Циклы ДВС

История разработки двигателей внутреннего сгорания. Классификация поршневых ДВС. Термодинамические характеристики основных циклов работы устройств, преобразующих тепловую энергию, получаемую при сгорании топлива в цилиндрах - в механическое действие.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 23.12.2013
Размер файла 264,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

1. Краткие исторические сведения

2. Реальные и идеальные циклы. Виды поршневых ДВС

3. Циклы ДВС

3.1 Цикл Отто

3.2 Цикл Дизеля

3.2 Цикл Сабатэ-Тринклера

1. Краткие исторические сведения

Назначение любого теплового двигателя - превращение теплоты в работу. Необходимая для перевода в работу теплота получается при сгорании жидких, твердых или газообразных топлив. Топливо может сжигаться вне тепловой машины (паровые машины и турбины) - это так называемые двигатели внешнего сгорания. Двигатели, в которых процесс сгорания осуществляется в рабочем пространстве машины, называются двигателями внутреннего сгорания (ДВС).

Одним из первых указал на возможность создания ДВС Сади Карно в своей работе «Размышления о движущей силе огня и о машинах, способных развивать эту силу» (1824 г.).

В 1860 г. французский механик Ленуар построил первый ДВС, работающий на светильном газе, но без предварительного сжатия рабочего тела. Двигатель имел низкий КПД и не получил широкого распространения.

В 1877 г. немецкий инженер Отто построил бензиновый двигатель, работа которого осуществлялась по принципу, запатентованному французом Бо-де-Роша в 1862 г.

В 1897 г. немецкий инженер Дизель разработал двигатель, работающий на керосине, который распылялся в цилиндре воздухом высокого давления от компрессора. В 1904 г. русским инженером Тринклером Г.В. был построен бескомпрессорный двигатель со смешанным сгоранием топлива. Этот двигатель получил самое широкое распространение во всем мире.

2. Реальные и идеальные циклы. Виды поршневых ДВС

Рабочим телом в ДВС являются в начале воздух или смесь воздуха с топливом, а в конце - смесь газов, образовавшаяся при сгорании топлива.

Теплота к рабочему телу подводится от сжигаемого топлива внутри цилиндров двигателя, в которых расширяющийся от нагревания газ перемещает поршень. Полученная газом энергия частично расходуется на совершение механической работы, остальная часть отдается окружающей среде. Основными элементами любого поршневого ДВС являются цилиндр 1 с поршнем 2, возвратно-поступательное движение которого преобразуется во вращательное движение коленчатого вала 8 с помощью кривошипно-шатунного механизма 6, 7 (рис. 1). В верхней части цилиндра размещены впускной 4 и выпускной 5 клапаны, приводимые в движение от главного вала двигателя, а также свеча зажигания 3 топливной смеси (или форсунка для распыления топлива). Помимо этого у ДВС имеются механизм газораспределения, системы питания топливом, зажигания, смазки.

Рисунок 1. - Схема поршневого ДВС:

В возвратно-поступательном движении поршня различают два крайних положения: верхнее и нижнее, в которых поршень меняет направление движения на обратное. Эти положения называются мертвыми точками. Расстояние между мертвыми точками называют ходом поршня S, а перемещение поршня из ВМТ в НМТ или наоборот - тактом. Внутренний объем цилиндра в пределах хода поршня называют рабочим объемом цилиндра. Часть объема цилиндра, заключенную между крышкой и торцом поршня, находящегося в ВМТ, называют камерой сгорания.

Для обеспечения наиболее полного сгорания топлива оно должно быть хорошо перемешано с воздухом. Смесь распыленного в воздухе топлива, предназначенного для сжигания, называют рабочей смесью, а процесс приготовления рабочей смеси - смесеобразованием.

По способу приготовления горючей смеси ДВС подразделяются на две группы: с внешним и внутренним смесеобразованием.

К двигателям с внешним смесеобразованием относятся карбюраторные и газовые двигатели. Рабочая смесь в них приготавливается в специальном устройстве - карбюраторе (при работе на бензине или керосине) или смесителе (при работе на газовом топливе). В этом случае в камеру сгорания подается уже готовая рабочая смесь, которая воспламеняется принудительно от электрической искры (свечи зажигания).

В двигателях с внутренним смесеобразованием приготовление рабочей смеси происходит внутри рабочего цилиндра, куда воздух и топливо подаются раздельно. Сначала поршень сжимает чистый воздух до давления 3-4 МПа, вследствие чего его температура в конце сжатия достигает 600-650°С, затем в камеру сгорания через форсунку впрыскивается жидкое топливо (дизельное или моторное), которое воспламеняется при смешении с раскаленным воздухом.

