Основы автоматизированного электрического привода

Схема автоматизированной системы, предназначенной для преобразования электрической энергии в механическую и обратно. Направления развития современного электрического привода. Его достоинства в технических решениях. Классификация приводных механизмов.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 24.01.2014
Размер файла 155,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Определение понятия "электропривод"

2. Теории и практики электропривода

3. Классификация электроприводов

4. Режимы работы электропривода

Заключение

Перечень использованной литературы

Введение

Научно-технический прогресс, автоматизация и комплексная механизация технологических и производственных процессов определяют постоянное совершенствование и развитие современного электрического привода (ЭП). В первую очередь это относится к все более широкому внедрению автоматизированных ЭП с использованием разнообразных силовых полупроводниковых преобразователей и микропроцессорных средств управления. Постоянно появляются и новые типы электрических машин и аппаратов, датчиков координат переменных и других компонент, применяемых в ЭП.

Расширение и усложнение выполняемых функций ЭП, использование в них новых элементов и устройств, все более широкое включение ЭП в системы автоматизации технологических процессов требуют высокого уровня подготовки специалистов, занимающихся их проектированием, монтажом, наладкой и эксплуатацией.

Историю ЭП обычно начинают отсчитывать с разработки русским академиком Б.С. Якоби первого двигателя постоянного тока вращательного движения. Установка этого двигателя на небольшой катер, который в 1838 году совершил испытательные рейсы по Неве, является первым примером реализации ЭП. В дальнейшем ЭП стали применять, например, для наведения артиллерийской установки, перемещения электродов дуговой лампы, привода швейной машинки. Однако из-за отсутствия экономичных источников электроэнергии постоянного тока ЭП долгое время не находил широкого применения и основным являлся тепловой привод. Не изменило кардинально этого положения и создание в 1870 году промышленного электрического генератора постоянного тока, а также появление однофазной системы переменного тока.

Толчком к развитию ЭП явилась разработка в 1889 году М.О. Доливо-добровольского системы трехфазного тока и появление трехфазного асинхронного электродвигателя, что создало технические и экономические предпосылки для широкого использования электрической энергии, а значит, и ЭП.

Первой научной работой по теории электропривода явилась опубликованная в 1880 году в журнале "Электричество" статья русского инженера Д.А. Лачинова "Электромеханическая работа", в которой на научной основе были показаны преимущества электрического распределения механической энергии. В современном промышленном и сельскохозяйственном производстве, на транспорте, в строительстве, в быту применяются разнообразные технологические процессы, для реализации которых человеком созданы тысячи различных машин и механизмов.

Электрификация нашей страны и широкое применение в народном хозяйстве электроприводов началось после победы Великой Октябрьской революции, а точнее в 1920 г начал реализовываться государственный план электрификации РСФСР - плана ГОЭЛРО, который предусматривает широкое строительство новых и реконструкцию старых электростанций, строительство новых линий электропередач, развитие электротехнической промышленности.

Дальнейшее развитие электрификации и автоматизации технологических процессов, создание высокопроизводительных машин, механизмов и технологических комплексов во многом определяется развитием электрического привода.

Одновременно происходило дальнейшее развитие и теории электропривода. Впервые как самостоятельная дисциплина теория электропривода представлена в книге С.А. Ринкевича "Электрическое распределение механической энергии", вышедшей в 1925 году.

Возможности использования современных ЭП продолжают постоянно расширяться за счет достижений в смежных областях науки и техники - электромашиностроение и электроаппаратостроение, электронике и вычислительной технике, автоматике и механике. Такое широкое применение ЭП объясняется целым рядом его преимуществ по сравнению с другими видами приводов: использование электрической энергии, распределение и преобразование её в другие виды энергии, разнообразие конструктивного исполнения, что позволяет рационально соединять привод с исполнительным органом рабочей машины.

