Изменение температуры
Современная температурная шкала. Методы и технические средства ее измерения. Мостовые схемы платиновых термометров сопротивления. Неуравновешенные и автоматические регистраторы температуры. Погрешности и поверка жидкостных стеклянных термометров.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 16.01.2014 |
Размер файла | 1,7 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://allbest.ru
Министерство образования и науки
Российской Федерации
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА С.П. КОРОЛЕВА
(НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)» (СГАУ)
Кафедра теплотехники и тепловых двигателей
Реферат на тему:
«Изменение температуры»
Выполнил Ярусков А.А.
Группа № 9227
Проверил доцент
Крашенниников С.В.
Самара 2014
ОГЛАВЛЕНИЕ
ВВЕДЕНИЕ
1. ПОНЯТИЕ О ТЕМПЕРАТУРЕ И О ТЕМПЕРАТУРНЫХ ШКАЛАХ
2. СОВРЕМЕННАЯ МЕЖДУНАРОДНАЯ ТЕМПЕРАТУРНАЯ ШКАЛА
3. УСТРОЙСТВА ДЛЯ ИЗМЕРЕНИЯ ТЕМПЕРАТУР
4. МЕТОДЫ И ТЕХНИЧЕСКИЕ СРЕДСТВА ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ
4.1 Термометры расширения и термометры манометрические
4.1.1 Жидкостные стеклянные термометры
4.1.2 Манометрические термометры
4.1.3 Погрешности и поверка жидкостных стеклянных термометров
4.2 Термоэлектрические термометры
4.2.1 Устройство термоэлектрических термометров
6.2.2 Стандартные и нестандартные термоэлектрические термометры
4.2.3 Поверка технических ТТ
4.3 Электрические термометры сопротивления
4.3.1 Типы и конструкции ТС
4.3.2 Платиновые термометры сопротивления
4.3.3 Медные термометры сопротивления
4.4 Мостовые схемы измерения сопротивления термометров
4.4.1 Уравновешенный мост
4.4.2 Неуравновешенный мост
4.4.3 Автоматические уравновешенные мосты
СПИСОК ЛИТЕРАТУРЫ
Введение
Высокопроизводительная, экономичная и безопасная работа технологических агрегатов металлургической промышленности требует применения современных методов и средств измерения величин, характеризующих ход производственного процесса и состояние оборудования.
Автоматический контроль является логически первой ступенью автоматизации, без успешного функционирования которых невозможно создание эффективных АСУ ТП.
В истории развития мировой техники можно выделить три основных направления: создание машин-двигателей (водяных, ветряных, паровых, внутреннего сгорания, электрических), которые освободили человека от тяжелого физического труда; создание машин-орудий, т.е. станков и технологического оборудования различного назначения; создание устройств для контроля и управления машинами-двигателями, машинами-орудиями и технологическими процессами.
В современной техники для решения задач автоматического контроля все шире применяют полупроводники, лазеры, радиоактивные материалы, ЭВМ. Металлургическая промышленность является одной из основных отраслей народного хозяйства, в ней занято большое количество трудящихся, обслуживающих мощные и сложные агрегаты.
При высоких производительностях даже самые небольшие ошибки управления агрегатом приводят к большим абсолютным потерям металла, топлива, электроэнергии.
По этому возрастает роль автоматического контроля и управления производственными процессами. Все основные металлургические агрегаты (доменные и мартеновские печи, прокатные станы) оснащены различными системами автоматического контроля и управления и в значительной степени механизированы.
Основными параметрами (величинами), которые необходимо контролировать при работе металлургических агрегатов, является температура различных сред; расход, давление, состав газов и жидкостей; состав металлов; геометрические размеры проката.
Автоматическими приборами измеряется температура: в рабочих пространствах металлургических печей, выплавляемого и нагреваемого металла, элементов огнеупорной кладки, конструкции регенераторов и рекуператоров, а так же продуктов сгорания топлива.
1. ПОНЯТИЕ О ТЕМПЕРАТУРЕ И О ТЕМПЕРАТУРНЫХ ШКАЛАХ
Температурой называют величину, характеризующую тепловое состояние тела. Согласно кинетической теории температуру определяют как меру кинетической энергии поступательного движения молекул. Отсюда температурой называют условную статистическую величину, прямо пропорциональную средней кинетической энергии молекул тела.
Все предлагаемы температурные шкалы строились (за редким исключением) одинаковым путем: двум (по меньшей мере) постоянным точкам присваивались определенные числовые значения и предполагалось, что видимое термометрическое свойство используемого в термометре вещества линейно связанно с температурой t:
,
где k - коэффициент пропорциональности; E - термометрическое свойство; D - постоянная.
Принимая для двух постоянных точек определенные значения температур, можно вычислить постоянные k, D и на этой основе построить температурную шкалу. При изменении температуры коэффициент k меняется, при чем различно для разных термометрических веществ. Поэтому термометры, построенные на базе различных термометрических веществ с равномерной градусной шкалой, давали при температурах, отличающихся от температур постоянных точек, различные показания. Последние становились особенно заметными при высоких (много больших температуры кипения воды) и очень низких температурах.
Термодинамическая шкала тождественна шкале идеального газа, построенной на зависимости давления идеального газа от температуры. Законы изменения давления от температуры для реальных газов отклоняются от идеальных, но поправки на отклонения реальных газов невелики и могут быть установлены с высокой степенью точности. Поэтому, наблюдая за расширением реальных газов и вводя поправки, можно оценить температуру по термодинамической шкале.
В начале XX века широко применялись шкалы Цельсия и Реомюра, а в научных работах - также шкалы Кельвина и водородная. Пересчеты с одной шкалы на другую создавали большие трудности и приводили к ряду недоразумений. Поэтому в 1933 году было принято решение о введении Международной температурной шкалы (МТШ).