По способу осуществления цикла ДВС могут быть двух- и четырехтактными.

В четырехтактном двигателе рабочий цикл осуществляется за четыре хода поршня (такта), т. е., за два оборота вала, а в двухтактном двигателе - за два хода (такта) поршня, т. е., один оборот коленчатого вала. Исследование работы реального поршневого двигателя проводят по диаграмме, в которой дается изменение давления в цилиндре в зависимости от положения поршня (объема) за весь цикл. Такую диаграмму, снятую с помощью прибора - индикатора, называют индикаторной диаграммой (рис. 2).

Рисунок 2. - Действительная индикаторная диаграмма:

Рассмотрим диаграмму:

0-1 - заполнение цилиндра воздухом (при внутреннем смесеобразовании) или рабочей смесью (при внешнем смесеобразовании) при давлении несколько ниже атмосферного из-за гидродинамического сопротивления впускных клапанов и всасывающего трубопровода;

1-2 - сжатие воздуха или рабочей смеси;

2-3'-3 - период горения рабочей смеси;

3-4 - рабочий ход поршня (расширение продуктов сгорания), совершается механическая работа;

4-5 - выхлоп отработавших газов, падение давления до атмосферного происходит практически при постоянном объеме;

5-0 - освобождение цилиндра от продуктов сгорания.

В реальных тепловых двигателях преобразование теплоты в работу связано с протеканием сложных необратимых процессов (имеются трение, химические реакции в рабочем теле, конечные скорости поршня, теплообмен и др.). Термодинамический анализ такого цикла невозможен.

В связи с этим для выявления основных факторов, влияющих на эффективность работы установок, действительные процессы заменяют обратимыми термодинамическими процессами, допускающими применение для их анализа термодинамических методов. Такие циклы называют теоретическими. Допущения, используемые для теоретических циклов:

1) циклы замкнуты (в действительности продукты сгорания удаляются в атмосферу, а на их место поступает новое рабочее тело);

2) Рабочее тело - идеальный газ с постоянной теплоемкостью;

3) Подвод теплоты осуществляется от внешних источников теплоты, а не за счет сжигания топлива (аналогично отвод теплоты);

4) Механические потери (трение, потери теплоты) отсутствуют;

5) Процессы 0-1 и 5-0 исключают из рассмотрения, т. к., работа в них практически одинаковая, только имеет разный знак.

Анализ циклов тепловых двигателей проводится в два этапа: сначала анализируется эффективность теоретического (обратимого) цикла, а затем - реальный (необратимый) цикл с учетом основных источников не­обратимости.

Для ДВС рассматривают следующие основные циклы:

А) цикл с подводом теплоты при постоянном объеме (v = const) - цикл Отто;

б) цикл с подводом теплоты при постоянном давлении (р = const) - цикл Дизеля;

в) цикл со смешанным подводом теплоты, как при v = const и р = const - цикл Тринклера.

3. Циклы ДВС

3.1 Цикл Отто

Рисунок 3:

Отто первым осуществил сжатие для поднятия максимальной температуры цикла. Сжатие (а-с на диаграмме) осуществлялось по адиабате (без изменения теплоты).

Теплота подводится изохорно (с-z на диаграмме). Далее следовало адиабатическое расширение (z-b на диаграмме), после чего изохорный отвод теплоты (b-a на диаграмме).

КПД автомобильных двигателей (в большинстве своем они используются именно в автомобилях, но также и в лодочных моторах и малой авиации) работающих по циклу Отто достигает 33-35%.

Степени сжатия достигают значения 8-9 (до10) у карбюраторных двигателей, 10-11 у двигателей с распределенным впрыском и до 12.5 у двигателей с непосредственным впрыском. У надувных двигателей степень сжатия понижают, с целью избежания детонации (т. к., мотор работает с большими давлениями и температурами в конце такта сжатия). У двигателей с непосредственным впрыском есть возможность работы на обедненных смесях с б=1.15-1.3 этим достигается высокая экономия топлива и снижение выбросов (в основном СО).

