Электрические измерения и приборы. Машины постоянного тока. Двигатель. Электроника
Основные виды и методы электрических измерений. Вычисление погрешности электроизмерительных приборов и определение их классов точности. Методы измерения сопротивления. Характеристики и принцип действия генератора. Преимущества полупроводниковых приборов.
Рубрика | Физика и энергетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 12.12.2013 |
Размер файла | 477,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки Российской Федерации
Казанский национальный исследовательский технологический университет
СРС по дисциплине
"Электропривод и электротехника" на темы:
"Электрические измерения и проборы";
"Машины постоянного тока"; "Двигатель";
"Электроника"
Выполнила:
ст.гр 6121-51
Галиуллина Лилия
Приняла:
старший препод. каф.
"Электропривода и Электротехники"
Толмачева А. В.
Казань 2013
ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ И ПРИБОРЫ
1.Основные методы электрических измерений
Виды электрических измерений
В зависимости от общих приемов получения результата измерения делятся на следующие виды: прямые, косвенные и совместные.
К прямым измерениям относятся те, результат которых получается непосредственно из опытных данных. Прямое измерение условно можно выразить формулой Y = Х, где Y - искомое значение измеряемой величины; X - значение, непосредственно получаемое из опытных данных. К этому виду измерений относятся измерения различных физических величин при помощи приборов, градуированных в установленных единицах. Например, измерения силы тока амперметром, температуры - термометром и т. д. К этому виду измерений относятся и измерения, при которых искомое значение величины определяется непосредственным сравнением ее с мерой. Применяемые средства и простота (или сложность) эксперимента при отнесении измерения к прямому не учитываются.
Косвенным называется такое измерение, при котором искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. При косвенных измерениях числовое значение измеряемой величины определяется путем вычисления по формуле Y = F (Xl, Х2 ... Хn), где Y - искомое значение измеряемой величины; Х1, Х2, Хn - значения измеренных величин. В качестве примера косвенных измерений можно указать на измерение мощности в цепях постоянного тока амперметром и вольтметром.
Совместными измерениями называются такие, при которых искомые значения разноименных величин определяются путем решения системы уравнений, связывающих значения искомых величин с непосредственно измеренными величинами. В качестве примера совместных измерений можно привести определение коэффициентов в формуле, связывающей сопротивление резистора с его температурой: Rt = R20 [1+б (T1-20)+в(T1-20)]
Методы электрических измерений
Виды и методы электрических измерений. В зависимости от совокупности приемов использования принципов и средств измерений все методы делятся на метод непосредственной оценки и методы сравнения.
Сущность метода непосредственной оценки заключается в том, что о значении измеряемой величины судят по показанию одного (прямые измерения) или нескольких (косвенные измерения) приборов, заранее проградуированных в единицах измеряемой величины или в единицах других величин, от которых зависит измеряемая величина. Простейшим примером метода непосредственной оценки может служить измерение какой-либо величины одним прибором, шкала которого проградуирована в соответствующих единицах.
Вторая большая группа методов электрических измерений объединена под общим названием методов сравнения. К ним относятся все те методы электрических измерений, при которых измеряемая величина сравнивается с величиной, воспроизводимой мерой. Таким образом, отличительной чертой методов сравнения является непосредственное участие мер в процессе измерения.
Методы сравнения делятся на следующие: нулевой, дифференциальный, замещения и совпадения.
Нулевой метод - это метод сравнения измеряемой величины с мерой, при котором результирующий эффект воздействия величин на индикатор доводится до нуля. Таким образом, при достижении равновесия наблюдается исчезновение определенного явления, например тока в участке цепи или напряжения на нем, что может быть зафиксировано при помощи служащих для этой цели приборов - нуль-индикаторов. Вследствие высокой чувствительности нуль-индикаторов, а также потому, что меры могут быть выполнены с большой точностью, получается и большая точность измерений. Примером применения нулевого метода может быть измерение электрического сопротивления мостом с полным его уравновешиванием.
При дифференциальном методе, так же как и при нулевом, измеряемая величина сравнивается непосредственно или косвенно с мерой, а о значении измеряемой величины в результате сравнения судят по разности одновременно производимых этими величинами эффектов и по известной величине, воспроизводимой мерой. Таким образом, в дифференциальном методе происходит неполное уравновешивание измеряемой величины, и в этом заключается отличие дифференциального метода от нулевого.
Дифференциальный метод сочетает в себе часть признаков метода непосредственной оценки и часть признаков нулевого метода. Он может дать весьма точный результат измерения, если только измеряемая величина и мера мало отличаются друг от друга. Например, если разность этих двух величин равна 1 % и измеряется с погрешностью до 1 %, то тем самым погрешность измерения искомой величины уменьшается до 0,01%, если не учитывать погрешности меры. Примером применения дифференциального метода может служить измерение вольтметром разности двух напряжений, из которых одно известно с большой точностью, а другое является искомой величиной.
Метод замещения заключается в поочередном измерении искомой величины прибором и измерении этим же прибором меры, воспроизводящей однородную с измеряемой величину. По результатам двух измерений может быть вычислена искомая величина. Вследствие того что оба измерения делаются одним и тем же прибором в одинаковых внешних условиях, а искомая величина определяется по отношению показаний прибора, в значительной мере уменьшается погрешность результата измерения. Так как погрешность прибора обычно неодинакова в различных точках шкалы, наибольшая точность измерения получается при одинаковых показаниях прибора.
Примером применения метода замещения может быть измерение сравнительно большого электрического сопротивления на постоянном токе путем поочередного измерения силы тока, протекающего через контролируемый резистор и образцовый. Питание цепи при измерениях должно производиться от одного и того же источника тока. Сопротивление источника тока и прибора, измеряющего ток, должно быть очень мало по сравнению с изменяемым и образцовым сопротивлениями.
Метод совпадений - это такой метод, при котором разность между измеряемой величиной и величиной, воспроизводимой мерой, измеряют, используя совпадение отметок шкал или периодических сигналов. Этот метод широко применяется в практике неэлектрических измерений. Примером может служить измерение длины штангенциркулем с нониусом. В электрических измерениях в качестве примера можно привести измерение частоты вращения тела стробоскопом.
Укажем еще классификацию измерений по признаку изменения во времени измеряемой величины. В зависимости от того, изменяется ли измеряемая величина во времени или остается в процессе измерения неизменной, различаются статические и динамические измерения. Статическими называются измерения постоянных или установившихся значений. К ним относятся и измерения действующих и амплитудных значений величин, но в установившемся режиме.
