ТЕХНОГЕННОЕ НАРУШЕНИЕ ЭНЕРГЕТИЧЕСКОГО БАЛАНСА ПРИРОДНОЙ СРЕДЫ.
Анализ влияния действия гидроэлектростанций на баланс окружающей среды. Обзор техногенных аварий, вызывающих гидравлический удар. Геомагнитный механизм экологических последствий современной ракетно-космической деятельности. Проблемы глобальной экологии.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 03.02.2014 |
Размер файла | 74,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ТЕХНОГЕННОЕ НАРУШЕНИЕ ЭНЕРГЕТИЧЕСКОГО БАЛАНСА ПРИРОДНОЙ СРЕДЫ
Вертинский П.А.
г. Усолье-Сибирское
Вступление
03 Октября 2009 года «ВЕСТИ. РУ» опубликовали основные тезисы Доклада Ростехнадзора «О причинах аварии на Саяно-Шушенской ГЭС», которая произошла 17 августа 2009 года, представленного в Правительство России. В этом Докладе обращает на себя внимание большой комплекс организационно-технологических нарушений и упущений ведомственного и государственного руководства на СШГЭС, которые при объективном анализе присущи деятельности этого же руководства в осуществлении организационно-технологических мероприятий на любой другой ГЭС России, но почему-то даже не упоминается гидравлический удар, о котором сообщали со слов свидетелей все СМИ в первые дни после катастрофы. В этой связи здесь вспоминается известная притча про Наполеона с его генералом, в которой тот генерал изложил письменный рапорт о своём поражении, где указал 40 причин, включая непогоду, распутицу, бездорожье и сложный российский ландшафт, незнание своими солдатами русского языка и т. п., а под № 40 -отсутствие боеприпасов…
Вот, по аналогии с этим «рапортом» незадачливого генерала в упомянутом Докладе Ростехнадзора «О причинах аварии на Саяно-Шушенской ГЭС» Правительству России ведётся уклончивое перечисление многочисленных недостатков, число которых можно продолжать далеко за пресловутые 40 из «рапорта» наполеоновского генерала, вспомнив к слову нерадивую работу дворника из своего ЖЭК,а, неприветливость не выспавшейся после затяжных праздников продавщицы из ближнего гастронома и много чего ещё, чтобы спрятать от внимания общественности истинную причину, предопределяющую аварии (и не только в энергетике!) - природохищническую деятельность международного ВПК, российская компонента в котором составляет не самую «малую» толику! Ярким наглядным образом этой позиции наших «экспертов» - апологетов природохищнической политики международного ВПК является тоже пресловутая позиция «рыбоинспектора», штрафующего за «браконьерство» мальчишку с удочкой на берегу речки, в которую рядом подведена труба от местного химкомбината с радужными стоками, содержащих всю таблицу Дмитрия Ивановича Менделеева!
1. Возникновние проблемы
ГЭС гидравлический удар
Как известно, типичным примером возникновения гидравлического удара является трубопровод с постоянным напором и установившимся движением жидкости при резком перекрытии задвижки (клапана). Теоретически явление гидравлического удара объяснил ещё Н. Е. Жуковский [1]: Увеличение давления при гидравлическом ударе определяется выражением:
(1),
где: Dp - увеличение давления (Н/кв. м), с -- плотность жидкости (кг/куб. м), v0 и v1 - средние скорости в трубопроводе до и после срабатывания клапана (м/сек), с - скорость распространения ударной волны вдоль трубопровода (м/сек).