К основным направлениям развития современного ЭП относятся:

· разработка и выпуск комплектных регулируемых ЭП с использованием современных преобразователей и микропроцессорного управления;

· повышение эксплуатационной надежности, унификация и улучшение энергетических показателей ЭП;

· расширение области применения регулируемого асинхронного ЭП и использование ЭП с новыми типами двигателей, а именно линейными, шаговыми, вентильными, вибрационными, повышенного быстродействия, магнитогидродинамическими и другие.

· развитие научно-исследовательских работ по созданию математических моделей и алгоритмов технологических процессов. А также машинных средств проектирования ЭП;

· подготовка инженерно-технических и научных кадров, способных проектировать, создавать и эксплуатировать современный автоматизированный электропривод.

Решение этих и ряда других проблем позволит существенно улучшить технико-экономические характеристики ЭП и создать тем самым базу для дальнейшего технического прогресса во всех отраслях промышленного производства, транспорта, сельского хозяйства и в быту.

1. Определение понятия "электропривод"

Электрический привод представляет собой электромеханическое устройство, предназначенное для приведения в движение рабочего органа машины и управления ее технологическим процессом. Он состоит из трех частей: электрического двигателя, осуществляющего электромеханическое преобразование энергии, механической части, передающей механическую энергию рабочему органу машины, и системы управления, обеспечивающей оптимальное по тем или иным критериям управление технологическим процессом. Характеристики двигателя и возможности системы управления определяют производительность механизма, точность выполнения технологических операций, динамические нагрузки механического оборудования и ряд других факторов. С другой стороны, нагрузка механической части привода, условия движения ее связанных масс, точность передач и т. п. оказывают влияние на условия работы двигателя и системы управления, поэтому электрические и механические элементы электропривода образуют единую электромеханическую систему, составные части которой находятся в тесном взаимодействии.

Рисунок 1.1 - Схема автоматизированного электропривода

Свойства электромеханической системы оказывают решающее влияние на важнейшие показатели рабочей машины и в значительной мере определяют качество и экономическую эффективность технологических процессов. Развитие автоматизированного электропривода (рисунок 1.1) ведет к совершенствованию конструкций машин, к коренным изменениям технологических процессов, к дальнейшему прогрессу во всех отраслях народного хозяйства.

2. Теории и практики электропривода

Электрический привод обеспечивает все отрасли народного хозяйства механической энергией, полученной из электрической, осуществляет практически все технологические операции, связанные с механическим движением, во многом определяет технические возможности повышения производительности труда в сферах, связанных с использованием механической энергии, технический уровень технологических процессов и оборудования.

Электрический привод потребляет более 60 % всей вырабатываемой в стране электроэнергии, и энергетические аспекты его развития приобретают сегодня особое значение в связи с остро поставленной на ноябрьском (1982 задачей экономии энергетических ресурсов. Проблемы энергосбережения, активная энергосберегающая политика, занимающие центральное место в Энергетической программе, непосредственно относятся к электрическому приводу - "основному потребителю электрической энергии, выдвигают новые научно-технические задачи, которые предстоит решать специалистам. Отметим достоинства электрического привода:

1) мощность электродвигателя для привода рабочей машины может быть подобрана достаточно близкой к требуемой;

2) электрический двигатель в пожарном отношении менее опасен, чем, например, тепловой двигатель внутреннего сгорания;

3) электропривод позволяет быстро, а если нужно, то и часто, пускать и останавливать машину, плавно тормозить ее;

4) при изменении нагрузки на валу электродвигатель не требует специальных регуляторов подачи электроэнергии из сети. Увеличение подводимой к двигателю электроэнергии происходит автоматически с ростом нагрузки;

5) электропривод позволяет подобрать такой тип электродвигателя, механическая характеристика которого лучше, чем других двигателей, подходит к характеристике рабочей машины;

6) при электроприводе (воздействуя на электродвигатель, преобразователь или передачу) можно ступенчато или плавно регулировать частоту вращения рабочей машины в необходимых диапазонах;

7) электрический двигатель способен преодолевать длительные и значительные перегрузки, создаваемые рабочей машиной;