Если измеряются мгновенные значения изменяющихся во времени величин, то измерения называются динамическими. Если при динамических измерениях средства измерений позволяют непрерывно следить за значениями измеряемой величины, такие измерения называются непрерывными. Можно осуществить измерения какой-либо величины путем измерений ее значений в некоторые моменты времени t1, t2 и т. д. В результате окажутся известными не все значения измеряемой величины, а лишь значения в выбранные моменты времени. Такие измерения называются дискретными.
2. Погрешности измерительных приборов и классы точности
Абсолютная погрешность - \Delta X является оценкой абсолютной ошибки измерения. Вычисляется разными способами. Способ вычисления определяется распределением случайной величины X_{meas}. Соответственно, величина абсолютной погрешности в зависимости от распределения случайной величины X_{meas} может быть различной. Если X_{meas} - измеренное значение, а X_{true} - истинное значение, то неравенство \Delta X>|X_{meas}-X_{true}| должно выполняться с некоторой вероятностью, близкой к 1. Если случайная величина X_{meas} распределена по нормальному закону, то обычно за абсолютную погрешность принимают её среднеквадратичное отклонение. Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина.
Существует несколько способов записи величины вместе с её абсолютной погрешностью.
Обычно используется запись со знаком ±. Например, рекорд в беге на 100 метров, установленный в 1983 году, равен 9,930±0,005 с.
Для записи величин, измеренных с очень высокой точностью, используется другая запись: цифры, соответствующие погрешности последних цифр мантиссы, дописываются в скобках. Например, измеренное значение постоянной Больцмана равно 1,380 6488(13)Ч10?23 Дж/К, что также можно записать значительно длиннее как 1,380 6488Ч10?23±0,000 0013Ч10?23 Дж/К.
Относительная погрешность - погрешность измерения, выраженная отношением абсолютной погрешности измерения к действительному или измеренному значению измеряемой величины (РМГ 29-99): \delta_x =\frac{ \Delta x}{x_{true}} , \delta_x =\frac{ \Delta x}{x_{meas}} .
Относительная погрешность является безразмерной величиной, либо измеряется в процентах.
Приведённая погрешность - погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона. Вычисляется по формуле \delta_x =\frac{ \Delta x}{X_n} , где X_n - нормирующее значение, которое зависит от типа шкалы измерительного прибора и определяется по его градуировке:
если шкала прибора односторонняя, то есть нижний предел измерений равен нулю, то X_n определяется равным верхнему пределу измерений;
если шкала прибора двухсторонняя, то нормирующее значение равно ширине диапазона измерений прибора.
Приведённая погрешность является безразмерной величиной, либо измеряется в процентах.
Класс точности измерительного прибора - это обобщенная характеристика, определяемая пределами допускаемых основных и дополнительных погрешностей, а также другими свойствами, влияющими на точность, значения которых установлены в стандартах на отдельные виды средств измерений. Класс точности средств измерений характеризует их свойства в отношении точности, но не является непосредственным показателем точности измерений, выполняемых при помощи этих средств.
Для того чтобы заранее оценить погрешность, которую внесет данное средство измерений в результат, пользуются нормированными значениями погрешности. Под ними понимают предельные для данного типа средства измерений погрешности.
Погрешности отдельных измерительных приборов данного типа могут быть различными, иметь отличающиеся друг от друга систематические и случайные составляющие, но в целом погрешность данного измерительного прибора не должна превосходить нормированного значения. Границы основной погрешности и коэффициентов влияния заносят в паспорт каждого измерительного прибора.
Основные способы нормирования допускаемых погрешностей и обозначения классов точности средств измерений установлены ГОСТ.
Что означает класс точности измерительного прибора. На шкале измерительного прибора маркируют значение класса точности измерительного прибора в виде числа, указывающего нормированное значение погрешности. Выраженное в процентах, оно может иметь значения 6; 4; 2,5; 1,5; 1,0; 0,5; 0,2; 0,1; 0,05; 0,02; 0,01; 0,005; 0,002; 0,001 и т. д.
Если обозначаемое на шкале значение класса точности обведено кружком, например 1,5, это означает, что погрешность чувствительности дs=1,5%. Так нормируют погрешности масштабных преобразователей (делителей напряжения, измерительных шунтов, измерительных трансформаторов тока и напряжения и т. п.).
Это означает, что для данного измерительного прибора погрешность чувствительности дs=dx/x - постоянная величина при любом значении х. Граница относительной погрешности д(х) постоянна и при любом значении х просто равна значению дs, а абсолютная погрешность результата измерений определяется как dx=дsx
Для таких измерительных приборов всегда указывают границы рабочего диапазона, в которых такая оценка справедлива.
Если на шкале измерительного прибора цифра класса точности не подчеркнута, например 0,5, это означает, что прибор нормируется приведенной погрешностью нуля до=0,5 %. У таких приборов для любых значений х граница абсолютной погрешности нуля dx=dо=const, а до=dо/хн.
При равномерной или степенной шкале измерительного прибора и нулевой отметке на краю шкалы или вне ее за хн принимают верхний предел диапазона измерений. Если нулевая отметка находится посредине шкалы, то хн равно протяженности диапазона измерений, например, для миллиамперметра со шкалой от -3 до +3 мА, хн= 3 - (-3)=6 А.
переносной аналоговый амперметр. Однако будет грубейшей ошибкой полагать, что амперметр класса точности 0,5 обеспечивает во всем диапазоне измерений погрешность результатов измерений ±0,5 %. Значение погрешности до увеличивается обратно пропорционально х, то есть относительная погрешность д(х) равна классу точности измерительного прибора лишь на последней отметке шкалы (при х = хк). При х = 0,1хк она в 10 раз больше класса точности. При приближении х к нулю д(х) стремится к бесконечности, то есть такими приборами делать измерения в начальной части шкалы недопустимо.
На измерительных приборах с резко неравномерной шкалой (например, на омметрах) класс точности указывают в долях от длины шкалы и обозначают как 1,5 с обозначением ниже цифр знака "угол".
Если обозначение класса точности на шкале измерительного прибора дано в виде дроби (например, 0,02/0,01), это указывает на то, что приведенная погрешность в конце диапазона измерений дпрк = ±0,02 %, а в нуле диапазона дпрк = -0,01 %. К таким измерительным приборам относятся высокоточные цифровые вольтметры, потенциометры постоянного тока и другие высокоточные приборы. В этом случае
д(х) = дк + дн (хк/х - 1),
где хк - верхний предел измерений (конечное значение шкалы прибора), х - измеряемое значение.
Классификация электроизмерительных приборов
Сегодня сложно представить себе жизнь без электричества. На нем основаны практически все технические достижения нашего мира. Специально для учета и контроля электричества были созданы электроизмерительные приборы. Первым таким прибором стал электроскоп, который был изобретен в 1735 году французским ученым Шарлем Дюфе для определения наличия электрического заряда. Это прибор сыграл очень важную роль в период, когда электричество только начали изучать более подробно. Сегодня электроизмерительных приборов великое множество. Давайте подробно рассмотрим, по каким критериям производят классификацию этих приборов.