С начала возникновения гидродинамики процессы распространения волн в среде и образование потоков среды изучаются и исследуются относительно самостоятельно [2]. Более того, классическая гидродинамика теоретически обосновала вывод о невозможности переноса вещества среды в потоке волн данной среды, поэтому даже прямые экспериментальные измерения оставляют в стороне вопрос о проверке или уточнении такого положения, заранее не предполагая обнаружить какие-либо потоки среды в потоках волн в данной среде. Таким образом, согласно современным представлениям гидродинамической теории суперпозиция ударных волн в среде не вызывает образования потоков данной среды, сопровождаясь лишь передачей энергии волн без перемещения вещества в среде. За исторический период после фундаментальных трактатов Д. Бернулли «Гидродинамика» (1738 г.) и Л. Эйлера «Общие принципы движения жидкости» (1755г.) в гидродинамике сформировалась система уравнений движения сплошной среды (жидкости или газа), которая рассматривает среду изотропной и гиротропной [2]:
(2),
(3),
(4),
где обозначены: - скорость, - объём, - плотность и- сила давления в заданной трубке тока жидкости. Для практических расчетовустановившихся движений несжимаемой жидкости на основе уравнений (2), (3) и (4) широко используется первый интеграл Бернулли, частное решение которого для трубки тока как на рис.1 можно записать в виде уравнения:
(5)
В сущности, выражение (1) Н. Е. Жуковского [1] является частным следствием известного уравнения Бернулли (5), которое выражает закон сохранения энергии для заданной трубки тока (трубопровода), где дополнительно к (1) обозначены: - ускорение свободного падения (м/сек. сек.) и - напор (м). Как известно, ещё Б. Риман в 1860 году в своем мемуаре “О распространении плоских волн конечной амплитуды» [2], рассматривая распространение возмущений в среде, пришел к выводу об образовании ударных волн в баротропных средах, так как: (6). В соответствии с выводом (6) распространение возмущений плотности среды можно представить графически как на рис. 2, но с учетом второго начала термодинамики волны разрежения невозможны, поэтому реально выполняется лишь правая часть графика, то есть зависимость как на рис.3. Такие возмущения в среде называются акустическими, а описывающая их теория является линейной, не позволяя рассматривать импульсные явления с образованием в среде паро - газо - вакуумных полостей, когда жидкость уже нельзя рассматривать сплошной несжимаемой средой. Между тем, как это обнаружилось в изучении электрогидравлического эффекта, с помощью последнего представляется новая возможность техническими средствами подводить энергию в поток среды с установившимся движением, оказывая тем самым влияние на энергетический баланс заданной области среды. Боле того, оказалась справедливой теорема, что [2]: Суперпозиция волн в среде путем включения очередного источника в момент прохождения через него фронта ударной волны от предыдущего источника образует результирующий фронт волны кумулятивного характера, которая получила практическое подтверждение в десятках изобретений автора в виде принципиально новых электрогидравлических движителях, насосах и других технических решениях (см. патенты РФ №№ 1824504, 1837447, 2041376 и др.). Таким образом, внешнее нарушение энергетического баланса в стационарном потоке среды порождает импульсную ударную волну, вызывая движение сплошной среды во все стороны, то есть взрыв, который может быть направлен, например, неоднородностью среды или специальными техническими приспособлениями (отражателями, экранами и т.п.).
2. Нарушения энергетического баланса природной среды вследствие техногенного воздействия
Как глубоко обосновано на обширной статистической информации в монографии [3], воздействия на геолого-геофизическую среду подразделяются на два этапа: 1901-1950 гг. - нарастание техногенного давления, включая и первые десятки ядерных взрывов (в основном воздушного типа), и первые ракетные пуски и 1950-1990 гг. -максимальное техногенное давление на геолого-геофизическую среду, включая тысячи ядерных взрывов и десятки тысяч тяжелых ракетных пусков. В упомянутой монографии особое внимание привлекает таблица 1.
Таблица 1
Встречаемость землетрясений за 1901-1990 гг. (М ? 7), которая выше приведена полностью. В таблице обозначены:
М -- мелкофокусные землетрясения на глубинах Н < 70 км;
С -- среднефокусные землетрясения, 70 < Н < 300 км;
Г -- глубокофокусные землетрясения, Н > 300 км;
R -- отношение числа мелкофокусных землетрясений к сумме средне- и глубокофокусных землетрясений.
