к линиям нормальной или критической глубины при уклоне большем нуля, которые остаются постоянными на протяжении всей длины.

1) глубина неравномерного движения стремится к нормальной h > h0 следовательно k > k0; > 0, тогда

Рисунок 1

Если производная стремится к нулю, то это означает, что глубина стремится стать постоянной по длине потока, а кривая свободной поверхности асимптотически приближается к линии нормальной глубины.

2) h > hkр. Следовательно, знаменатель стремится к нулю и > ?.

Рисунок 2

Если глубина приближается к критической, то производная стремится к бесконечности и, следовательно, функция h в этой точке претерпевает разрыв. Кривая свободной поверхности теоретически должна проходить нормально к линии критической глубины, но опыт показывает, что кривая свободной поверхности подходит к линии критической глубины под крутым углом, но не прямы.

3) h > ?, тогда k > ?, щ > ?, следовательно > I. В этом случае поверхность стремиться стать горизонтальной. Обычно это наблюдается в водопроводах и водоемах с большой глубиной.

Исследование форм свободной поверхности при i<ik.

Рисунок 3

I зона.

h>h0, h>hk, > 0

Рисунок 4

Это означает, что глубина вдоль движения возрастает. Она может изменяться от нормальной глубины до весьма большой. В начале кривая асимптотически приближается к линии нормальной глубины, а затем стремится стать горизонтальной.

3. Кривая подпора IIIa

Всего существует 12 типов кривых. Для построения кривой свободной поверхности предварительно необходимо установить форму кривой и исходные сечения. Такими сечениями могут быть сечения, где глубины известны, сечения перед перепадом при изменении уклона и т.д. После установления формы и исходного сечения необходимо определить количественные характеристики этой кривой. h=h(l).

1. Метод Чарновского.

Основан на непосредственном решении уравнения, в которое глубина входит в неявном виде.

2. Способ Павловского.

Основан на интегрировании дифференциального уравнения для призматических русел (i>0, i<0, i=0).

4. Гидравлический прыжок

Переход из бурного состояния в спокойное возможен только путем гидравлического прыжка.

Переход потока из бурного состояния в спокойное путем резкого изменения глубины называется гидравлическим прыжком.

Рисунок 5

вода русло призматический гидравлический

h1 и h2 - сопряженные глубины

Гидравлический прыжок происходит между сопряженными глубинами h1 и h2, это явление носит бурный характер.

Ниже линии АВС проходит основная транзитная струя, в которой и увеличивается глубина потока. Выше АВС располагается поверхностный валец, на нем происходит движение частиц в направлении обратном направлению основного потока. Между вальцом и транзитной струей происходит постоянный обмен частицами жидкости. Поверхность вальца имеет волнообразный характер, а жидкость, вращаясь в нем, захватывает частицы воздуха, поэтому он не прозрачен. Сам гидравлический прыжок постоянно совершает небольшие поступательные движения.

ln - длина прыжка, расстояние между изменяющимися глубинами.

lnn - длина предпрыжкового периода, здесь происходит переформирование профиля скоростей, пройдя эту длину жидкость начинает двигаться равномерно.

Размещено на Allbest.ru

...

Подобные документы

  • Расчет площади живого сечения гидростенда. Определение объема канала и силы напора воды. Вычисление уклона свободной поверхности и гидравлического радиуса гидростенда. Определение коэффициента Шези для открытых потоков. Вывод по результатам вычислений.

    лабораторная работа [56,0 K], добавлен 23.03.2017

  • Определение коэффициента теплоотдачи при сложном теплообмене. Обмен теплотой поверхности твёрдого тела и текучей среды. Использование уравнения Ньютона–Рихмана при решении практических задач конвективного теплообмена. Стационарный тепловой режим.

    лабораторная работа [67,0 K], добавлен 29.04.2015

  • Поверхностные акустические волны - упругие волны, распространяющиеся вдоль свободной поверхности твёрдого тела или вдоль его границы с другими средами и затухающие при удалении от границ. Энергетические характеристики ПАВ, составление уравнения Ламе.

    курсовая работа [2,4 M], добавлен 17.01.2012

  • Основное свойство жидкости: изменение формы под действием механического воздействия. Идеальные и реальные жидкости. Понятие ньютоновских жидкостей. Методика определения свойств жидкости. Образование свободной поверхности и поверхностное натяжение.

    лабораторная работа [860,4 K], добавлен 07.12.2010

  • Определение числовых значений объёмного, массового и весового расхода воды, специфических характеристик режима движения, числа Рейнольдса водного потока, особенности вычисления величины гидравлического радиуса трубопровода в условиях подачи воды.