Один из самых важных признаков в систематизации аппаратуры для электроизмерений - это измеряемая ими физическая величина. Согласно с этим все электроизмерительные приборы подразделяют на несколько видов:
амперметры (приборы для измерения силы тока);
вольтметры (приборы для измерения напряжения и электродвижущей силы);
омметры (приборы, измеряющие электрическое сопротивление);
мультиметры (приборы, которые способны измерять сразу несколько показателей, например, силу тока, напряжение, сопротивление, емкость и индуктивность);
частотомеры (приборы, измеряющие частоту колебаний тока);
варметры и ваттметры (приборы для измерения электрической мощности);
электрические счетчики (приборы для измерения электроэнергии, потребленной за определенный период) и др.
Электроизмерительные приборы также классифицируются по следующим признакам:
назначение;
методы предоставления замеренных показателей;
методы измерения;
конструкция и способы применения;
принцип действия;
класс точности;
род тока.
По назначению различают приборы меры, измерительные преобразователи, измерительные системы и установки и вспомогательные устройства. Результаты измерений могут предоставляться в двух видах, в связи с чем, и представлено разделение на показывающие и регистрирующие приборы. Показывающие приборы выдают значение измеряемой величины в виде цифровых значений на шкале или электронном табло. Регистрирующие приборы предоставляют показания измерений в виде различных графиков и диаграмм на бумаге или фотопленке.
По методам измерения различают электроизмерительные приборы сравнения и оценки. По условиям эксплуатации и конструкции приборы бывают переносные, щитовые и стационарные.
Согласно принципу действия электроизмерительные приборы разделяют на магнитоэлектрические, электродинамические, электромеханические, электромагнитные, индукционные, электростатические, магнитодинамические, ферродинамические, электронные, электрохимические и термоэлектрические. Классификация электроизмерительных приборов по роду тока помогает определить, в каких цепях какого тока может применяться тот или иной измерительный аппарат. Как правило, на приборе с помощью условных обозначений помечают, работает ли он в сетях переменного или постоянного тока. На приборах переменного тока дополнительно указывается диапазон частот, в котором они могут работать.
По классу точности определяют степень погрешности того или иного прибора. Как правило, класс точности также указывается в основных параметрах прибора. Класс точности равен допустимой приведенной погрешности и может колебаться в пределах от 0,05% до 4,0%. Чем ниже процент, тем точнее показываемые прибором результаты измерений. Класс точности приборов определяет максимальную погрешность прибора, которая может быть обусловлена конструктивными особенностями, технологией производства и др. Класс точности показывает отклонения в измерениях при нормальных условиях работы прибора.
Измерение сопротивления с помощью моста постоянного тока
Электрическое сопротивление - один из важнейших параметров электрической цепи, определяющее ее работу. По величине сопротивления условно можно разделить на три группы:
1) от 0 до 1 Ом - сопротивления малой величины;
2) от 1 Ом до 0,1 МОм - сопротивления средней величины ;
3) от 0,1МОм и выше - сопротивления большой величины ;
Методы измерения.
Измерение сопротивлений можно выполнить косвенным методом - методом амперметра и вольтметра, методом непосредственной оценки и методом сравнения - мостом постоянного тока.
Косвенный метод - метод амперметра и вольтметра - основан на измерении падения напряжения Ur на измеряемом сопротивлении Rx и тока Ir, протекающего по измеряемому сопротивлению.
Погрешность Дr измерения сопротивления Rx равна
Дr = ДV + ДA;
где ДV - погрешность вольтметра,
ДA - погрешность амперметра.
По схеме рис.25,а) предпочтительно измерять сопротивления Rx малой величины, так как в результат измерений не включается внутреннее сопротивление амперметра. Схема рис.25,б) дает небольшую погрешность для измерений сопротивлений Rx большой величины, так как относительно измеряемого сопротивление величина внутреннего сопротивления амперметра невелика.
Метод непосредственной оценки - измерение сопротивлений омметрами и мегомметрами.
Омметры, как правило, выполняются с магнитоэлектрической системой измерительного механизма как более чувствительного и с малым потреблением тока. Приборы омметры имеют специальные устройства позволяющие изменять пределы измерения прибора. Устройства имеют набор резисторов Rд1- Rд3 высокой точности. Переключатель SA1 изменяет пределы измерения омметра. Схемы омметров выполняются по последовательной схеме (рис. 26) и параллельной схеме (рис. 27) .
В схеме рис.26 при Rх = 0 стрелка отклоняется на всю шкалу к отметке «0». Точную установку на ноль (калибровка прибора) выполняется с помощью резистора Ro. При Rх= + ? установка стрелки устанавливается механической корректировкой стрелки.
Источник питания схемы омметра Е монтируется внутри корпуса прибора и представляет собой электрические химические элементы или батареи элементов. Химические элементы своей электрической энергией создают ток в измерительной цепи прибора. Величина тока в цепи Iиц пропорциональна величине измеряемого сопротивления Rх, а следовательно, угол отклонения стрелки б = ѓ(Iиц). Если предварительно проградуировать шкалу омметра образцовыми мерами сопротивления, тогда по отклонению стрелки можно выполнить отсчет величины сопротивления:
Rх=ѓ(б) ;
При Rх = ? стрелка отклоняется на максимальный угол бmax>?, а при Rx=0 стрелка прибора не отклоняется б=0.
Омметр с параллельной схемой измерения рис.27 отличается от омметра на рис.26 тем, что миллиамперметр (измерительный механизм омметра) подключен с измеряемым сопротивлением Rх не последовательно, а параллельно. В этом случае ток Iп через миллиамперметр мА создается падением напряжения на измеряемом сопротивлении Rx. Так как при прохождении тока Iиц на измеряемом сопротивлении Rх создается напряжение Ux=ѓ(Rх )=Uп , которое через измерительный механизм создает ток Iп=ѓ(Uп), тогда угол отклонения стрелки б будет определять величину Rх:
Rх = kѓ(б) ;
где k - коэффициент пропорциональности зависящий от характеристик измерительного механизма, резисторов Rд1- Rд3 и источника тока Е .
По шкале омметра производится непосредственный отсчет измеренной величины сопротивления. Особенностью омметра является то, что на шкале прибора «0» находится слева при Rх= 0 , а предел измерения шкалы при Rх= + ?находится справа.