3. Геомагнитный механизм экологических последствий современной ракетно-космической деятельности
Разумеется, ЭГЭ [2], взрывы ядерных зарядов, общая радиоактивность, ракетные пуски, электромагнитные воздействия, ресурсная добыча полезных ископаемых и другие факторы [3], не исчерпывают весь арсенал возможного нарушения энергетического баланса природной среды. Так, например, по сообщению на стр. 8 ПОИСК № 51 от 21.12.2007, каждый запуск КЛА сопровождается всплеском возмущения магнитосферы Земли, носит ярко выраженный релаксационный характер. Поэтому на основании одного из основных принципов динамики систем Д,Аламбера - Лагранжа, означающего, что действующие на каждую точку системы активные силы и силы реакций всевозможных связей полностью компенсированы силами инерции, то есть:
(7),
где - векторы возможных перемещений точек системы, необходимо отметить непременным условием стационарного состояния геомагнитного поля выполнение этого требования (7) динамики. Так, например, в работах автора [4] и др. на объективных геофизических положениях убедительно обоснован вывод и раскрыт механизм запуска землетрясений вследствие возмущения магнитосферы Земли запусками КЛА. Одним из мощных энергетических способов вмешательства в состояние открытых водоёмов всегда являлись сейсмические волны, постоянно порождаемые тектоническими процессами в недрах нашей планеты. Как известно [5], сейсмические волны - это колебания, распространяющиеся в Земле от очагов землетрясений, взрывов и других источников. Вблизи очагов сильных землетрясений сейсмические волны обладают разрушительной силой при доминирующем периоде в десятые доли сек. На значительных расстояниях от эпицентров сейсмические волны являются упругими волнами. Продольные сейсмические волны переносят изменения объёма в среде -- сжатия и растяжения. Колебания в них совершаются в направлении распространения (см. вектор на рис. 5). Поперечные сейсмические волны не образуют в среде объёмных изменений и представляют собой колебания частиц, происходящие перпендикулярно направлениям распространения волны (см. вектор на рис. 5). Известной особенностью [5] распространения сейсмических волн является их способность при косом падении на поверхность раздела сред с различными параметрами (скоростями и плотностями) порождать волнами одного типа, например, продольными, кроме отражённой и преломленной продольных волн, дополнительно волны отраженные и преломленные поперечные. Таким образом, к поверхности Земли после землетрясения приходят потоки и поверхностных, и продольных сейсмических волн. Другими словами, сейсмические волны от эпицентра аведенного запуском КЛА землетрясения у поверхности Земли порождают минимум два потока сейсмических волн, обозначенных на энергии которых оказывают своё влияние на энергобаланс внутри водоёмов на пути потоков этих сейсмических волн. Действительно, амплитуда - сейсмических волн потока вносит свой динамичный вклад в изменение члена потенциальной энергии , а изменение плотности в потоке неизбежно вносит свой энергетический дисбаланс в уравнение Бернулли (5). Как известно [6], сложение периодических сил давления приводит к импульсному характеру силы результирующего давления при достижении полигармонического резонанса в случаях действия нескольких периодических возмущающих сил давления:
(8)
в зависимости от соотношения частот и возмущающих сил.
Сейсмические волны и выражены законами:
(9)
(10),
где и согласно эмпирическим сведениям по рис. на стр. 28 по [5] убывающие амплитуды сейсмических волн соответствующих частот и , тогда в потоках водоёма, расположенном на пути сейсмических волн и , происходит сложение этих волн, результатом которого является изменение энергетического баланса, одним из последствий которых является результирующий импульс сил давления, то есть гидравлический удар. В сущности, представляет собой реальное проявление теоретического вывода Б. Римана. Конкретное проявление такого гидравлического удара может быть подобно цунами в Индийском океане 27. 12. 2004 или аварии на Саяно-Шушенской ГЭС, которая произошла 17. 08. 2009 года, как результаты возмущений магнитосферы Земли запусками КЛА, в зависимости от конкретных параметров, наведенных запусками КЛА возмущений магнитосферы Земли и конкретными гидрогеологическими характеристиками региона и водоёма. Из тех запусков КЛА здесь можно вспомнить [7]:
1) в ночь с 21 на 22 декабря 2004 г. пуск с мыса Канаверал ракеты-носителя Delta-4 Heavy,
2) 22 декабря 2004 года в 08:30 UTC (11:30 мск) из позиционного района в Оренбургской области боевыми расчетами РВСН России осуществлен учебно - боевой пуск межконтинентальной баллистической ракеты РС-20В "Воевода".
3) 22 декабря в 22:32:06 UTC (23 декабря в 01:32:06 мск) была включена тормозная двигательная установка корабля и он устремился в земную атмосферу,
4) 11 августа 2009 запуск ракеты-носителя "Протон-М" с космическим аппаратом AsiaSat-5 [8]:
Выводы:
1. Гидравлический удар в потоке жидкости по Н. Е. Жуковскому является частным следствием известного уравнения Бернулли, которое выражает закон сохранения энергии для заданной трубки тока (трубопровода).