8) электрический привод позволяет получить наибольшую быстроходность и наивысшую производительность рабочей машины;

9) электрический двигатель позволяет экономить электроэнергию, а в отдельных случаях, при рекуперативном торможении, отдавать ее в электрическую сеть (при этом механическая энергия преобразуется в электрическую)

10) при электроприводе можно проще и полнее автоматизировать машины и установки;

11) электродвигатель имеет более высокий К.П.Д. по сравнению с другими типами двигателей;

12) электродвигатели выпускают с высокой степенью уравновешенности, что позволяет встраивать их в рабочие машины, облегчать фундамент, а иногда и полностью отказываться от фундамента.

Из громадного многообразия технологических объектов, обслуживаемых электроприводом, и применяемых технических решений выделим в целях анализа перспектив и тенденций развития электропривода две типичные технические ситуации. Первая ситуация: в объекте, обслуживаемом электроприводом, должны осуществляться с высокой скоростью и точностью сложные и разнообразные пространственные движения. Характерными примерами таких объектов могут, служить современные станки с ЧПУ, роботы, линии производства микросхем, установки гибких автоматизированных производств в различных отраслях промышленности и т.п. Вторая ситуация: объект, снабженный электроприводом, предполагает простые виды движения, предъявляет ограниченные требования к диапазонам регулирования координат и качеству управления движением или вовсе не требует управления движением.

Этой ситуации, как известно, соответствует подавляющее большинство современных технологических установок и производственных машин во всех отраслях народного хозяйства. Мощности основной части приводов здесь составляют единицы - десятки киловатт, число - миллионы. Очевидно, что тенденции развития электропривода в двух названных ситуациях существенно различны.

Рассмотрим подробнее первую ситуацию. Сочетание сложности движения с высокими требованиями к его качеству (точность, быстродействие) приводит к необходимости интеграции привода с рабочей машиной. Привод здесь должен быть узко специализирован, в ряде случаев уникален. Опыт развития техники в нашей стране и за рубежом убедительно показывает, что серьезные успехи достигаются именно на этом пути.

Приведем в качестве примера привод технологических установок для производства микросхем. Переход от традиционных решений (вращающиеся двигатели - передачи винт - гайка - рабочие органы) к многокоординатному прецизионному дискретному электроприводу в модульном исполнении с интеграцией электромеханических модулей с технологическими узлами установок позволил создать новое поколение технологических линий, обеспечивающих существенное в 5-10 раз повышение производительности, процента выхода годных изделий, рост их качества, коренное улучшение условий труда работающих, дало экономический эффект в десятки миллионов рублей в год.

Другими примерами достижения принципиально новых свойств технологического оборудования за счет специальных, нетрадиционных решений привода, интегрированного с технологическими узлами оборудования, могут служить специализированные электромеханизмы для металлообрабатывающих станков, разрабатываемые в Новосибирском электротехническом институте, МГД-приводы, интегрированные с конструктивами установок для транспортировки и дозированной разливки жидких металлов, созданные в Таллинском политехническом институте, и др. Приведенные примеры, однако, лишь подчеркивают тенденцию.

Фактически же сделано здесь еще немного. Ждут своего решения непростые вопросы создания эффективных приводов промышленных роботов, ряда станков, узлов гибких автоматизированных производств, многих других ответственных установок.

Развитие указанной тенденции предполагает решение многих сложных задач, связанных с типизацией технологического оборудования, обоснованием необходимости и уровня интеграции привода и машины, разработкой и детальным всесторонним исследованием принципиально новых технических решений привода в целом и его электрических, электромеханических и механических модулей. В практическом плане исключительно важна координация усилий различных отраслей по созданию таких устройств, отвечающих мировым стандартам.