Измерение больших сопротивлений производится приборами - омметрами, получившими название мегоомметры, которые имеют конструкцию логометра с магнитоэлектрической системой измерительного механизма. Показания мегомметров не зависят от напряжения источника питания. В качестве источника питания в них используется ручной генератор постоянного тока, который приводится в действие вращением рукой специальной ручки и это позволяет, вследствие большой ЭДС (до 1000В), измерять сопротивления до 200 МОм.
3. Измерение сопротивления мостовой схемой
Широкое распространение получил метод равновесного электрического моста постоянного тока для измерений сопротивления Rх с достаточно высокой точностью (Рис.28).
В одну из диагоналей моста, включают источник постоянного тока с напряжением Uи , а в другую диагональ с,d включают «нуль-индикатор» (НИ) в качестве которого используют микроамперметр, или миллиамперметр с магнитоэлектрической системой. Шкала НИ имеет отметку «0» по центру шкалы. А стрелка прибора может отклоняться вправо и влево от нуля. Состояние равновесия моста наступает в тот момент, когда стрелка НИ устанавливается в нулевое положение. На рис.28 показана упрощенная схема электрического равновесного моста.
В плечи моста (ас), (св) включены сопротивления R1 , R2 , R3 известной величины. В плечо (вd) включен потенциометр R3 с небольшой погрешностью и снабженный рукояткой РР. На рукоятке нанесен указатель, по которому по шкале Щ можно вести отсчет величины измеряемого сопротивления Rх. В диагональ (ав) включен источник тока с напряжением Uи.
Свойство мостовой схемы состоит в том, что при равновесии моста ток в диагонали (сd) равен нулю и индикатор НИ покажет нулевое значение. При равновесии моста произведения противоположных плеч равны и следовательно справедливо равенство:
RxR2=R1R3; - условие равновесия моста постоянного тока.
Для электрического моста переменного тока , с учетом что Z1 полное сопротивление плеча (ас), Z2 полное сопротивление плеча (св), Z3 полное сопротивление плеча (вd), Zх полное сопротивление плеча (аd) условие равновесия будет:
ZxZ2=Z1Z3 ;
где Z2i=R2i + (XLi+XCi)2;
XL - индуктивное сопротивление,
XC - емкостное сопротивление.
Из выражений следует, что при равновесии электрического моста потенциал цс в точке с равен потенциалу цd в точке d, напряжение Ucd = цс - цd = 0, а произведение противоположных плеч Zx Z2 и Z1 Z3 равны между собой.
При измерении Rx включают в плечо моста (аd) и ручкой РР потенциометра R3 изменяют сопротивление плеча (вd), добиваясь нулевого показания НИ. После этого с помощью указателя на ручке РР делают отсчет по шкале омов Щ . На рисунке 28 по положению НИ и указателя ручки РР потенциометра R3 показана величина сопротивления Rx = 25 Ом.
Если шкала потенциометра R3 проградуирована не в Омах измеряемого сопротивления Rх, а в величинах сопротивления R3 , зависящего от положения ручки РР, тогда измеряемое сопротивление можно определить исходя из формулы равновесия моста:
Rx=R1R3/ R2 ;
Приборы, использующие этот метод, называются уравновешенными электрическими мостами. Для расширения диапазона измерения сопротивлений плечи (ас) и (св) имеют набор мер сопротивления (резисторы с высокой степенью точности) , которые подключаются с помощь переключателей. Ручки переключателей мер сопротивления, ручка резистора R3 и шкала НИ находятся на передней панели прибора.
МАШИНЫ ПОСТОЯННОГО ТОКА
1. Принцип действия машины постоянного тока
Машина постоянного тока может работать в двух режимах: двигательном и генераторном. В зависимости от того, какую энергию к ней подвести - если электрическую, то электрическая машина будет работать в режиме электродвигателя, а если механическую - то будет работать в режиме генератора. Однако электрические машины, как правило, предназначены заводом изготовителем для одного определенного режима работы - или в режиме генератора, или электродвигателя.
Электродвигатели постоянного тока стоят почти на каждом автомобиле - это стартер, электропривод стеклоочистителя, вентилятор «печки» и др.
В роли индуктора выступает статор, на котором расположена обмотка. На неё подаётся постоянный ток, в результате чего вокруг неё создаётся постоянное магнитное поле. Обмотка ротора состоит из проводников, запитанных через коллектор. В результате на них действуют пары сил Ампера, которые вызывают вращающий момент. Направление сил определяется по правилу «буравчика». Однако этот вращающий момент способен повернуть ротор только на 180 градусов, после чего он остановится. Чтобы это предотвратить, используется щёточно-коллекторный узел, выполняющий роль переключателя полюсов и датчика положения ротора (ДПР).
В генераторе индуктором также является статор, создающий постоянное магнитное поле между соответствующими полюсами. При вращении ротора, в проводниках обмотки якоря, перемещающихся в магнитном поле, по закону электромагнитной индукции наводится ЭДС, направление которой определяется по правилу правой руки. Переменная ЭДС обмотки якоря выпрямляется с помощью коллектора, через неподвижные щетки, посредством которых обмотка соединяется с внешней сетью.
2. Коммутация машин постоянного тока
Основные явления. Коммутацией в электрических машинах называется процесс переключения секций обмотки из одной параллельной ветви в другую и связанные с этим явления. На рис. 1.13, а показана секция перед коммутацией на рис. 1.13,б - секция в процессе коммутации (замкнутая накоротко через щетки 1, 2), на рис. 1.13, в - секция после коммутации.
Процесс переключения секции протекает достаточно быстро: время коммутации одной секции, называемое периодом коммутации Тк, составляет примерно 0,001 - 0,0003 с. Явления, происходящие при коммутации, существенно влияют на надежность и долговечность работы машины постоянного тока.
При плохой коммутации появляется значительное искрение под щетками и связанное с ним обгорание коллектора.
Ток i в короткозамкнутой секции 2 за время Тк меняет свое направление на противоположное: от +Iа до - Iа (рис. 1.14), где Iа - ток в параллельной ветви. Вследствие изменения тока в секции наводится ЭДС самоиндукции
Кроме этого, коммутируемая секция, если щетки расположены на геометрической нейтрали, пересекает поперечное поле якоря и поэтому в ней наводится ЭДС, называемая ЭДС вращения, где BП - индукция поперечного поля. Обе ЭДС вызывают ток коммутации iК, который замыкается по цепи: секция, коллекторная пластина, щетка, коллекторная пластина, секция (штриховая линия на рис. 1.13,б). От сопротивления этой цепи, а также от значений и направления еL и зависит значение и направление тока iК. Кроме того, по коммутируемой секции протекает часть тока якоря.