Опыт применения МТШ показал необходимость внесения в нее ряда уточнений и дополнений, чтобы по возможности максимально приблизить ее к термодинамической шкале. Поэтому МТШ была пересмотрена и приведена в соответствие с состоянием знаний того времени. В 1960 году было утверждено новое "Положение о международной практической температурной шкале 1948 года. Редакция 1960 г.".
2. СОВРЕМЕННАЯ МЕЖДУНАРОДНАЯ ТЕМПЕРАТУРНАЯ ШКАЛА
Опыт применения Международной температурной шкалы показал на необходимость внесения в нее ряда уточнений и дополнений, чтобы по возможности максимально приблизить ее к термодинамической шкале.
В 1948 г. МТШ была пересмотрена и приведена в соответствие *с состоянием знаний того времени. В 1960 г. Международный комитет мер и весов принял исправленные числовые значения температур шкалы 1948 г. и утвердил новое «Положение о международной практической температурной шкале 1948 г. Редакция 1960 г.».
Рис. 1. Схема фазовых состояний воды (в безмасштабном изображении): ж _ зона жидкой фазы; П -- зона паровой фазы; К -- зона кристаллической фазы; 1 -- тройная точка; 2 -- точка плавления льда; 3 -- точка кипения воды
Международная практическая температурная шкала (МПТШ), так же как и МТШ, базируется на шести постоянных первичных точках. Однако в МПТШ были внесены следующие уточнения;
1) вместо точки плавления льда рекомендуется в качестве постоянной точки использовать лучше воспроизводимую точку равновесия между льдом, жидкой водой и водяным паром (тройную точку воды), которой присваивалось численное значение +0,01° (рис. 1); точка плавления льда
с присвоенным ей числовым значением 0,000° была отнесена к категории вторичных постоянных точек;
температуре равновесия между твердым и жидким серебром (точке затвердевания серебра) присваивалось новое числовое значение 960,8°;
все постоянные точки (кроме тройной точки воды) определяются в состоянии равновесия при одной нормальной атмосфере, равной давлению 101 325 н/м2;
вместо точки кипения серы рекомендуется применять точку равновесия между твердым и жидким цинком (точка затвердевания цинка), которой присваивается значение 419,505°С.
Температуры по МПТШ выражаются в градусах Цельсия, обозначаемых °С или, когда требуется особо подчеркнуть, что температуры даются по МПТШ -- °С (межд. 1948), что соответственно обозначается символами t и tмежд.
Для термодинамической шкалы Кельвина температуры обозначаются символом Т, а числовые значения сопровождаются значком °К. Температура тройной точки принимается равной 273,16°К.
За 25 лет применения Международной температурной шкалы (МТШ), старая шкала Цельсия, основанная на использовании линейной зависимости между температурой и видимым расширением ртути, вышла из употребления.
Это позволило градусы по МПТШ называть градусами Цельсия, хотя от старой шкалы Цельсия в МПТШ остались лишь две постоянные точки: плавления льда и кипения воды с присвоенными им значениями 0 и 100°С.
Таблица 1
Некоторые определяющие постоянные точки МПТШ-68
№ точки |
Состояния равновесия |
Присвоенные значения температуры |
||
К |
0С |
|||
1 |
Между твердой, жидкой и газообразной фазами равновесного водорода (тройная точка равновесного водорода) |
13,81 |
-59,34 |
|
6 |
Между жидкой и газообразной фазами кислорода (точка кипения кислорода) |
90,188 |
-182,962 |
|
7 |
Между твердой, жидкой и парообразной фазами воды (тройная точка воды) |
273,16 |
0,01 |
|
8 |
Между жидкой и парообразной фазами воды (точка кипения воды) |
373,15 |
100 |
|
9 |
Между твердой и жидкой фазами цинка (точка затвердевания цинка) |
692,73 |
419,58 |
|
10 |
Между твердой и жидкой фазами серебра (точка затвердевания серебра) |
1235,08 |
961,93 |
|
11 |
Между твердой и жидкой фазами золота (точка затвердевания золота) |
1337,58 |
1064,43 |
В 1968.г. Международный комитет мер и весов, в соответствии с решением XIII Генеральной конференции по мерам и весам, принял новую Международную практическую шкалу 1968 г. -- МПТШ-68, заменяющую действующую шкалу МПТШ (1948 г.).
МПТШ-68 выбрана таким образом, чтобы температура, измеренная по этой шкале, была близка к термодинамической температуре, и разности между ними оставались в пределах современной точности измерений.
Основная единица термодинамической температуры Т названа кельвин и обозначается символом К - Кельвин есть 1/273,16 часть термодинамической температуры тройной точки воды. Единица, применяемая для выражения температуры Цельсия, градус Цельсия (°С), равна кельвину. Разность температур может быть выражена либо в Кельвинах, либо в градусах Цельсия.
Температура Цельсия / = Т -- 273,15К.
МПТШ-68 основана на значениях температур, присвоенных определенному числу воспроизводимых состояний (определяющих постоянных точек), часть которых приведена в табл. 2. По МПТШ-68 значительно расширен диапазон измерения низких температур--до 13,81 К. Уточнен порядок воспроизводства постоянных точек, интерполяции между постоянными точками и определения температурной шкалы выше последней постоянной точки (проект ГОСТа «Единицы физических величин»).
МПТШ-68 введена, как обязательная, с 1 января 1971 г.
3. УСТРОЙСТВА ДЛЯ ИЗМЕРЕНИЯ ТЕМПЕРАТУР
Температуру измеряют с помощью устройств, использующих различные термометрические свойства жидкостей, газов и твердых тел. Существуют десятки различных устройств применяемых в промышленности, при научных исследованиях, для специальных целей.
В таблице 2 приведены наиболее распространенные устройства для измерения температуры и практические пределы их применения.