Очевидно, что настоящие успехи в области создания оборудования, о котором идет речь, невозможны без соответствующих инженерных кадров. В этой связи необходимо развивать электротехническую подготовку, и в частности подготовку по электроприводу конструкторов различного механического оборудования (специальности 05 группы), создавать учебники, отражающие современный уровень электропривода, тенденции его развития и приспособленные к специфике конструкторских специальностей.

Вторая из названных выше характерных технических ситуаций относится к обычному "неэкзотическому" электроприводу, отличающемуся массовостью со всеми вытекающими отсюда последствиями. Главной тенденцией его развития можно считать расширение спектра технических требований при одновременной универсализации технических, конструктивных и технологических решений привода как комплектного изделия.

Начнем рассмотрение с массового общепромышленного регулируемого электропривода. На первый план в таком приводе в связи с резким увеличением потребности в нем наряду с проблемой надежности выдвинулась проблема энергетической эффективности, экономии материальных и трудовых ресурсов в сфере как его производства, так и применения. По-прежнему остро стоит проблема комплектности и заводской готовности.

Очевидно, что разработчики машин и технологических установок должны иметь достаточный набор комплектных технических решений, отвечающих наиболее характерным для современных общепромышленных установок требованиям, имеющих модульное исполнение на универсальной элементной базе, снабженных исчерпывающими и удобными для пользователей паспортными данными. Вместе с тем, несмотря на большие успехи, достигнутые в последние годы электротехнической промышленностью в освоении выпуска комплектных электроприводов, сделано еще далеко не все. Главный недостаток здесь состоит в том, что спектр возможностей комплектных приводов не соответствует в должной мере спектру технических требований. Иными словами, для рассмотренных выше установок с очень высокими техническими требованиями (станки с ЧПУ и т. п.) возможности комплектных приводов недостаточны (хотя часть их была специально разработана применительно к этим ответственным объектам), а для большинства общепромышленных объектов - избыточны.

Так, в большом числе общепромышленных технологических установок (насосы, вентиляторы, транспортеры и т. п.), оснащенных до настоящего времени нерегулируемым приводом мощностью 5-15 кВт, существенный технический и экономический эффект достигается при переходе к приводу с регулированием скорости и момента в небольших пределах ф = 2ч-5) при ограниченных точности (проценты) и быстродействии (доли секунды).

Вместе с тем непременным условием перехода на такие приводы является их высокая надежность, предельная неприхотливость в обслуживании. Желательны также умеренная стоимость заменяющего привода, его энергетическая эффективность.

Такие комплектные приводы серийно не выпускаются, хотя известны, хорошо, отработаны, многократно проверены на практике оригинальные технические решения, полностью отвечающие названным выше требованиям. Узость спектра технических решений комплексных электроприводов приводит к тому, что приводы комплектуются разработчиками оборудования из разрозненных, подчас плохо стыкуемых элементов и блоков и не всегда квалифицированно. Это порождает значительные издержки, снижает технический уровень технологического оборудования.

Итак, научное содержание рассматриваемой проблемы состоит в строгом и всестороннем обосновании набора технических решений комплектного общепромышленного привода, соответствующего совокупности современных технических требований.

Набор решений должен быть широким - от простейших дешевых и надежных массовых регулируемых приводов, например, по системе параметрический источник тока - двигатель, до прецизионных дорогих приводов с развитым микропроцессорным управлением.

Исключительно важную роль играет повышение конструкторского и технологического уровня изделий, комплектующих приводы. Этот вопрос неразрывно связан с конструкторско-технологической подготовкой инженеров-электриков и электромехаников, специализирующихся в области электрических машин, аппаратов, устройств преобразовательной техники, электропривода. Многие выпускники вузов, хорошо ориентируясь в теоретических вопросах специальности, освоив математический аппарат, вычислительную технику, с трудом взаимодействуют с конструкторами и технологами при совместном создании оборудования, им не привито в должной мере уважение к этому важнейшему виду инженерной деятельности.

Невнимание к конструкторским и технологическим вопросам - главнейшей составляющей инженерной и научной деятельности - явно прослеживается и в современной технической литературе по электроприводу и его элементной базе - периодической, учебной, справочной. Положение дел здесь надо менять быстро и кардинально.