2. Внешнее нарушение энергетического баланса в стационарном потоке среды порождает импульсную ударную волну, вызывая движение сплошной среды во все стороны, то есть взрыв, который может быть направлен, например, неоднородностью среды или специальными техническими приспособлениями (отражателями, экранами и т.п.).
3. Сейсмические волны от эпицентра, наведенного запуском КЛА землетрясения у поверхности Земли порождают два потока (продольных и поперечных) волн, энергии которых оказывают своё влияние на энергобаланс внутри водоёмов на пути потоков этих сейсмических волн.
4. Конкретное проявление такого гидравлического удара может быть подобно цунами в Индийском океане 27. 12. 2004, или аварии на Саяно - Шушенской ГЭС, которая произошла 17. 08. 2009 года, как результаты возмущения магнитосферы Земли на многочисленные запуски КЛА, в зависимости от конкретных параметров, наведенных запусками КЛА возмущений магнитосферы Земли и конкретными гидрогеологическими характеристиками региона и водоёма.
Литература к статье:
1. Жуковский Н. Е. О гидравлическом ударе в водопроводных трубах. М.-Л., Гостехиздат, 1949. 103 с.
2. Вертинский П. А. Электрогидродинамические задачи гидравлики. В. 3, Иркутск, ИрГТУ. 2008.
3. Дмитриев А.Н., Шитов А.В. Техногенное воздействие на природные процессы Земли. Проблемы глобальной экологии. Новосибирск, ИД "Манускрипт",2003//http://pulse.webservis.ru/ANDmitriev/Books/TechOnNature/index.html
4. Вертинский П. А. Геоэкологические проблемы современной ракетно-космической деятельности // журнал «УСПЕХИ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ» № 10/ 2009, стр. 22-29.
5. Саваренский Е. Ф. Сейсмические волны. -М. «Недра», 1972, 292 с.
6. Яворский Б. М. и Детлаф А. А. Справочник по физике (для инженеров). М., «НАУКА», 1985, стр. 109 и далее.
7. Железняков А. Б. Космическая энциклопедия// www.cosmoworld.ru/spaceencyclopedia/hotnews/index.shtml?itogi_20...
8. Вертинский П. А. Причиной аварии на СШГЭС является запуск КЛА// www.gzt.ru/topnews/accidents/256940.html
Размещено на Allbest.ru
...Подобные документы
Характеристика и назначение измерений, проводимых в процессе летных испытаний и эксплуатации объектов ракетно-космической техники. Сущность внешнетраекторных и радиотелеметрических измерений параметров объектов. Критерии выбора принципов построения РТС.
реферат [723,8 K], добавлен 08.10.2010Принцип энергетического баланса. Особенности применения баланса холода и его сравнение. Сущность принципа турбины, порядок ее работы и оценка эффективности, механизм торможения. Хладопроизводительное оборудование APSA-L. Поведение турбодетандера.
презентация [1,6 M], добавлен 28.10.2013Изучение мирового топливно-энергетического баланса, определение потенциальных энергоресурсов Земли. Анализ создания комфортных условий жизнедеятельности человека посредством преобразования разных видов энергии. Обзор основных свойств систем энергетики.
реферат [33,1 K], добавлен 03.02.2012Физические основы развития гидравлического удара. Фазы развития этого явления. Факторы, влияющие на силу гидроудара, его особенности, сущность. Условия отрыва жидкости, влияние на стенки трубы. Способы борьбы и методы предотвращения гидравлического удара.
курсовая работа [195,3 K], добавлен 07.04.2015Распределение энергии в ее различных видах и формах. Понятие топливно-энергетического комплекса. Нефтяная, угольная и газовая промышленность. Основные способы экономии нефтепродуктов. Роль нефти и газа в современном топливно-энергетическом балансе.
презентация [2,4 M], добавлен 05.06.2012Анализ однофазных электрических цепей, определение мгновенных значений токов при наличии и отсутствии индуктивно связанных элементов. Построение векторно-топографических и круговых диаграмм, проверка энергетического баланса мощностей, оценка погрешности.