Таблица 2
Термометрическое свойство |
Наименование устройства |
Пределы длительного применения, 0С |
||
Нижний |
Верхний |
|||
Тепловое расширение |
Жидкостные стеклянные термометры |
-190 |
600 |
|
Изменение давления |
Манометрические термометры |
-160 |
60 |
|
Изменение электрического сопротивления |
Электрические термометры сопротивления. |
-200 |
500 |
|
Полупроводниковые термометры сопротивления |
-90 |
180 |
||
Термоэлектрические эффекты |
Термоэлектрические термометры (термопары) стандартизованные. |
-50 |
1600 |
|
Термоэлектрические термометры (термопары) специальные |
1300 |
2500 |
||
Тепловое излучение |
Оптические пирометры. |
700 |
6000 |
|
Радиационные пирометры. |
20 |
3000 |
||
Фотоэлектрические пирометры. |
600 |
4000 |
||
Цветовые пирометры |
1400 |
2800 |
4. Методы и технические средства измерения температуры
4.1 Термометры расширения и термометры манометрические
4.1.1 Жидкостные стеклянные термометры
Самые старые устройства для измерения температуры - жидкостные стеклянные термометры - используют термометрическое свойство теплового расширения тел. Действие термометров основано на различии коэффициентов теплового расширения термометрического вещества и оболочки, в которой она находится (термометрического стекла или реже кварца).
Размещено на http://allbest.ru
Жидкостный термометр состоит из стеклянных баллона 1, капиллярной трубки 3 и запасного резервуара 4 (рис. 2). Термометрическое вещество 2 заполняет баллон и частично капиллярную трубку. Свободное пространство в капиллярной трубке и в запасном резервуаре заполняется инертным газом или может находиться под вакуумом. Запасной резервуар или выступающая за верхним делением шкалы часть капиллярной трубки служит для предохранения термометра о порчи при чрезмерном перегреве.
В качестве термометрического вещества чаще всего применяют химически чистую ртуть. Она не смачивает стекла и остается жидкой в широком интервале температур. Кроме ртути в качестве термометрического вещества в стеклянных термометрах применяются и другие жидкости, преимущественно органического происхождения. Например: метиловый и этиловый спирт, керосин, пентан, толуол, галлий, амальгама таллия.
Основные достоинства стеклянных жидкостных термометров - простота употребления и достаточно высокая точность измерения даже для термометров серийного изготовления. К недостаткам стеклянных термометров можно отнести: плохую видимость шкалы (если не применять специальной увеличительной оптики) и невозможность автоматической записи показаний, передачи показаний на расстояние и ремонта.
Стеклянные жидкостные термометры имеют весьма широкое применение и выпускаются следующих основных разновидностей:
1. технические ртутные, с вложенной шкалой, с погружаемой в измеряемую среду нижней частью, прямые и угловые;
2. лабораторные ртутные, палочные или с вложенной шкалой, погружаемые в измеряемую среду до отсчитываемой температурной отметки, прямые, небольшого наружного диаметра;
3. жидкостные термометры (не ртутные);
4. повышенной точности и образцовые ртутные термометры;
5. электроконтактные ртутные термометры с вложенной шкалой, с впаянными в капиллярную трубку контактами для разрывания (или замыкания) столбиком ртути электрической цепи;
6. специальные термометры, в том числе максимальные (медицинские и другие), минимальные, метеорологические и другого назначения.
У лабораторных и других термометров, градуируемых и предназначенных для измерения при погружении в измеряемую среду до отсчитываемого деления, могут возникать систематические погрешности за счет выступающего столбика термометра. Если капиллярная трубка будет погружена в измеряемую среду не полностью, то температура выступающей части капиллярной трубки будет отличаться от температуры измеряемой среды, в результате возникнет погрешность измерения. Поправку в градусах на выступающий столбик в показания термометра можно внести по уравнению:
(1)
где - коэффициент видимого объемного теплового расширения термометрической жидкости в стекле , t - действительная температура измеряемой среды 0C, tв.с. - температура выступающего столбика, измеренная с помощью вспомогательного термометра 0С, n - число градусов в выступающем столбике.
У термометров, предназначенных для работы с неполным погружением, может возникнуть аналогичная систематическая погрешность, если температура окружающей среды, а следовательно, и выступающего столбика будут отличаться от его температуры при градуировке. Поправка , в этом случае
(2)
где - температура выступающего столбика при градуировке 0C (в первом приближении допустимо считать ), - средняя температура выступающего столбика 0С.
Поправки по (1) и (2) могут иметь большие значения у термометров с органическими термометрическими жидкостями, для которых коэффициент примерно на порядок выше, чем у ртутных термометров.
4.1.2 Манометрические термометры
Действие манометрических термометров основано на использовании зависимости давления вещества при постоянном объеме от температуры. Замкнутая измерительная система манометрического термометра состоит из (рис. 2) из чувствительного элемента, воспринимающего температуру измеряемой среды, - металлического термобаллона 1, рабочего элемента манометра 2, измеряющего давление в системе, длинного соединительного металлического капилляра 3.
Размещено на http://allbest.ru
При изменении температуры измеряемой среды давление в системе изменяется, в результате чего чувствительный элемент перемещает стрелку или перо по шкале манометра, отградуированного в градусах температуры. Манометрические термометры часто используют в системах автоматического регулирования температуры, как бесшкальные устройства информации (датчики).
Манометрические термометры подразделяют на три основных разновидности:
1. жидкостные, в которых вся измерительная система (термобаллон, манометр и соединительный капилляр) заполнены жидкостью;
2. конденсационные, в которых термобаллон заполнен частично жидкостью с низкой температурой кипения и частично - ее насыщенными парами, а соединительный капилляр и манометр - насыщенными парами жидкости или, чаще, специальной передаточной жидкостью;
3. газовые, в которых вся измерительная система заполнена инертным газом.