Особое значение в связи с вводом в действие Энергетической программы приобретают, как уже отмечалось, вопросы энергосбережения в электроприводе.

Центральное место здесь занимает массовый нерегулируемый по скорости привод на основе короткозамкнутых асинхронных двигателей. Эти приводы, исчисляемые миллионами, потребляют около 50 % всей вырабатываемой в стране электроэнергии, в связи с чем даже относительно небольшое повышение эффективности их использования в энергетическом отношении может дать заметный результат в масштабе страны.

3. Классификация электроприводов

Электроприводы по способам распределения механической энергии можно разделить на три основных типа: групповой электропривод; индивидуальный и взаимосвязанный.

Групповой электропривод обеспечивает движение исполнительных органов нескольких рабочих машин или нескольких исполнительных органов одной рабочей машины. Передача механической энергии от одного двигателя к нескольким рабочим машинам и ее распределение между ними производится с помощью одной или нескольких трансмиссий. Такой групповой привод называют также трансмиссионным (рисунок 2.1).

Рисунок 2.1 - Структурная схема группового трансмиссионного электропривода

Вследствие своего технического несовершенства трансмиссионный электропривод в настоящее время почти не применяется, он уступил место индивидуальному и взаимосвязанному, хотя в ряде случаев еще находит применение и групповой привод по схеме на рисунке 2.2.

Рисунок 2.2 - Структурная схема группового электропривода

Индивидуальный привод по сравнению с трансмиссионным и групповым обладает рядом преимуществ: производственные помещения не загромождаются тяжелыми трансмиссиями и передаточными устройствами; улучшаются условия работы и повышается производительность труда вследствие облегчения управления отдельными механизмами, уменьшения запыленности помещений, лучшего освещения рабочих мест; снижается травматизм обслуживающего персонала. Кроме того, индивидуальный электропривод отличается более высокими энергетическими показателями.

В трансмиссионном приводе при выходе из строя или при ремонте электродвигателя выбывает из работы группа машин, тогда как в случае индивидуального привода или группового по схеме на рисунке 2.2 остановка одного электродвигателя вызывает остановку лишь одной рабочей машины.

Рисунок 2.3 - Индивидуальные электроприводы рабочих органов (шпинделей) продольно-фрезерного станка

Индивидуальный электропривод широко применяется в различных современных машинах, например, в сложных металлорежущих станках, в прокатных станах металлургического производства, в подъемно-транспортных машинах, экскаваторах, в роботах-манипуляторах и т. п.

Примером использования индивидуального привода может служить продольно-фрезерный станок (рисунок 2.3), имеющий отдельные электроприводы главных движений (приводы трех шпиндельных бабок).

Взаимосвязанный электропривод содержит два или несколько электрически или механически связанных между собой электродвигательных устройства (или электроприводов), при работе которых поддерживается заданное соотношение или равенство скоростей или нагрузок или положение исполнительных органов рабочих машин. Необходимость в таком приводе часто возникает по конструктивным пли технологическим соображениям.

Примером взаимосвязанного электропривода может служить привод цепного конвейера. На рисунке 2.4 показана схема такого привода, рабочим органом которого является цепь, приводимая в движение двумя или несколькими двигателями (М 1, М 2), расположенными вдоль цепи. Эти двигатели имеют вынужденно одинаковую скорость.

Взаимосвязанный электропривод широко применяется в различных современных машинах и агрегатах, например, в копировальных металлорежущих станках и станках с программным управлением, в бумагоделательных машинах, ротационных машинах полиграфического производства, и текстильных агрегатах, в прокатных станах металлургического производства, в поточных технологических линиях по производству шинного корда, синтетических пленок и т. д.

Рисунок 2.4 - Схема взаимосвязанного привода конвейера

По виду движения электроприводы могут обеспечить: вращательное однонаправленное движение, вращательное реверсивное и поступательное реверсивное движения.