Если еL и направлены навстречу друг другу и равны, то еL + = 0 и ток в коммутируемой секции изменяется по закону i = Iа (1 - 2t / Tк), т.е. линейно (рис. 1.14, прямая 1). В этом случае плотность тока под щеткой везде одинакова и не изменяется в процессе коммутации - искрение под щетками не наблюдается.
Однако практически еL + ? 0. В этом случае ток iК алгебраически суммируется с частью тока якоря в коммутируемой секции и общий ток в коммутируемой секции изменяется в соответствии с кривыми 2 или 3 (рис. 1.14). В первом случае коммутация называется замедленной, во втором - ускоренной. В обоих случаях плотность тока под щеткой неодинакова, особенно она велика в набегающей части щетки для генератора и в сбегающей - для двигателя. В результате возникает искрение под щеткой и на коллекторе.
Пути улучшения коммутации. В предыдущем параграфе были рассмотрены электромагнитные причины плохой коммутации. Однако к искрению под щетками могут приводить и механические причины: неравномерный износ коллектора и его вибрация, чрезмерный износ щеток, выступание отдельных коллекторных пластин и изоляции и т.д. С учетом этого улучшение коммутации возможно несколькими путями:
Ш обеспечением в машине прямолинейной или несколько ускоренной коммутации; это достигается созданием в зоне коммутации секции дополнительного магнитного поля такой величины и направления, чтобы еL + = 0 ;
Ш увеличением сопротивления короткозамкнутой цепи секции в целях уменьшения тока короткого замыкания; это достигается применением твердых графитовых щеток с повышенным переходным сопротивлением (мягкие медно-графитовые щетки с малым переходным сопротивлением применяются только в тихоходных машинах на напряжение до 30 В);
Ш тщательным контролем за состоянием поверхности коллектора и щеток.
Главным средством улучшения коммутации в машинах средней мощности являются дополнительные полюсы. Магнитное поле дополнительных полюсов подбирается таким образом, чтобы еL + = 0 или было несколько больше нуля.
Дополнительные полюсы устанавливаются у всех машин постоянного тока мощностью свыше 1 кВт. В крупных машинах применение дополнительных полюсов сочетается с установкой компенсационной обмотки. В машинах малой мощности (менее 1 кВт) коммутацию настраивают поворотом щеток по направлению вращения у генераторов, а у двигателей - против направления вращения за положение физической нейтральной линии. Практически это положение определяется на глаз по наименьшему искрению под щетками. Улучшение коммутации поворотом щеток - малоэффективный метод, так как при изменении нагрузки положение физической нейтральной линии изменяется, а положение щеток остается фиксированным.
3. Классификация схемы включения генератора
На современных предприятиях, судах, заводах, транспорте с электроэнергетической системой постоянного тока в качестве источников электрической энергии используются генераторы постоянного тока. Это такие электромеханические устройства, которые преобразуют механическую энергию первичного двигателя (паровой или газовой турбины, дизеля) в электрическую. В зависимости от типа первичного двигателя генераторы делятся на турбогенераторы, газогенераторы, дизель-генераторы. В электроэнергетических системах на переменном токе для питания потребителей постоянного тока используют электромашинные преобразователи, которые представляют собой агрегат, состоящий из приводного двигателя переменного тока и генератора постоянного тока.
По способу возбуждения генераторы постоянного тока делятся на две группы - генераторы независимого возбуждения и генераторы с самовозбуждением. Генераторы с независимым возбуждением разделяются на магнитоэлектрические генераторы и генераторы с электромагнитным возбуждением. У магнитоэлектрических генераторов основной магнитный поток создается постоянными магнитами. В генераторах с электромагнитным возбуждением магнитный поток создается одной или несколькими обмотками возбуждения, расположенными на главных полюсах машины. Обмотка возбуждения генератора независимого возбуждения получает питание от постороннего источника электрической энергии постоянного тока (рис.1, а).
В генераторах с самовозбуждением обмотки возбуждения получают питание от самого генератора. На возбуждение в зависимости от мощности генератора расходуется (0,3...5)% номинальной мощности.
Генераторы с самовозбуждением в зависимости от способа включения обмоток возбуждения в электрическую цепь машины подразделяются на генераторы параллельного возбуждения (шунтовые) (рис.1, б), генераторы последовательного возбуждения (серисные) (рис.1, в) и генераторы смешанного возбуждения (компаундные) (рис.1, г).
В генераторах параллельного возбуждения обмотка возбуждения включается параллельно обмотке якоря. Обычно эти обмотки выполняются с большим числом витков из проводников небольшого сечения. По ним проходит ток возбуждения, который составляет (1...5)% номинального тока. В этих машинах ток якоря Ia равен сумме токов нагрузки Iн и возбуждения Iв.
Генераторы последовательного возбуждения имеют обмотку возбуждения, включенную последовательно с обмоткой якоря. При этом ток нагрузки Iн, ток якоря Ia и ток возбуждения Iв являются одним и тем же током. Последовательная обмотка рассчитывается на номинальный ток машины и выполняется из проводников большого сечения с небольшим числом витков.
Рис. 1 - Схемы генераторов независимого (а), параллельного (б), последовательного (в), смешанного (г) возбуждения
Генераторы смешанного возбуждения имеют две обмотки возбуждения, параллельную, включенную параллельно обмотке якоря и последовательную, включенную последовательно с обмоткой якоря. Если эти обмотки включены так, что создаваемые ими МДС совпадают по направлению, т.е. складываются, то такое включение называется согласным. Если МДС не совпадают по направлению, т.е. вычитаются, то включение называется встречным. Обычно применяют согласное включение обмоток. У генераторов смешанного возбуждения основная МДС создается параллельной обмоткой.
В цепях обмоток параллельного и независимого возбуждения для регулирования тока возбуждения включают регулировочные реостаты. В судовых электроэнергетических системах применяют генераторы независимого, параллельного и смешанного возбуждения.
ДВИГАТЕЛЬ
В генераторе с независимым возбуждением (рис. 4.8а) ток возбуждения не зависит от тока якоря Iа, который равен току нагрузки Iн. Обычно ток возбуждения невелик и составляет 1...3 % от номинального тока якоря.
Основными характеристиками генератора являются характеристики: холостого хода, внешняя, регулировочная и нагрузочная.
Рис. 4.8. Принципиальная схема генератора с независимым возбуждением (а) и его характеристика холостого хода (б)
Характеристика холостого хода U0=f(Iв) при Iн=0 и n=const (рис. 4.8б). Расхождение входящей и нисходящей ветвей характеристики объясняется наличием гистерезиса в магнитопроводе машины. Eост составляет 2...4 % от Uном.