Достоинствами манометрических термометров являются сравнительная простота конструкции и применения, возможность дистанционного измерения температуры и возможность автоматической записи показаний. К недостаткам манометрических термометров относятся: относительно невысокая точность измерения (класс точности 1.6; 2.5; 4.0 и реже 1.0); небольшое расстояние дистанционной передачи показаний (не более 60 метров) и трудность ремонта при разгерметизации измерительной системы.
Манометрические термометры не имеют большого применения на тепловых электрических станциях. В промышленной теплоэнергетике они встречаются чаще, особенно в случаях, когда по условиям взрыво - или пожаробезопасности нельзя использовать электрические методы дистанционного измерения температуры.
Поверка показаний манометрических термометров производится теми же методами и средствами, что и стеклянных жидкостных.
4.1.3 Погрешности и поверка жидкостных стеклянных термометров
Допустимые погрешности измерения технических термометров не должны превышать одного деления (цены деления) шкалы. Так, для пределов измерения от 0 до 100°С при цене деления в 1 или 2°С допустимая погрешность составляет ±1 или ±2°С
Для остальных разновидностей термометров допустимые погрешности при одной и той же цене деления устанавливаются различными для разных температурных интервалов. Так, например, у лабораторных термометров с ценой деления шкалы ОГС и пределами измерения от 0 до +50°С допустимая погрешность составляет ±0,2°С, а для пределов измерения от +250 до +300ЪС возрастает до ±0,8°С.
Допустимая погрешность показаний у образцовых термометров много ниже. Так, например, для температурного интервала от 0 до + 60°С, при цене деления шкалы О.ОГС допустимая погрешность не должна превышать ±0,03°С. Для других методов измерения температуры такие ничтожные погрешности практически не достижимы.
Поверка показаний жидкостных термометров производится в термостатах* путем сличения с образцовыми приборами более высокого класса точности.
Поверка положения нулевой точки в ледяном термометре обязательна для всех термометров, на шкале которых она нанесена. Нулевую точку поверяют обычно дважды: до начала поверки шкалы и сразу после поверки ее максимальной отметки. Положения нулевой точки в обоих случаях могут не совпадать за счет явления термического последействия (когда стекло не сразу принимает те размеры, которые соответствуют нулевой температуре). Современные термометры в процессе изготовления подвергаются искусственному старению и отжигу, что снижает температурную депрессию за счет термического последействия до значения, не превышающего обычно максимально допустимую погрешность термометра.
Поверка в точке кипения воды производится в паровом термостате * (водяном кипятильнике). Температуру определяют по величине атмосферного давления с поправкой на избыточное давление в кипятильнике.
Для поверки отрицательных температур до минус 80°С используют криостат, заполняемый спиртом или другой незамерзающей жидкостью. Температуры в интервале от +1 до +95°С поверяют в водяном, в интервале от +95 до 300°С -- в масляном и в интервале от 300 до 600°С -- в солевом термостате.
У лабораторных и других термометров, градуируемых и предназначенных для измерения при погружении в измеряемую среду до отсчитываемого деления, могут возникать систематические погрешности за счет выступающего столбика термометра. Если капиллярная трубка будет погружена в измеряемую среду не полностью (рис. 4), то температура выступающей части капиллярной трубки будет отличаться от температуры измеряемой среды, в результате возникнет погрешность измерения. Поправку в градусах на выступающий столбик в показания термометра можно внести по уравнению
Рис. 4. Возможные случаи погружения термометра в измеряемую среду:
а -- полное; б -- с выступающим столбиком
(1)
где -- коэффициент видимого объемного теплового расширения термометрической жидкости в стекле, град-1 ; t -- действительная температура измеряемой среды, °С; tв.с -- температура выступающего столбика, измеренная с помощью вспомогательного термометра, °С; n -- число градусов в выступающем столбике. У термометров, предназначенных для работы с неполным погружением, может возникнуть аналогичная систематическая погрешность, если температура окружающей среды, а, следовательно, и выступающего столбика будет отличаться от его температуры при градуировке. Поправка, град, в этом случае
(2)
где t' -- температура выступающего столбика при градуировке, °С (в первом приближении допустимо считать t'=+20°C); t" -- средняя температура выступающего столбика, °С.
Поправки по (1) и (2) могут иметь большие значения у термометров с органическими термометрическими жидкостями, для которых коэффициент у примерно на порядок выше, чем у ртутных термометров.
4.2 Термоэлектрические термометры
Для измерения температуры в металлургии наиболее широкое распространение получили термоэлектрические термометры, работающие в интервале температур от -200 до +2500 0C и выше. Данный тип устройств характеризует высокая точность и надежность, возможность использования в системах автоматического контроля и регулирования параметра, в значительной мере определяющего ход технологического процесса в металлургических агрегатах.
Размещено на http://allbest.ru
Сущность термоэлектрического метода заключается в возникновении ЭДС в проводнике, концы которого имеют различную температуру. Для того, чтобы измерить возникшую ЭДС, ее сравнивают с ЭДС другого проводника, образующего с первым термоэлектрическую пару AB (рис. 3), в цепи которой потечет ток.
Результирующая термо-ЭДС цепи, состоящей из двух разных проводников A и B (однородных по длине), равна
или
(1)
где и - разности потенциалов проводников A и B соответственно при температурах t2 и t1, мВ.
Термо-ЭДС данной пары зависит только от температуры t1 и t2 и не зависит от размеров термоэлектродов (длины, диаметра), величин теплопроводности и удельного электросопротивления.
Для увеличения чувствительности термоэлектрического метода измерения температуры в ряде случаев применяют термобатарею: несколько последовательно включенных термопар, рабочие концы которых находятся при температуре t2, свободные при известной и постоянной температуре t1.
4.2.1 Устройство термоэлектрических термометров
Термоэлектрический термометр (ТТ) - это измерительный преобразователь, чувствительный элемент которого (термопара) расположен в специальной защитной арматуре, обеспечивающий защиту термоэлектродов от механических повреждений и воздействия измеряемой среды.