3.2 Цикл Дизеля

Рисунок 4:

Дизель предложил сжимать в цилиндре не топливовоздушную смесь, а воздух. В конце такта сжатия подавалось топливо в смеси с воздухом, от высокой температуры и давления в конце такта сжатия происходило самовоспламенение топлива. Сжатие (а-с на диаграмме) осуществлялось также по адиабате. Теплота подводится изобарно (с-z на диаграмме). Далее следовало адиабатическое расширение (z-b на диаграмме), после чего изохорный отвод теплоты (b-a на диаграмме). Существенным преимуществом этого цикла является возможность применения высоких степеней сжатия (свыше 20, сам Дизель хотел около 100, но ее дальнейшее увеличение нецелесообразно из-за высокой механической и тепловой напряженности деталей двигателя).

Теплота подводится изобарно, а отводится изохорно. Впрыск топлива происходил в конце такта сжатия. Особенностью цикла Дизеля, в его первозданном виде было компрессорное пневматическое распыливание топлива. Отказ от этого цикла был связан с тем что на привод компрессора (а у «настоящего» дизеля было компрессорное впрыскивание топливо - воздушной смеси) приходилось 10-15% работы двигателя, в связи с чем расход топлива у таких дизелей был не совсем приемлемым, т. е., эффективные показатели были ниже чем у цикла Сабатэ-Тринклера, но в тоже время индикаторные показатели и экологические показатели были выше чем у двигателей работающих по циклу Сабатэ-Тринклера (о них речь пойдет ниже). Связанно это было с более лучшим образованием смеси - подавалась топливовоздушная смесь, а не топливо в жидкой фазе как у современных дизелей. Повсеместный переход от пневматического на механическое распыливание топлива и соответственно с цикла Дизеля на цикл Сабатэ-Тринклера начался в 30-х годах прошлого века. Практически сейчас двигателей работающих по циклу Дизеля не производятся (за исключением экспериментальных образцов).

3.2 Цикл Сабатэ-Тринклера

Сжатие (а-с на диаграмме) осуществлялось по адиабате. Теплота подводится смешанно: изохорно (c-z на диаграмме) и далее изобарно (z'-z на диаграмме).

Рисунок 5:

двигатель термодинамический механический

Далее следовало адиабатическое расширение (z-b на диаграмме), после чего изохорный отвод теплоты (b-a на диаграмме).

Все выпускающиеся сейчас дизельные двигатели на самом деле работают по циклу Сабатэ-Тринклера, циклу со смешанным подводом теплоты (и с механическим распыливанием топлива). Теплота подводится сначала изохорно, а затем, как и у цикла Дизеля изобарно. Степени сжатия у безнаддувных двигателей достигают значения 18-22, и 13-15 у наддувных высокофорсированных двигателей. Область применения этих двигателей очень широка: генераторы, автомобили как грузовые так и легковые, трактора, тепловозы, судна и корабли, самолеты, вспомогательные энергетические установки как на кораблях так и на электростанциях, приводы насосов и т. д., и т. п.

У судовых малооборотных дизелей (МОД) эффективный КПД доходит до 50-55%.У среднеоборотных тепловозных и судовых дизелей на уровне 45%. Соблюдается тенденция чем больше двигатель (а именно диаметр цилиндра и ход поршня) и чем менее он оборотистый - тем более он экономичен.

Размещено на Allbest.ru

...

Подобные документы

  • Термодинамические циклы поршневых двигателей внутреннего сгорания. Прямые газовые изохорные и изобарные циклы неполного расширения. Термодинамические циклы газотурбинных установок и реактивных двигателей. Процессы, происходящие в поршневых компрессорах.

    реферат [1,5 M], добавлен 01.02.2012

  • Описание идеальных и реальных циклов двигателей внутреннего сгорания. Рассмотрение термодинамических процессов, происходящих в циклах. Изучение основных формул для расчета энергетических характеристик циклов и параметров в их характерных точках.

    курсовая работа [388,1 K], добавлен 13.06.2015

  • Понятие о смесеобразовании. Основные классификации двигателей внутреннего сгорания. Смесеобразование и сгорание топлива в цилиндрах дизеля. Фракционный состав топлива, вязкость, температурные характеристики. Задержка самовоспламенения и распыливание.

    курсовая работа [1,9 M], добавлен 11.03.2015

  • История тепловых двигателей. Ещё в давние времена люди старались использовать энергию топлива для превращения её в механическую. Паровая машина, двигатель внутреннего сгорания, паровая и газовая турбины, реактивный двигатель.

    реферат [5,5 K], добавлен 17.05.2006

  • Описание двигателя внутреннего сгорания - тепловой машины, в которой химическая энергия топлива, сгорающего в рабочей зоне, преобразуется в механическую работу. Сравнительная характеристика четырёхтактного и двухтактного двигателей, их применение.