Рис. 4.9. Внешняя (а) и регулировочная (б) характеристики генератора с независимым возбуждением
Внешней характеристикой называется зависимость U=f(Iн) при n=const и Iн=const (рис. 4.9а). Под нагрузкой напряжение генератора, где ?r - сумма сопротивлений всех обмоток, включенных последовательно в цепь якоря (якоря, дополнительных полюсов и компенсационной обмотки).
С увеличением нагрузки напряжение U уменьшается по двум причинам:
- из-за падения напряжения во внутреннем сопротивлении ?r машины;
- из-за уменьшения ЭДС E в результате размагничивающего действия реакции якоря.
Величина составляет 3...8 %.
В генераторе с параллельным возбуждением (рис. 4.10а) обмотка возбуждения присоединена через регулировочный реостат параллельно обмотке якоря. Для нормальной работы приемников электроэнергии необходимо поддерживать постоянство напряжения на их зажимах, несмотря на изменение общей нагрузки генератора. Это осуществляется посредством регулирования тока возбуждения.
Регулировочной характеристикой генератора (рис. 4.9б) называется зависимость тока возбуждения Iв от тока якоря Iа при постоянном напряжении U и скорости n. Такая характеристика показывает, как надо изменять ток возбуждения для того, чтобы при изменениях нагрузки поддерживать постоянство напряжения на зажимах генератора. Эта кривая сначала почти прямолинейна, но затем загибается вверх от оси абсцисс, вследствие влияния насыщения магнитопровода машины. Следовательно, в машине используется принцип самовозбуждения, при котором обмотка возбуждения получает питание непосредственно от самого генератора.
Рис. 4.10. Принципиальная схема генератора с параллельным возбуждением (а); характер изменения ЭДС и тока возбуждения генератора в процессе возбуждения (б)
Самовозбуждение генератора возможно только при наличии гистерезиса в магнитной цепи.
При вращении якоря в его обмотке потоком остаточного магнетизма индуктируется ЭДС Еост, и по обмотке возбуждения начинает протекать ток. Если обмотка возбуждения включена так, что ее НС Fв направлена согласно с НС остаточного магнетизма, то магнитный поток возрастает, увеличивая ЭДС Е, поток Ф и ток возбуждения Iв. Машина самовозбуждается и начинает устойчиво работать с Iв=const, E=const, зависящими от величины сопротивления Rв цепи возбуждения.
Для режима холостого хода генератора:
, |
(4.20) |
где L - суммарная индуктивность обмоток возбуждения и якоря.
Зависимость e=f(iв) представляет собой характеристику холостого хода генератора ОА, а прямая ОВ - ВАХ сопротивления Rв (tgг= Rв) (рис. 4.10б).
Пока имеется положительная разность (e-iвRв), член >0, т.е. происходит нарастание тока iв. Установившийся режим будет иметь место при =0, т.е. в точке С. При изменении величины сопротивления Rв прямая ОВ изменяет свой угол г, что приводит к изменению установившегося тока возбуждения Iв0, и соответствующего ему напряжения U0=E0. Параметры цепи подбираются так, чтобы в точке С обеспечивалась устойчивость режима самовозбуждения. При случайном изменении iв возникает соответствующая положительная или отрицательная разность (e-iвRв), стремящаяся изменить ток iв так, чтобы он стал снова равен Iв0.
Степень устойчивости рассматриваемого режима будет определяться производной:
, |
(4.21) |
где в - угол пересечения характеристики ОА с прямой ОВ.
При увеличении Rв до критического значения Rв.кр., соответствующего гкр , угол в?0 и режим самовозбуждения становится неустойчивым, при этом ЭДС генератора уменьшается до Еост. Таким образом, для нормальной работы генератора с параллельным возбуждением необходимо, чтобы Rв<Rв.кр.
Внешняя характеристика генератора с самовозбуждением располагается ниже внешней характеристики генератора с независимым возбуждением (рис. 4.11). Объясняется это тем, что в рассматриваемом генераторе напряжение уменьшается не только с ростом нагрузки и размагничивающего действия реакции якоря, но и вследствие уменьшения тока возбуждения , который зависит от напряжения U, т. е. от тока Iн.
Рис. 4.11. Внешние характеристики генераторов с независимым (верхняя кривая) и параллельным (нижняя кривая) возбуждением
Ток короткого замыкания создается только ЭДС от остаточного магнетизма и составляет (0,4...0,8) Iном.
Работа на участке ab внешней характеристики неустойчива.
Регулировочная характеристика генератора с параллельным возбуждением имеет такой же вид, как и для генератора с независимым возбуждением.
В генераторе с последовательным возбуждением (рис. 4.12а) ток возбуждения Iв=Iа=Iн.
Рис. 4.12. Схема генератора с последовательным возбуждением (а) и его внешняя характеристика (б)
Внешняя характеристика (кривая 1) и характеристика холостого хода (кривая 2) изображены на рис. 4.12б. Ввиду того, что в генераторе с последовательным возбуждением напряжение сильно изменяется при изменении нагрузки, такие генераторы практически не применяются. Их используют лишь при электрическом торможении двигателей с последовательным возбуждением, которые при этом переводятся в генераторный режим.
В генераторе со смешанным возбуждением имеются две обмотки возбуждения: основная (параллельная) и вспомогательная (последовательная). Наличие двух обмоток при их согласном включении позволяет получать приблизительно постоянное напряжение генератора при изменении нагрузки. Подбирая число витков последовательной обмотки так, чтобы при номинальной нагрузке, создаваемое ею напряжение ДUпосл компенсировало суммарное падение напряжения ДU при работе машины с одной только параллельной обмоткой, можно добиться, чтобы напряжение U при изменении тока нагрузки от нуля до Iном оставалось практически неизменным.
Генераторы постоянного тока имеют большей частью параллельное возбуждение. Обычно для улучшения внешней характеристики они снабжаются небольшой последовательной обмоткой (1-3 витка на полюс). При необходимости такие генераторы могут включаться и по схеме с независимым возбуждением.
Генераторы с независимым возбуждением используются только при большой мощности и низком напряжении. В этих машинах независимо от величины напряжения на якоре обмотка возбуждения рассчитывается на стандартное напряжение постоянного тока 110 или 220 В с целью упрощения регулирующей аппаратуры.
ЭЛЕКТРОНИКА
погрешность электрический ток генератор
1. Полупроводниковые приборы
По сравнению с электронными лампами у полупроводниковых приборов имеются существенные достоинства:
1) малый вес и малые размеры;
2) отсутствие затрат энергии на накал;
3) более высокая надежность в работе и большой срок службы (до десятка тысяч часов);
4) большая механическая прочность (стойкость к тряске, ударам и другим видам механических перегрузок);
5) различные устройства (выпрямители, усилители, генераторы) с полупроводниковыми приборами имеют высокий КПД, так как потери энергии в самих приборах незначительны;
6) маломощные устройства с транзисторами могут работать при очень низких питающих напряжениях;
7) принципы устройства и работы полупроводниковых приборов использованы для создания нового важного направления развития электроники - полупроводниковой микроэлектроники.