Размещено на http://allbest.ru
На (рис. 5) показана конструкция технического ТТ. Арматура включает защитный чехол 1, гладкий или с неподвижным штуцером 2, и головку 3, внутри которой расположено контактное устройство 4 с зажимами для соединения термоэлектродов 5 с проводами, идущими от измерительного прибора к термометру. Термоэлектроды по всей длине изолированы друг от друга и от защитной арматуры керамическими трубками (бусами) 6.
Защитные чехлы выполняются из газонепроницаемых материалов, выдерживающих высокие температуры и агрессивное воздействие среды. При температурах до 10000С применяют металлические чехлы из углеродистой или нержавеющей стали, при более высоких температурах - керамические: фарфоровые, карбофраксовые, алундовые, из диборида циркония и т. п.
В качестве термоэлектродов используется проволока диаметром 0.5 мм (благородные металлы) и до 3 мм (неблагородные металлы). Спай на рабочем конце 7 термопары образуется сваркой, пайкой или скручиванием. Последний способ используется для вольфрам-рениевых и вольфрам-молибденовых термопар.
Термоэлектрические термометры выпускаются двух типов: погружаемые, поверхностные. Промышленность изготавливает устройства различных модификаций, отличающихся по назначению и условиям эксплуатации, по материалу защитного чехла, по способу установки термометра в точке измерения, по герметичности и защищенности от действия измеряемой среды, по устойчивости к механическим воздействиям, по степени тепловой инерционности и т. п.
4.2.2 Стандартные и нестандартные термоэлектрические термометры
Для измерения в металлургии наиболее широко применяются ТТ со стандартной градуировкой: платинородий-платиновые (ТПП), платинородий-платинородиевые (ТПР), хромель-алюмелевые (ТХА), хромель-капелевые (ТХК), вольфрамрений-вольфрамрениевые (ТВР). В ряде случаев используют также ТТ с нестандартной градуировкой: медь-константановые, вольфрам-молибденовые (ТВР) и др. На (рис. 6) приведены градуировочные кривые ряда термопар.
Размещено на http://allbest.ru
В условиях длительной эксплуатации при высоких температурах и агрессивном воздействии сред появляется нестабильность градуировочной характеристики, которая является следствием ряда причин: загрязнения материалов термоэлектродов примесями из защитных чехлов, керамических изоляторов и атмосферы печи; испарения одного из компонентов сплава; взаимной диффузии через спай. Величина отклонения может быть значительной и резко увеличивается с ростом температуры и длительностью эксплуатации. Указанные обстоятельства необходимо учитывать при оценке точности измерения температуры в производственных условиях.
4.2.3 Поверка технических ТТ
Поверка ТТ сводится к определению температурной зависимости термо-ЭДС и сравнению полученной градуировки со стандартными значениями.
Градуировка производится двумя методами: по постоянным точкам или сличениям.
Градуировка по постоянным (реперным) точкам является наиболее точной и применяется для образцовых термопар. Поверяемую термопару помещают в тигель с металлом высокой чистоты, установленной в печи, и регистрируют площадку на кривой изменения термо-ЭДС по мере повышения или понижения температуры металла. Данная площадка соответствует температуре плавления или кристаллизации металла, причем более предпочтительно вести градуировку по точке кристаллизации. В качестве реперных металлов используют золото, палладий, платину и др.
Размещено на http://allbest.ru
Методом сличения проводится градуировка образцовых термопар второго разряда и технических ТТ. Он заключается в непосредственном измерении термо-ЭДС градуируемой термопары при постоянной температуре свободных концов t0=0 0C и различных температурах t2 рабочего спая, причем последняя определяется с помощью образцового термометра (термопары, пирометра излучения).
На (рис. 6) приведена схема установки для градуировки ТТ методом сличения с образцовой термопарой. Металлический блок служит для обеспечения равенства температур рабочих спаев образцовой и поверяемой термопар.
Измерения термо-ЭДС производят с помощью переносного потенциометра с точностью измерения (отсчета) не хуже 0.1 мВ. Отсчет проводится после 10 минут выдержки при данной температуре.
4.3 Электрические термометры сопротивления
В металлургической практике для измерения температур до 6500С применяются термометры сопротивления (ТС), принцип действия которых основан на использовании зависимости электрического сопротивления вещества от температуры. Зная данную зависимость, по изменению величины сопротивления термометра судят о температуре среды, в которую он погружен. Выходным параметром устройства является электрическая величина, которая может быть измерена с весьма высокой точностью (до 0.020С), передана на большие расстояния и непосредственно использована в системах автоматического контроля и регулирования.
В качестве материалов для изготовления чувствительных элементов ТС используются чистые металлы: платина, медь, никель, железо и полупроводники.
Изменение электросопротивления данного материала при изменении температуры характеризуется температурным коэффициентом сопротивления , который вычисляется по формуле
,(1)
где t - температура материала, 0С;
R0 и Rt - электросопротивление соответственно при 0 0С и температуре t, Ом.
Сопротивление полупроводников с увеличением температуры резко уменьшается, т. е. они имеют отрицательный температурный коэффициент сопротивления практически на порядок больше, чем у металлов. Полупроводниковые термометры сопротивления (ТСПП) в основном применяются для измерения низких температур (1.5 400 К).
Достоинствами ТСПП являются небольшие габариты, малая инерционность, высокий коэффициент . Однако они имеют и существенные недостатки:
нелинейный характер зависимости сопротивления от температуры;
отсутствие воспроизводимости состава и градуировочной характеристики, что исключает взаимозаменяемость отдельных ТС данного типа. Это приводит к выпуску ТСПП с индивидуальной градуировкой.
4.3.1 Платиновые термометры сопротивления
Технические термометры (тип ТСП) чаще всего выполняются в конструктивной форме, показанной на рис. 7.