    задача [25,1 K], добавлен 03.06.2010

  • Глобулярное состояние макромолекул. Рассмотрение структуры дисперсных сред (эмульсий и микроэмульсий) и поверхностной пленки, образованной низкомолекулярным адсорбентом. Способы расчета свободной энергии поверхности. Модель амфифильной макромолекулы.

    курсовая работа [2,7 M], добавлен 28.10.2012

  • Изучение топографии инженерных поверхностей. Определение упругого состояния и деформации. Конструирование кривой Коха (von Koch). Характеристика случайной фрактальной кривой. Броуновское движение на отрезке. Анализ функций Вейерштрасса-Мандельброта.

    реферат [783,3 K], добавлен 23.12.2015

  • Анализ противоречий в механизмах протекания электрического тока в проводниках. Обзор изменения состава и структуры поверхности многокомпонентных систем, механизма диффузии и адсорбции. Исследование поверхности электродов кислотных аккумуляторных батарей.

    контрольная работа [25,0 K], добавлен 14.11.2011

  • Тепловой, конструктивный и гидравлический расчет кожухотрубного теплообменника. Определение площади теплопередающей поверхности. Подбор конструкционных материалов и способ размещения трубных решеток. Выбор насоса с необходимым напором при перекачке воды.

    курсовая работа [1,0 M], добавлен 15.01.2011

  • Рассмотрение экспериментальных зависимостей температуры горячего потока от входных параметров. Расчет показателей расхода хладагента и горячего потока и их входной температуры. Определение толщины отложений на внутренней поверхности теплообменника.

    лабораторная работа [52,4 K], добавлен 13.06.2019

  • Определение коэффициента теплоотдачи от внутренней поверхности стенки трубки к охлаждающей воде. Потери давления при прохождении охлаждающей воды через конденсатор. Расчет удаляемой паровоздушной смеси. Гидравлический и тепловой расчет конденсатора.

    контрольная работа [491,8 K], добавлен 19.11.2013

  • Конструктивные признаки теплообменных аппаратов, их виды. Схемы движения теплоносителей. Назначение и схемы включения, конструкция сетевых подогревателей. Тепловой и гидравлический расчёты подогревателя сетевой воды, площадь поверхности нагрева.

    курсовая работа [791,2 K], добавлен 12.03.2012

  • Преобразование исходной системы уравнений к расчётной форме. Зависимость длины волны от скорости распространения. Механизмы возникновения волн на свободной поверхности жидкости. Зависимость между групповой скоростью волн и скоростью их распространения.

    курсовая работа [451,6 K], добавлен 23.01.2009

  • Определение мощности теплового потока при конвективной теплопередаче через трубу заданного диаметра. Расход пара на обогрев воды в пароводяном теплообменнике, превращение пара в конденсат. Изменение температуры теплоносителей вдоль поверхности нагрева.

    контрольная работа [308,7 K], добавлен 13.05.2015

  • Дифракция быстрых электронов на отражение как метод анализа структуры поверхности пленок в процессе молекулярно-лучевой эпитаксии. Анализ температурной зависимости толщины пленки кремния и германия на слабо разориентированой поверхности кремния.

    курсовая работа [1,0 M], добавлен 07.06.2011

  • Определение несвободного движения материальной точки. Принцип освобождаемости, уравнения связей и их классификация. Движение точки по гладкой неподвижной поверхности и по гладкой кривой. Метод множителей Лагранжа. Уравнения математического маятника.

    презентация [370,6 K], добавлен 28.09.2013

  • История развития гидравлики. Жидкости и их основные физические свойства. Расчет напорных и безнапорных потоков. Методы измерения расхода воды. Течения в руслах, в канализационных и сливных системах ливнёвки, в водопроводах жилых помещений, трубопроводах.

    реферат [1,0 M], добавлен 30.03.2015

  • Расчет кожухотрубных и пластинчатых теплообменников. Графо-аналитический метод определения коэффициента теплопередачи и поверхности нагрева. Гидравлический расчет кожухотрубных теплообменников, трубопроводов воды, выбор насосов и конденсатоотводчика.

    курсовая работа [1,3 M], добавлен 30.11.2015

  • Расчет тепловой нагрузки аппарата, температуры парового потока, движущей силы теплопередачи. Зона конденсации паров. Определение термических сопротивлений стенки, поверхности теплопередачи. Расчет гидравлического сопротивления трубного пространства.

    контрольная работа [76,7 K], добавлен 16.03.2012

  • Эффективное излучение, радиационный и тепловой баланс земной поверхности. Закономерности распространения тепла вглубь почвы. Пожарная опасность леса. Расчет температуры поверхности различных фоновых образований на основе радиационного баланса Земли.

    дипломная работа [1,9 M], добавлен 01.03.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.