Вместе с тем полупроводниковые приборы в настоящее время обладают следующими недостатками:
1) параметры и характеристики отдельных экземпляров приборов данного типа имеют значительный разброс;
2) свойства и параметры приборов сильно зависят от температуры;
3) наблюдается изменение свойств приборов с течением времени (старение);
4) их собственные шумы в ряде случаев больше, нежели у электронных приборов;
5) большинство типов транзисторов непригодно для работы на частотах выше десятков мегагерц;
6) входное сопротивление у большинства транзисторов значительно меньше, чем у электронных ламп;
7) транзисторы пока еще не изготавливают для таких больших мощностей, как электровакуумные приборы;
8) работа большинства полупроводниковых приборов резко ухудшается под действием радиоактивного излучения.
Транзисторы успешно применяются в усилителях, приемниках, передатчиках, генераторах, телевизорах, измерительных приборах, импульсных схемах, электронных счетных машинах и др. Использование полупроводниковых приборов дает огромную экономию в расходовании электрической энергии источников питания и позволяет во много раз уменьшить размеры аппаратуры.
Ведутся исследования по улучшению полупроводниковых приборов по применению для них новых материалов. Созданы полупроводниковые выпрямители на токи в тысячи ампер. Применение кремния вместо германия позволяет эксплуатировать приборы при температуре до 125" С и выше. Созданы транзисторы для частот до сотен мегагерц и более, а также новые типы полупроводниковых приборов для сверхвысоких частот. Замена электронных ламп полупроводниковыми приборами успешно осуществлена во многих радиотехнических устройствах. Промышленность выпускает большое количество полупроводниковых диодов и транзисторов различных типов.
2. Полупроводниковые диоды
Выпрямительные диоды предназначены для выпрямления переменного тока низкой частоты (50-100 000 Гц). В настоящее время широко применяются кремниевые выпрямительные диоды с р-n-переходом плоскостного типа, имеющие во много раз меньшие обратные токи и большие обратные напряжения по сравнению с германиевыми.
Основным элементом выпрямительного диода является полупроводниковая пластинка, в которой методом сплавления или диффузии сформован р-n-переход. Кремниевый р-n-переход образуется при сплавлении исходного кристалла кремния n-типа с бором или алюминием. Для защиты от внешних воздействий, а также для обеспечения хорошего теплоотвода полупроводниковая пластинка с р-n-переходом и двумя внешними выводами от слоев p и n заключается в корпус
Выпрямительные диоды подразделяются на диоды малой (Iпр. ср < 0,3 А), средней (0,3 А<Iпр. ср < 10 А) и большой (Iпp.ср> 10 А) мощности. Для повышения допустимого обратного напряжения выпускаются высоковольтные столбы, в которых несколько диодов включены последовательно. Кроме того, производством серийно выпускаются выпрямительные блоки, которые содержат как последовательно, так и параллельно (для повышения прямого тока) соединенные диоды.
Высокочастотные диоды являются приборами универсального назначения. Они могут работать в выпрямителях переменного тока широкого диапазона частот (до нескольких сотен мегагерц), а также в модуляторах, детекторах и других нелинейных преобразователях электрических сигналов. Высокочастотные диоды содержат, как правило, точечный р-n-переход и поэтому называются точечными. Конструкция типичного представителя точечных диодов (Д106А) показана на рис. 1.11, а, а его вольтамперная характеристика - на рис. 1.11, б.
Прямая ветвь вольтамперной характеристики не отличается от соответствующей ветви характеристики плоскостного диода, чего нельзя сказать при сравнении обратных ветвей. Поскольку площадь р-n-перехода мала, то обратный ток невелик, однако участок насыщения практически не выражен и за счет токов утечки и термогенерации обратный ток равномерно возрастает. Значения постоянных прямых токов точечных диодов не превышают десятков миллиампер, а значения допустимых обратных напряжений 100 В. Малая величина статической емкости Сд между выводами точечных диодов (малая площадь перехода) позволяет использовать их в широком диапазоне частот. По частотным свойствам точечные диоды подразделяются на две подгруппы: ВЧ (fмакс ? 300 МГц) и СВЧ (fмакс ? 300 МГц). Помимо статической емкости Сд точечные диоды характеризуются теми же параметрами, что и выпрямительные.
Импульсные диоды являются разновидностью высокочастотных диодов и предназначены для использования в качестве ключевых элементов в быстродействующих импульсных схемах. Помимо высокочастотных свойств импульсные диоды должны обладать минимальной длительностью переходных процессов при включении и выключении. Изготовляются точечные и плоскостные диоды. Общая конструкция импульсных диодов, а также их вольтамперные характеристики практически такие же, как у высокочастотных.
Как и выпрямительные, импульсные диоды характеризуются статическими параметрами, а также параметрами предельного режима. Основными же являются импульсные параметры: Сд и tвосст - время восстановления запирающих свойств диода после снятия прямого напряжения.
Стабилитроны - это кремниевые плоскостные диоды, предназначенные для стабилизации уровня постоянного напряжения в схеме при изменении в некоторых пределах тока через диод. Это полупроводниковый диод, сконструированный для работы в режиме электрического пробоя. Как отмечалось в разд. 1.2, если обратное напряжение превышает значение Uобр. пр, то происходит лавинный пробой р-n-перехода, при котором обратный ток резко возрастает при почти неизменном обратном напряжении. Такой участок характеристики (участок аб, см. рис. 1.8, а) используют стабилитроны, нормальным включением которых в цепь источника постоянного напряжения является обратное (см. рис. 1.8, б). Если обратный ток через стабилитрон не превышает некоторого значения Iст. макс, то состояние электрического пробоя не приводит к порче диода и может воспроизводиться в течение десятков и сотен тысяч часов. В качестве исходного материала при изготовлении стабилитронов используют кремний, поскольку обратные токи кремниевых р-n-переходов невелики, а следовательно, нет условий для саморазогрева полупроводника и теплового пробоя р-n-перехода.
К основным параметрам стабилитронов относится напряжение стабилизации
Uст - напряжение на стабилитроне при указанном номинальном токе стабилизации Iст. ном (см. рис. 1.8, а). Помимо Iст. ном указываются также минимальное Iст. мин и максимальное Iст. макс значения токов на участке стабилизации. Уровень напряжения стабилизации определяется величиной пробивного напряжения Uобр. пр, зависящего, в свою очередь, от ширины р-n-перехода, а следовательно, степени легирования кремния примесью. Для получения низковольтных стабилитронов используется сильнолегированный кремний. Поэтому у стабилитронов с напряжением стабилизации <5,4 В участок стабилизации определяется обратным током туннельного характера. У низковольтных стабилитронов с ростом температуры напряжение стабилизации уменьшается, а у высоковольтных увеличивается.