Неизолированную платиновую проволоку 1 диаметром 0,07 мм бифилярно наматывают на слюдяную пластинку 2 с зубчатыми краями. Бифилярная намотка необходима для того, чтобы исключить появление индуктивного сопротивления. Пластинка с намотанной на ней платиновой проволокой покрывается с двух сторон слюдяными пластинками таких же размеров. Все три пластинки скрепляются серебряной лентой 4 в пакет. К каждому концу платиновой проволоки приваривается подводящий провод 3 из серебра диаметром 1 мм. Подводящие провода изолируются фарфоровыми бусами 5 и присоединяются к зажимам на головке термометра. Такой чувствительный элемент помещают в тонкостенную алюминиевую трубку 6 (рис. 7), в нижней части которой расположен массивный вкладыш 7 с плоской прорезью для чувствительного элемента. Вкладыш улучшает условия теплопередачи от трубки к чувствительному элементу. Алюминиевую трубку вместе с подводящими проводами помещают во внешний защитный чехол 8, выполняемый обычно из стальной трубы.
Внешний вид и размеры термометров такие же, как и у термоэлектрических термометров. Длина чувствительного элемента во всех конструкциях обычно не меньше 90--100 мм.
Рис. 8. Конструктивная схема платиновых термометров сопротивления: а -- схема бифилярной намотки проволоки / на слюдяную пластинку 2; б--чувствительный элемент термометра в арматуре
У термометров с уменьшенной тепловой инерцией массивный вкладыш не применяется и пакет из трех слюдяных пластин помещается между двумя пружинящими лепестками из тонкого (0,1 мм) дюралюминия.
Термометры малоинерционные (с постоянной времени менее 9 сек) имеют чувствительный элемент иной конструкции: платиновая проволока, намотанная на
стеклянный стержень, оплавляется стеклом и помещается во внешний защитный чехол с наружным диаметром 10 мм.
У термометров, предназначенных для измерения отрицательных температур, алюминиевая трубка с чувствительным элементом заливается парафином для защиты от образования конденсата.
Термометры могут быть выполнены также двойными (с двумя электрически изолированными друг от друга чувствительными элементами и с четырьмя зажимами на головке термометра).
Платиновые технические термометры сопротивления (по ГОСТ 6651--59) выпускаются трех градуировок, отличающихся величиной сопротивления R0 при 0°С и пределами применения:
Для измерения низких температур от 12 до 95К. (приблизительно от --261 до -- 178°С) применяются специальные образцовые и лабораторные термометры сопротивления (ГОСТ 12877--67). Зависимость между сопротивлением и температурой устанавливается в этом случае по ГОСТ 12442--66.
Технические термометры поверяют обычно в двух точках: при 0°С в ледяном термостате и приблизительно при 100°С в паровом термостате. Критериями оценки качества термометров служат значения сопротивления R0 и отношения сопротивлений R100:R0
Таблица 4
Зависимость сопротивления платиновых термометров от температуры (градуировочные таблицы)
Температура, |
Сопротивление R для градуировки, Ом |
Температура, *С |
Сопротивление К для градуировки,. Ом |
|||
гр. 21 |
гр. 22 |
гр. 21 |
гр. 22 |
|||
-200 |
7,95 |
17,28 |
250 |
89,96 |
195,56 |
|
--150 |
17,85 |
38,80 |
300 |
98,34 |
213,79 |
|
-100 |
27,44 |
59,65 |
350 |
106,60 |
231,73 |
|
- 50 |
36,80 |
80,00 |
400 |
114,72 |
249,38 |
|
0 |
46,00 |
100,00 |
450 |
122,70 |
266,74 |
|
50 |
55,06 |
119,70 |
500 |
130,55 |
283,80 |
|
100 |
63,99 |
139,10 |
550 |
-- |
(300,58) |
|
150 |
72,78 |
158,21 |
600 |
-- |
(317,06) |
|
200 |
81,43 |
177,03 |
650 |
-- |
(333,25) |
Поверку производят по инструкциям 156--60 и 157--62 Государственного комитета стандартов, мер и измерительных приборов СССР.
4.3.2 Медные термометры сопротивления
Медные термометры изготовляют только технические (тип ТСМ) по ГОСТ 6651--59 и имеют обычно следующую конструктивную форму.
Медная изолированная проволока диаметром 0,1 мм наматывается, обычно бифилярно, в несколько слоев на цилиндрическую пластмассовую колодку и покрывается глифталевым лаком. Концы проволоки припаиваются к подводящим медным проводам диаметром 1,0--1,5 мм, которые присоединяются к зажимам головки термометра. Чувствительный элемент помещают в тонкостенную металлическую гильзу (рис. 8), а затем -- во внешний защитный чехол с наружным диаметром 10, 14 или 21 мм в рабочей части (рис. 9), общей длиной до 2000 мм.
Термометры, предназначенные для измерения температуры воздуха при атмосферном давлении, имеют перфорированный внешний защитный чехол (рис 9,б).
Рис. 8. Чувствительный элемент медного термометра сопротивления: а -- без защитной гильзы; б -- в защитной гильзе
Рис. 9. Внешний вид термометров сопротивления: а --в защитном чехле; б -- для измерений температуры воздуха при атмосферном давлении
Погрешности измерения температуры за счет отклонений от градуировочных зависимостей R = f(t) по табл. 5 не должны превышать:
для термометров класса II ..... = ±(0,30+3,5•10-3| t|) °С,
для термометров класса III …. = ± (0,30+60•10-3|t |) "С.
Полные градуировочные таблицы с интервалами температур в 1°С приведены в приложении к ГОСТ 6651--59.