курсовая работа [569,6 K], добавлен 19.12.2010Материальный баланс колонны и рабочее флегмовое число. Расчет давления насыщенных паров толуола и ксилола. Определение объемов пара и жидкости, проходящих через колонну. Средние мольные массы жидкости. Определение числа тарелок, их гидравлический расчет.
курсовая работа [262,6 K], добавлен 27.01.2014Основные характеристики трубчатых печей. Тепловой баланс трубчатой печи. Расчет коэффициента полезного действия и расхода топлива. Выбор типоразмера трубчатой печи. Упрощенный расчет камеры радиации. Гидравлический расчет змеевика трубчатой печи.
реферат [6,7 M], добавлен 24.11.2012Основные проблемы энергетического сектора Республики Беларусь. Создание системы экономических стимулов и институциональной среды для обеспечения энергосбережения. Строительство терминала по разжижению природного газа. Использование сланцевого газа.
презентация [567,6 K], добавлен 03.03.2014Анализ состояния топливно–энергетического и нефтегазового комплекса России. Потенциал топливно-энергетических ресурсов и доля углеводородного сырья в структуре топливно-энергетического баланса страны. Динамика добычи и потребления углеводородного сырья.
курсовая работа [3,2 M], добавлен 25.03.2012Экономический потенциал гидроэнергоресурсов России. Основные виды гидроэлектростанций. Сооружения и оборудование гидроэлектростанций. Радиально-осевая турбина (турбина Френсиса). Определение преимуществ гидроэнергетики. Расчет себестоимости энергии.
реферат [918,7 K], добавлен 24.09.2013Планирование эксплуатации промышленного энергохозяйства: разработка топливно-энергетического баланса и плана энергоснабжения предприятия, капитальных и текущих ремонтов всего энергетического оборудования, труда и зарплаты производственного персонала.
курсовая работа [647,5 K], добавлен 01.07.2012Сущность и параметры космической погоды, геомагнитные эффекты. Общие сведения об эффекте Чижевского-Вельховера. Исследование реакции метахромазии волютиновых зерен. Оценка влияния гелиофизических факторов на культуру дрожжей Saccharomyces cerevisiae.
дипломная работа [13,0 M], добавлен 02.02.2015Воззрения древних мыслителей о природе света на простейших наблюдениях явлений природы. Элементы призмы и оптические материалы. Демонстрация влияния показателей преломления света материала призмы и окружающей среды на явление преломления света в призме.
курсовая работа [229,3 K], добавлен 26.04.2011Расчет потребности предприятия в электроэнергии и топливе. Потребности завода в тепле на отопление, вентиляцию, горячее водоснабжение и технологические нужды. Топливно-энергетический баланс предприятия. Определение срока окупаемости капитальных вложений.
курсовая работа [414,0 K], добавлен 23.03.2013Определяющие соотношения модели нелинейно упругой среды, вычисление компонент тензора напряжений. Определение автомодельного движения. Сведение модельных соотношений к системе дифференциальных уравнений. Краевая задача разгрузки нелинейно упругой среды.
курсовая работа [384,1 K], добавлен 30.01.2013Расчет объемов воздуха, продуктов горения, жаропроизводительности топлива с учетом влаги в воздухе. Составление теплового баланса котлоагрегата по упрощенной методике теплотехнических расчетов Равича. Определение коэффициента полезного действия котла.
практическая работа [52,5 K], добавлен 04.12.2010Анализ действия и оценка перспектив использования альтернативных методов получения электрической энергии в России. Вклад в обеспечение государства электроэнергией гидроэлектростанций, ветроэнергетических установок, солнечных и приливных электростанций.
контрольная работа [55,9 K], добавлен 11.04.2010Характеристика структурных элементов топливно-энергетического комплекса и электроэнергетики Республики Беларусь. Проблемы и перспективы развития топливной промышленности в Республике Беларусь. Регулирование деятельности топливно-энергетического комплекса.
курсовая работа [494,3 K], добавлен 13.02.2014Закон Ома электропроводности металлов. Состояние металла, возникающее в процессе электропроводности. Уравнение энергетического баланса процесса электропроводности в металлах. Деформационная поляризация металлов под действием электрического тока.
реферат [56,3 K], добавлен 26.01.2008