    презентация [9,0 M], добавлен 11.12.2016

  • Принцип работы тепловой электростанции. Идеальный и реальный термодинамический цикл. Изменение давления в зависимости от времени в камере сгорания. Обратимые термодинамические циклы газотурбинных двигателей. ГТУ с подводом теплоты при постоянном объеме.

    контрольная работа [754,8 K], добавлен 30.11.2011

  • Основные типы двигателей: двухтактные и четырехтактные. Конструкция двухтактного двигателя внутреннего сгорания. Принцип зажигания двигателя. История создания и принцип работы электродвигателя. Способы возбуждения электродвигателей постоянного тока.

    реферат [1,1 M], добавлен 11.10.2010

  • Коэффициент полезного действия теплового двигателя. Основные элементы конструкции и функции газовой турбины. Поршневые двигатели внутреннего сгорания, их классификация. Два основных класса реактивных двигателей и характеризующие их технические параметры.

    презентация [3,5 M], добавлен 24.10.2016

  • История создания и принцип работы электродвигателя. Способы возбуждения электрических двигателей постоянного тока. Основные типы двигателей и их разновидности. Конструкция двухтактного двигателя внутреннего сгорания. Принцип работы зажигания двигателя.

    презентация [419,0 K], добавлен 05.05.2011

  • Преобразование тепловой энергии в механическую турбинными и поршневыми двигателями. Кривошипный механизм поршневых двигателей внутреннего сгорания. Схема газотурбинной установки. Расчет цикла с регенерацией теплоты и параметров необратимого цикла.

    курсовая работа [201,3 K], добавлен 20.11.2012

  • Понятие и содержание механизма распределения как одного из самых ответственных механизмов, обеспечивающих осуществление циклов двигателей внутреннего сгорания. Привод распределительного вала с помощью шестерен, преимущества и недостатки использования.

    реферат [77,1 K], добавлен 23.12.2013

  • История создания тепловых двигателей и общий принцип их действия. Виды тепловых двигателей: паровая машина, двигатель внутреннего сгорания, паровая и газовая турбины, реактивный двигатель. Использование современных альтернативных источников энергии.

    презентация [1,3 M], добавлен 23.02.2011

  • Газовые смеси, теплоемкость. Расчет средней молярной и удельной теплоемкости. Основные циклы двигателей внутреннего сгорания. Термический коэффициент полезного действия цикла дизеля. Водяной пар, паросиловые установки. Общее понятие о цикле Ренкина.

    курсовая работа [396,8 K], добавлен 01.11.2012

  • История развития процессов получения и использования энергии. Существующие виды топлива. Технологические свойства жидкого топлива. Применение газообразного топлива в различных отраслях народного хозяйства. Тепловое действие электрического тока.

    реферат [27,1 K], добавлен 02.08.2012

  • История человечества тесно связана с получением и использованием энергии. Практическая ценность топлива - количество теплоты, выделяющееся при его полном сгорании. Проблема энергетики - изыскания новых источников энергии. Перспективные виды топлива.

    реферат [11,6 K], добавлен 04.01.2009

  • Использование энергии биомассы для получения альтернативных видов моторных топлив для двигателей внутреннего сгорания, их преимущество; технология производства биогазов, биоэтанола и биодизеля из сельскохозяйственных и бытовых отходов; зарубежный опыт.

    контрольная работа [479,8 K], добавлен 16.01.2011

  • Топочное устройство как часть котельного агрегата, предназначенного для сжигания топлива, химическая энергия которого переходит в тепловую энергию дымовых газов. Характеристика способа сжигания горючего: слоевое, факельное, вихревое и в кипящем слое.

    реферат [22,4 K], добавлен 06.06.2011

  • Изобретение первого парового двигателя Томасом Ньюкоменом. Использование в первых паровозах и машинах. Эволюция в индустриальную эпоху. Двигатели внутреннего сгорания. Увеличение среднего количества полезного действия. Самый сильный двигатель в мире.

    презентация [834,0 K], добавлен 17.02.2016

  • Тепловой двигатель внешнего сгорания, преобразующий энергию нагретого пара в механическую работу поршня. Повышение мощности двигателей. Использование паровых турбин на лесопилках. Паровая турбина Лаваля. Первое судно с паротурбинным двигателем.

    презентация [2,7 M], добавлен 23.04.2014

  • Тепловой двигатель как устройство, в котором внутренняя энергия преобразуется в механическую, история его появления. Типы двигателя внутреннего сгорания. Схемы работы двигателей. Экологические проблемы использования тепловых машин и пути их решения.

    презентация [4,3 M], добавлен 25.03.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.