Зависимость сопротивления медных термометров от температуры (градуировочные таблицы)
Таблица 4
Температура, °С |
Сопротивление К для градуировки, Ом |
Температура. 0С |
Сопротивление R для градуировки, ом |
|||
гр. 23 |
Гр. 24 |
гр. 23 |
гр. 24 |
|||
--50 |
41,71 |
78,70 |
+ 75 |
69,93 |
131,95 |
|
-25 |
47,36 |
89,35 |
+100 |
75,58 |
142,60 |
|
0 |
53,00 |
100,00 |
+125 |
81,22 |
153,25 |
|
+25 |
58,65 |
110,65 |
+150 |
86,87 |
163,90 |
|
+50 |
64,29 |
121,30 |
+180 |
93,64 |
176,68 |
4.3.3 Типы и конструкции ТС
Для решения различных задач ТС делятся на эталонные, образцовые и рабочие, которые в свою очередь подразделяются на лабораторные и технические.
Эталонные ТС предназначены для воспроизведения и передачи шкалы МПТШ в интервале 13.81 903.89 К.
Размещено на http://allbest.ru
Технические ТС в зависимости от назначения и конструкции делятся на: погружаемые, поверхностные и комнатные; защищенные и не защищенные от действия агрессивной среды; стационарные и переносные; термометры 1-го, 2-го и 3-го классов точности и т. д. На (рис. 10) представлены конструкции промышленных ТС с неподвижным (а) и подвижным (б) штуцерами. Термометр состоит из чувствительного элемента 1, расположенного в защитном стальном чехле 3, на котором приварен штуцер 2 с резьбой М27х2. Провода 4, армированные фарфоровыми бусами 6, соединяют выводы чувствительного элемента с клеммной колодкой 5, находящейся в корпусе головки 7. Сверху головка закрыта крышкой 8, снизу имеется сальниковый ввод 9, через который осуществляется подвод монтажного кабеля 10. При измерении температуры сред с высоким давлением на чехол ТС устанавливается специальная защитная (монтажная) гильза 12.
Размещено на http://allbest.ru
Чувствительный элемент ТС выполнен из металлической тонкой проволоки с безындукционной каркасной или бескаркасной намоткой.
Значительно реже в металлургической практике встречаются полупроводниковые термометры сопротивления (ТСПП) для измерения температуры (-90)(+180) 0С. Их применяют в термореле, низкотемпературных регуляторах, обеспечивающих высокоточную стабилизацию чувствительных элементов газоанализаторов, хроматографов, корпусов пирометров, электродов термоэлектрических установок для экспресс-анализа состава металла и т. п.
4.4 Мостовые схемы измерения сопротивления термометров
температура шкала регистратор поверка
Для измерения сопротивления используют четырехплечие уравновешенные (ручные или автоматические) и неуравновешенные мосты.
4.4.1 Уравновешенный мост
Уравновешенный мост, принципиальная схема которого приведена на (рис. 11а), используется для определения величины сопротивления при градуировке ТС и при измерениях температуры в лабораторных условиях.
Нулевой метод измерения характеризуется высокой точностью, так как исключается влияние окружающей температуры, магнитных полей и изменения напряжения батареи питания Б. Однако значительная погрешность может возникать при изменении сопротивления соединительных проводов Rл, что вызывается значительными сезонными и суточными колебаниями температуры в местах прохождения кабеля, соединяющего ТС и измерительный мост.
На (рис. 11б) представлена трехпроводная схема включения ТС, в которой одна вершина диагонали питания (В) перенесена непосредственно к термометру. Для равновесия можно записать
,
откуда
(2)
Сопротивление проводов Rл оказываются включенными в различные плечи моста, поэтому изменение их величины Rл практически взаимно компенсируются.
4.4.2 Неуравновешенный мост
Неуравновешенный мост исключает необходимость выполнения ручных операций по изменению величины R3. В нем вместо нуль-прибора G в диагональ моста AC устанавливается миллиамперметр. При постоянном напряжении питания и постоянных сопротивлениях R1, R2, R3 через этот прибор протекает ток, величина которого зависит (нелинейно) от изменения RТ. Использование данных мостов для измерения температуры ограниченно. В основном они применяются для преобразования сопротивления термометра в напряжение.
4.4.3 Автоматические уравновешенные мосты
Автоматические уравновешенные мосты широко используются для измерения и регистрации температуры в комплекте с ТС. Их характеризует высокая точность и возможность использования в системах автоматического регулирования. Они выпускаются различных модификаций: одно- и многоточечные, с дисковой или ленточной диаграммой, с сигнальными устройствами и др.
Размещено на http://allbest.ru
На (рис. 12) приведена принципиальная схема автоматического уравновешенного моста, который, так же как ручной равновесный мост, реализует нулевой метод измерения сопротивления.
Термометр сопротивления Rt подключен к прибору по трехпроводной схеме. В измерительную схему моста входят уравновешивающий реохорд Rр с шунтирующим его резистором Rш (ограничивает ток, текущий по реохорду); резисторы Rн и Rк, определяющие начало и конец шкалы; спирали rн и rк, обеспечивающие точную подгонку диапазона шкалы и являющиеся частью резисторов Rн и Rк; резисторы R1, R2 и R3, образующие постоянные плечи моста; TC Rt, являющийся переменным плечом; балластный резистор Rб, который ограничивает ток в мостовой схеме и обеспечивает минимальный нагрев ТС; подгоночный резисторы Rп1 и Rп2, обеспечивающие сопротивление подводящей линии Rл=5 Ом (каждый из двух соединительных проводов имеет сопротивление 2.5 Ом).
Электронный усилитель переменного тока ЭУ включен в диагональ ab и обеспечивает усиление разбаланса, возникающего в измерительной схеме при изменении сопротивления ТС Rt. Усиленный сигнал поступает на вход реверсивного двигателя РД, который вращением вала заставляет перемещаться подвижную каретку регистрирующего устройства е и движок реохорда Rр. Вращение вала происходит до тех пор, пока не наступит новое равновесие схемы; напряжение разбаланса станет равным 0, сигнал на входе РД также исчезнет и двигатель остановится.
Питание измерительной схемы моста производится через диагональ d с помощью силового трансформатора ЭУ переменным током напряжением 6.3 В и частотой 50 Гц. Синхронный двигатель СД перемещает диаграммную бумагу относительно пера или печатающего устройства с постоянной скоростью.