Вращательное однонаправленное, а также реверсивное движение осуществляется электродвигателями обычного исполнения. Поступательное движение может быть получено путем использования электродвигателя вращательного движения обычного исполнения совместно с преобразовательным механизмом (кулисным, винтовым, реечным и т. п.) либо применения электродвигателя специального исполнения для поступательного движения (так называемые линейные электродвигатели, магнитогидродинамические двигатели).

По степени управляемости электропривод может быть:

1) нерегулируемый - для приведения в действие исполнительного органа рабочей машины с одной рабочей скоростью, параметры привода изменяются только в результате возмущающих воздействий;

2) регулируемый - для сообщения изменяемой пли неизменяемой скорости исполнительному органу машины, параметры привода могут изменяться под воздействием управляющего устройства;

3) программно-управляемый - управляемый в соответствии с заданной программой;

4) следящий - автоматически отрабатывающий перемещение исполнительного органа рабочей машины с определенной точностью в соответствии с произвольно меняющимся задающим сигналом;

5) адаптивный - автоматически избирающий структуру или параметры системы управления при изменении условий работы машины с целью выработки оптимального режима.

Можно классифицировать электроприводы и по роду передаточного устройства. В этом смысле электропривод бывает:

1) редукторный, в котором электродвигатель передает вращательное движение передаточному устройству, содержащему редуктор;

2) безредукторный, в котором осуществляется передача движения от электродвигателя либо непосредственно рабочему органу, либо через передаточное устройство, не содержащее редуктор.

По уровню автоматизации можно различать:

1) неавтоматизированный электропривод, в котором управление ручное; в настоящее время такой привод встречается редко, преимущественно в установках малой мощности бытовой и медицинской техники и т. п.;

2) автоматизированный электропривод, управляемый автоматическим регулированием параметров;

3) автоматический электропривод, в котором управляющее воздействие вырабатывается автоматическим устройством без участия оператора.

Два последних типа электропривода находят применение в подавляющем большинстве случаев.

Наконец, по роду тока применяются электроприводы постоянного и переменного тока. автоматизированная электрический привод

4. Режимы работы электропривода

Все режимы в электроприводе делятся на установившиеся (номинальный режим работы) и переходные (пуск, реверс, торможение).

Установившийся режим работы электропривода определяется из условия равенства нулю динамического момента. Этот режим характеризуется работой двигателя с неизменной угловой скоростью, постоянными во времени и равными по величине моментом двигателя и моментом сопротивления. Так как момент, развиваемый двигателем в установившемся режиме, есть функция скорости, то равенство М=Мс возможно только при условии, что момент сопротивления - постоянная величина или функция скорости. Если МС есть функция, например, пути (угла поворота), то даже при постоянной угловой скорости момент сопротивления изменяется во времени и установившийся режим невозможен.

Установившийся режим описывается статическими характеристиками.

Переходным режимом электропривода называют режим работы при переходе от одного установившегося состояния к другому, когда изменяются скорость, момент и ток.

Причинами возникновения переходных режимов в электроприводах является либо изменение нагрузки, связанное с производственным процессом, либо воздействие на электропривод при управлении им, т. е. пуск, торможение, изменение направления вращения и т. п. Переходные режимы в электроприводах могут возникнуть также в результате аварий или нарушения нормальных условий электроснабжения (например, изменения напряжения или частоты сети, несимметрия напряжения и т. п.).

Характер переходного режима электропривода зависит от свойств рабочей машины, типа примененного двигателя и механической передачи, принципа действия и свойств аппаратуры управления, а также от режима работы двигателя (пуск, торможение, прием и сброс нагрузки и т. д.).

Переходные режимы описываются динамическими характеристиками.