Схема на рис. 1.8, б объясняет принцип работы простейшего стабилизатора постоянного напряжения. Увеличение входного напряжения uвх приводит к увеличению тока через стабилитрон и сопротивление R. Избыток входного напряжения выделяется на R, а напряжение uвых остается практически неизменным.
Варикапом называется специально сконструированный полупроводниковый диод, применяемый в качестве конденсатора переменной емкости. Значение емкости варикапа определяется емкостью его р-n-перехода и изменяется при изменении приложенного к переходу (диоду) напряжения.
...Подобные документы
Основные характеристики электроизмерительных приборов. Надежное и бесперебойное электроснабжение сельскохозяйственных потребителей в производстве. Графики электрических нагрузок. Предохранители, тепловое реле, их устройство, принцип действия, применение.
контрольная работа [693,2 K], добавлен 19.07.2011Назначение электроизмерительных приборов: вольтамперметра, миллиамперметра, амперметров магнитоэлектрической системы, вольтметра. Понятие и регламентация классов точности. Расчет шунта, построение электрических цепей для измерения силы тока и напряжения.
лабораторная работа [214,3 K], добавлен 13.01.2013Характеристика устройства и принципа действия электроизмерительных приборов электромеханического класса. Строение комбинированных приборов магнитоэлектрической системы. Шунты измерительные. Приборы для измерения сопротивлений. Магнитный поток и индукция.
реферат [1,3 M], добавлен 28.10.2010Прямые и косвенные измерения напряжения и силы тока. Применение закона Ома. Зависимость результатов прямого и косвенного измерений от значения угла поворота регулятора. Определение абсолютной погрешности косвенного измерения величины постоянного тока.
лабораторная работа [191,6 K], добавлен 25.01.2015Основные методики поверки показывающих приборов постоянного тока. Измерительный механизм с подвижной катушкой. Класс точности измерительных приборов, работающих на постоянном токе. Проверка изоляции напряжением 2 кВ. Расчет погрешности измерений.
лабораторная работа [22,2 K], добавлен 18.06.2015Конструкция и принцип действия машины постоянного тока. Характеристики генератора независимого возбуждения. Внешняя характеристика генератора параллельного возбуждения. Принцип обратимости машин постоянного тока. Электромагнитная обмотка якоря в машине.
презентация [4,1 M], добавлен 03.12.2015Мостовой и косвенный методы для измерения сопротивления постоянного тока. Резонансный, мостовой и косвенный методы для измерения параметров катушки индуктивности. Решение задачи по измерению параметров конденсатора с использованием однородного моста.
контрольная работа [156,9 K], добавлен 04.10.2013Конструкция и принцип действия электрических машин постоянного тока. Исследование нагрузочной, внешней и регулировочной характеристик и рабочих свойств генератора с независимым возбуждением. Особенности пуска двигателя с параллельной системой возбуждения.
лабораторная работа [904,2 K], добавлен 09.02.2014Физика полупроводников. Примесная проводимость. Устройство и принцип действия полупроводниковых приборов. Способы экспериментального определения основных характеристик полупроводниковых приборов. Выпрямление тока. Стабилизация тока.
реферат [703,1 K], добавлен 09.03.2007Рассмотрение основных методов измерения электрической мощности и энергии в цепи однофазного синусоидального тока, в цепях повышенной и высокой частот. Описание конструкции ваттметров, однофазных счетчиков. Изучение особенностей современных приборов.
реферат [1,5 M], добавлен 08.01.2015Принцип работы и устройство генератора постоянного тока. Типы обмоток якоря. Способы возбуждения генераторов постоянного тока. Обратимость машин постоянного тока. Двигатель параллельного, независимого, последовательного и смешанного возбуждения.
реферат [3,6 M], добавлен 17.12.2009Измерение электрических величин: мощности, тока, напряжения. Область применения электроизмерительных приборов. Отличие прямых и косвенных измерений. Требования к измерительному прибору. Схема включения амперметра, вольтметра. Расчет сопротивления цепи.
лабораторная работа [48,0 K], добавлен 24.11.2013Виды давления, классификация приборов для его измерения и особенности их назначения. Принцип действия мановакуумметров, характеристика их разновидностей. Многопредельные измерители и преобразователи давления. Датчики-реле давления, виды манометров.
презентация [1,8 M], добавлен 19.12.2012Магнитоэлектрические измерительные механизмы. Метод косвенного измерения активного сопротивления до 1 Ом и оценка систематической, случайной, составляющей и общей погрешности измерения. Средства измерения неэлектрической физической величины (давления).
курсовая работа [407,8 K], добавлен 29.01.2013Основные определения и технические данные электрических машин. Электрические двигатели постоянного тока: устройство, краткие теоретические основы. Электрические генераторы постоянного тока. Обеспечение безыскровой коммутации. Электрическое равновесие.
реферат [37,4 K], добавлен 24.12.2011Принцип работы и устройство генераторов постоянного тока. Электродвижущая сила и электромагнитный момент генератора постоянного тока. Способы возбуждения генераторов постоянного тока. Особенности и характеристика двигателей различных видов возбуждения.
реферат [3,2 M], добавлен 12.11.2009Исследование истории развития электрических измерительных приборов. Анализ принципа действия магнитоэлектрических, индукционных, стрелочных и электродинамических измерительных приборов. Характеристика устройства для создания противодействующего момента.
курсовая работа [1,1 M], добавлен 24.06.2012Принцип действия генератора постоянного тока. Якорные обмотки и процесс возбуждения машин постоянного тока. Обмотка с "мертвой" секцией. Пример выполнения простой петлевой и волновой обмотки. Двигатель постоянного тока с последовательным возбуждением.
презентация [4,9 M], добавлен 09.11.2013Понятие измерения в теплотехнике. Числовое значение измеряемой величины. Прямые и косвенные измерения, их методы и средства. Виды погрешностей измерений. Принцип действия стеклянных жидкостных термометров. Измерение уровня жидкостей, типы уровнемеров.
курс лекций [1,1 M], добавлен 18.04.2013Исследование неразветвленной и разветвленной электрических цепей постоянного тока. Расчет нелинейных цепей постоянного тока. Исследование работы линии электропередачи постоянного тока. Цепь переменного тока с последовательным соединением сопротивлений.
методичка [874,1 K], добавлен 22.12.2009