Список литературы
Преображенский В. П. Теплотехнические измерения и приборы. М.: Энергия, 1978, - 704 с.
Чистяков С. Ф., Радун Д. В. Теплотехнические измерения и приборы. М.: Высшая школа, 1972, - 392 с.
Размещено на Allbest.ru
...Подобные документы
Разработка и совершенствование технологий измерения температуры с использованием люминесцентных, контактных и бесконтактных методов. Международная температурная шкала. Создание спиртовых, ртутных, манометрических и термоэлектрических термометров.
курсовая работа [476,6 K], добавлен 07.06.2014Понятие измерения в теплотехнике. Числовое значение измеряемой величины. Прямые и косвенные измерения, их методы и средства. Виды погрешностей измерений. Принцип действия стеклянных жидкостных термометров. Измерение уровня жидкостей, типы уровнемеров.
курс лекций [1,1 M], добавлен 18.04.2013Характеристика величины, характеризующей тепловое состояние тела или меры его "нагретости". Причина Броуновского движения. Прародитель современных термометров, их виды. Единицы измерения температуры, типы шкал. Эксперимент по изготовлению термоскопа.
презентация [297,1 K], добавлен 14.01.2014Измерение температуры с помощью мостовой схемы. Разработка функциональной схемы измерения температуры с применением термометра сопротивления. Реализация математической модели четырехпроводной схемы измерения температуры с использованием источника тока.
курсовая работа [1,4 M], добавлен 19.09.2019Основные сведения о температуре и температурных шкалах, возможность проводить измерение. Использование на практике термометров и требования к средствам измерений, входящих в состав государственных эталонов соответствующих диапазонов температуры.
реферат [19,7 K], добавлен 27.03.2009Средства измерения температуры. Характеристики термоэлектрических преобразователей. Принцип работы пирометров спектрального отношения. Приборы измерения избыточного и абсолютного давления. Виды жидкостных, деформационных и электрических манометров.
учебное пособие [1,3 M], добавлен 18.05.2014Определение температуры как параметра теплового состояния, значение которого обуславливается средней кинетической энергией поступательного движения молекул данного тела. Принятие Международной практической температурной шкалы и классификация термометров.
реферат [577,8 K], добавлен 02.02.2012Принцип работы электрических, жидкостных, механических, газовых и оптических термометров. Особенности создания абсолютной шкалы температур английским физиком Вильямом Томсоном. Изобретение первого термометра Галилеем и схематический принцип его действия.
презентация [855,2 K], добавлен 20.11.2011Изобретение Галилео Галилеем термоскопа (первого термометра) в 1592 году. Вклад в развитие конструкции термометров Г.Д. Фаренгейта. Биография шведского астронома и физика Андерса Цельсия. Температурная шкала Цельсия, определение величины градуса по ней.
презентация [443,6 K], добавлен 23.11.2010С ростом температуры кристалла за счет теплового расширения постоянная решетки увеличивается. Поэтому при повышении температуры у полупроводников, как правило, запрещенная зона уменьшается.
реферат [10,8 K], добавлен 22.04.2006Магнитоэлектрические измерительные механизмы. Метод косвенного измерения активного сопротивления до 1 Ом и оценка систематической, случайной, составляющей и общей погрешности измерения. Средства измерения неэлектрической физической величины (давления).
курсовая работа [407,8 K], добавлен 29.01.2013Датчики температуры с терморезисторами (термометры сопротивления). Металлические и полупроводниковые терморезисторы, их чувствительные элементы. Номинальные функции преобразования (статические характеристики) медных и платиновых терморезисторов.
курсовая работа [334,6 K], добавлен 27.08.2010Понятие и источники теплового излучения, его закономерности. Классификация пирометрических методов и приборов измерения температур. Устройство и принцип работы пирометра типа ОППИР-09, методика проведения его поверки, возможные поломки и их ремонт.
курсовая работа [794,4 K], добавлен 02.12.2012Основные шкалы измерения температуры. Максимальное и минимальное значение в условиях Земли. Температура среды обитания человека. Температурный фактор на территории Земли. Распределение температуры в различных областях тела в условиях холода и тепла.
доклад [1,0 M], добавлен 18.03.2014Определение максимальной в заданном диапазоне температуры погрешность нелинейности характеристики, необходимость линеаризации. Определение разрядности аналого-цифрового преобразования термопары ТХА(К), принцип его работы, функциональная схема прибора.
курсовая работа [126,3 K], добавлен 30.11.2009Проведение экспериментального исследования по определению зависимости изменения сопротивления медного проводника от повышения температуры. Построение графической зависимости этих величин. Табличные значения термических коэффициентов других проводников.
презентация [257,5 K], добавлен 18.09.2013Методики, используемые при измерении температур пламени: контактные - с помощью термоэлектрического термометра, и бесконтактные - оптические. Установка для измерения. Перспективы применения бесконтактных оптических методов измерения температуры пламени.
курсовая работа [224,1 K], добавлен 24.03.2008Оценка неисключенной систематической погрешности результата эксперимента. Предел измерения используемых микроамперметров. Поверка после ремонта вольтметра класса точности 1,5. Функциональная схема цифрового вольтметра поразрядного уравновешивания.
контрольная работа [193,7 K], добавлен 17.11.2015Определение линейного теплового потока методом последовательных приближений. Определение температуры стенки со стороны воды и температуры между слоями. График изменения температуры при теплопередаче. Число Рейнольдса и Нусельта для газов и воды.
контрольная работа [397,9 K], добавлен 18.03.2013Понятие сверхпроводников и их отличия. Основные моменты их окрытия и исследования. Особенности поведения сопротивления в зависимости от температуры. Определение критической температуры и магнитного поля. Классификация и примеры сверхпроводников.
презентация [0 b], добавлен 12.03.2013