Заключение

Современный электропривод, как правило, автоматизирован. Автоматическая система управления электроприводом позволяет наиболее рационально построить технологический процесс, повысить производительность труда, улучшить качество продукции и снизить ее себестоимость. В настоящее время промышленность изготавливает экскаваторы, механизмы непрерывного транспорта, подъемники и другие строительные машины и оборудование, оснащенные электродвигателями, электроаппаратурой, электрическим освещением и в значительной степени автоматизированные. Техникам-механикам необходимо хорошо знать электротехнику, свойства и схему электродвигателей, аппаратов и приборов, основы электропривода, схемы управления электроприводом и его автоматизации, а также электрооборудование гидромелиоративных машин.

В целом можно отметить, что продолжается интенсивное совершенствование регулируемых электроприводов.

Перечень использованной литературы

1. Чиликин М.Г., Общий курс электропривода: учебник для вузов / М.Г. Чиликин, А.С. Сандлер. - 6-е изд. Доп. И перераб. - М.: Энергоиздат, 1981. - 576 с., с ил.

2. Основы автоматизированного электропривода: учеб. Пособие для вузов / М.Г. Чиликин, М.М. Соколов, В.М. Терехов, А.В. Шинянский. - М.: Энергия, 1974. - 568 с., с ил.

3. Чиликин М.Г. Теория автоматизированного электропривода: учеб. Пособие для вузов / М.Г. Чиликин, В.И. Ключев, А.С. Сандлер. - М.: Энергия, 1979. - 616 с., с ил.

4. Г.Б. Онищенко, "Электрический привод".,Москва.,2003г., 320 с.

5. Зимин Е.Н. Автоматическое управление электроприводами: учеб. Пособие для студентов вузов. / Е.Н. Зимин, В.И. Яковлев. - М.: Высш. Школа, 1979. - 318 с., с ил.

6. Андреев В.П. Основы электропривода: учеб. Пособие для студентов вузов. / В.П. Андреев. 2-е изд., перераб. - М.: Энергия, 1963. - 772 с., с ил.

7. Ключев В.И. Электропривод и автоматизация общепромышленных механизмов: учебник для вузов. / В.И. Ключев, В.М. Терехов. - М.: Энергия, 1980. - 360 с., с ил.

Размещено на Allbest.ru

...

Подобные документы

  • Векторная сумма сил действующих на жесткое тело. Определение установившейся частоты вращения. Моменты сопротивления механизмов: реактивные и активные. Понятие устойчивости электромеханических систем. Расчет времени ускорения электрического привода.

    презентация [111,6 K], добавлен 21.10.2013

  • Расчет системы автоматизированного электропривода рабочей машины. Определение мощности асинхронного двигателя привода. Проверка правильности выбора мощности двигателя по нагреву методом средних потерь. Расчет механической характеристики рабочей машины.

    курсовая работа [334,3 K], добавлен 24.03.2015

  • Система электрического освещения – массовый потребитель электрической энергии. Возможность применения электрической дуги для освещения. Первые лампы накаливания: конструкции с нитью накаливания из различных материалов. Сравнение эффективности ламп.

    презентация [4,5 M], добавлен 21.11.2011

  • Понятие электрического тока как упорядоченного движения заряженных частиц. Виды электрических батарей и способы преобразования энергии. Устройство гальванического элемента, особенности работы аккумуляторов. Классификация источников тока и их применение.

    презентация [2,2 M], добавлен 18.01.2012

  • Условия, необходимые для существования электрического тока. Достоинства и недостатки параллельного соединения проводников. Единица силы тока. Работа электрического тока в замкнутой электрической цепи. Закон Ома для участка цепи. Химическое действие тока.

    презентация [398,2 K], добавлен 07.02.2015

  • Изобретение лампы накаливания, в которой свет вырабатывался в результате поступления электрического тока. Первые осветительные приборы, работающие на электрическом токе. Электрическая свеча Яблочкова и лампа Эдисона. Использование электрической энергии.

    презентация [1,3 M], добавлен 16.10.2011

  • Работа сил электрического поля при перемещении заряда. Циркуляция вектора напряжённости электрического поля. Потенциал поля точечного заряда и системы зарядов. Связь между напряжённостью и потенциалом электрического поля. Эквипотенциальные поверхности.

    реферат [56,7 K], добавлен 15.02.2008

  • Характеристика устройств преобразования различных видов энергии в электрическую и для длительного хранения энергии. Использование мускульной силы человека для обеспечения автономного функционирования систем электрического питания при помощи велотренажера.

    научная работа [270,6 K], добавлен 23.02.2013

  • Методика проектирования теплоэлектроцентрали, принципы ее работы, структура и основные элементы. Выбор и обоснование электрического оборудования данного устройства. Расчет схемы замещения и дистанционной защиты. Удельный расход электрической энергии.

    дипломная работа [736,7 K], добавлен 20.04.2011

  • Основы энергосбережения, энергетические ресурсы, выработка, преобразование, передача и использование различных видов энергии. Традиционные способы получения тепловой и электрической энергии. Структура производства и потребления электрической энергии.

    реферат [27,7 K], добавлен 16.09.2010

  • Требования по технике безопасности. Трехфазная цепь при соединении потребителей по схемам "звезда" и "треугольник". Однофазного счетчика электрической энергии. Опыт холостого хода трансформатора, короткого замыкания. Работа люминесцентной лампы.

    методичка [721,6 K], добавлен 16.05.2010

  • Действие электрического тока на организм человека. Факторы, влияющие на исход поражения током. Нормирование напряжений прикосновения и токов через тело человека. Эквивалентная схема электрического сопротивления различных тканей и жидкостей тела человека.

    контрольная работа [69,3 K], добавлен 30.10.2011

  • Физические законы для систем электрического и теплового зарядов. Параметр электрического сопротивления. Механический эквивалент тепла. Термо-электрический потенциал. Закон сохранения и преобразования энергий. Интегральный и дифференциальный процессы.

    контрольная работа [398,8 K], добавлен 10.05.2015

  • Кинематический расчет привода. Определение передаточного числа привода и его ступеней. Силовой расчет частоты вращения валов привода, угловой скорости вращения валов привода, мощности на валах привода, диаметра валов. Силовой расчет тихоходной передачи.

    курсовая работа [262,3 K], добавлен 07.12.2015

  • Природа электрического тока. Устройства для передачи электрической энергии и контроля ее параметров. Прокладка кабелей в коллекторах и туннелях. Монтаж полок и стоек. Защита кабелей от механических повреждений. Вспомогательные элементы электрической цепи.

    курс лекций [22,6 M], добавлен 09.03.2017

  • Единицы измерения электрического тока. Закон Ома и электрическое сопротивление. Применение Закона Ома при расчетах электрических цепей. Применение анализа цепи к модели мембраны. Свойства конденсатора в электрической цепи. Понятие электрической емкости.

    реферат [1,3 M], добавлен 06.11.2009

  • Принцип действия электрических машин на основе гидрогенератора, сфера его применения в электроэнергетике. Основные законы электротехники на которых основаны процессы электрического и электромеханического преобразования энергии. Системы возбуждения.

    реферат [346,3 K], добавлен 21.11.2013

  • История возникновения приборов учёта и измерения электрической энергии. Классификация счётчиков электричества по типу измеряемых величин, типу подключения и конструкции. Схема устройства индукционного счетчика. Будущее учёта электрической энергии.

    реферат [268,8 K], добавлен 11.06.2014

  • Понятие электрической цепи и электрического тока. Что такое электропроводность и сопротивление, определение единицы электрического заряда. Основные элементы цепи, параллельное и последовательное соединения. Приборы для измерения силы тока и напряжения.

    презентация [4,6 M], добавлен 22.03.2011

  • Создание нормальной световой среды. Классификация ламп для освещения. Характеристика помещений и требования, предъявляемые к системе электрического освещения. Выбор системы электрического освещения, нормируемой освещённости. Расчет аварийного освещения.

    дипломная работа [541,7 K], добавлен 13.06.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.