Система производства и распределение электроэнергии
Электрооборудование, релейная защита и автоматика. Расчёт защиты силовых трансформаторов, конденсаторных установок. Защита и автоматика асинхронных двигателей напряжением выше 1000 В, кабельных линий. Организация энергетической службы и оплаты труда.
Рубрика | Физика и энергетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 05.02.2014 |
Размер файла | 78,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Введение
1. Технологическая часть
2. Электрооборудование
3. Релейная защита и автоматика
3.1 Расчёт защиты силовых трансформаторов
3.2 Расчёт конденсаторных установок
3.3 Защита и автоматика асинхронных двигателей напряжением выше 1000 В
3.4 Защита кабельных линий напряжений выше 1000 В
4. Экономика и организация
4.1 Определение себестоимости передачи и распределения 1 кВт/ч электроэнергии
4.2 Организация энергетической службы
4.3 Организация оплаты труда
Заключение
Список использованных источников
Введение
Месторождение Карачаганак - это крупное нефтегазоконденсатное месторождение, открытое в 1979 году. Месторождение расположено в Бурлинском районе Западано - Казахстанской области Республика Казахстан.
Право на пользование недрами месторождения в соответствии с выданной лицензии от 18 апреля 1997 г. имеет альянс в составе: ”Аджип Карачаганак Б. В. ”, ”Лукойл”, ”Бритиш Газ Эксплорейшн энд Продакшн”, ”Тексако Интернэшн Петролиум Компани”. В настоящее время этот альянс переименован в ”КРО B. V. ” и зарегистрирован в Республики Казахстан.
Существующие мощности по добыче, сбору и переработке газа на месторождение Карачаганак включают скважины, газосборные сети, действующую установку №3 и недостроенную установку №2 (проект ЮжНИИГИПРОМГАЗ).
В настоящее время 83 добывающих скважины посредством газосборных сетей подключены к УКПГ-3. На устье скважин предусмотрен ввод метанола и ингибитора коррозии при помощи подвижной спец. техники.
Установка №3 состоит из трех технологических линий, основанных на процессе низкотемпературных сепарации, спроектированных и построенных фирмой “NOELLGA GASTECHNIK“, одной технологической линии и линии по дегазации конденсата, построенных по проекту.
Полный план развития Карачаганского месторождения, а также надёжность электроснабжения существующих объектов месторождения зависит от развития систем электроснабжения - и теплоснабжения.
Система производства и распределение электроэнергии на месторождении включает электростанцию, способную покрыть все нагрузки самого месторождения и других потребителей, связанных с его работой. В качестве основных источников выработки электроэнергии были установлены три газотурбинные установки типа PG6561-B производства GE мощностью по 39. 62 МВТ. В конечном итоге, после достижения на месторождении максимального уровня добычи и переработки газоконденсата, количество газотурбинных установок до шести по схеме пять плюс один, Электростанции используется очищенный от серы на КПК попутный газ Карачаганского газоконденсатного месторождения. Размещение электростанции на площадке Карачаганского перерабатывающего комплекса позволяет приблизить энергоисточник к месту добычи жидкого топлива и попутного газа, использовать общие системы водоснабжения, канализации, пожаротушения, подготовки топлива, значительно сократить затраты топлива на транспорт, и в целом позволит получить относительно дешевую электроэнергию. Применение надёжного и высокоэффективного основного и вспомогательного оборудования в составе электростанции, экологически совершенной технологии выработки электроэнергии позволит снизить до минимума расчётные концентрации оксида азота, оксида углерода, метана, и твёрдых частиц, тем самым свести до минимума влияние электростанции на уровень загрязнения атмосферного воздуха, поверхностных и подземных вод.
Технологические решения и предусмотренный необходимый комплекс противопожарных и противоаварийных мероприятий предупредит и исключит создание аварийных и чрезвычайных ситуаций.
Оценочные запасы месторождения, согласованные между компаниями ”Бритиш Газ/Аджип” и специалистами Министерства энергетики и природных ресурсов Казахстана в 1993 году составляют по газу 1303 млрд. м3 и по жидкостям
1114 млн. т. (поверхностные условия).
1. Технологическая часть
электрооборудование трансформатор конденсаторная установка
Генеральный план Карачаганского перерабатывающего комплекса предусматривает зонирование территории по её функциональному использованию. Выделены зоны: предзаводская, производственная.
При планировке территории производственной зоны принята квартальная застройка в виде рядов, кварталов, заключенные между продольными и поперечными проездами.
В предзаводской зоне предусмотрена площадка бурильщиков, на которой расположены склад химических реагентов для бурения, центральный склад бурильщиков и здание технического осмотра бурового оборудования.
К северу-востоку от площади бурильщиков запроектирована станция перекачки хозяйственно-бытовой канализации LS-2, расположенная подземно.
Территория, на которой расположены спроектируемые площадки, разделена на два участка - север и юг.
Подготовка сырья на КПК предусматривает разделение поступающей смеси, дегидрирование, стабилизацию конденсата и подачу его в магистральный трубопровод, подготовку газа, подачу высокосернистого газа на УКПГ№2 для закачки в пласт или добычи на Оренбург.
На Карачаганском перерабатывающем комплексе построены следующие площадки:
UNIT-130. Площадка входных манифольдов предназначена для приема поступающей газоконденсатной смеси с манифольдных станций, сателитной станции, УКПГ№2 и УКПГ№3, распределение смеси по потокам и направление потока смеси для проведения замера. Затем газоконденсатная смесь направляется на дальнейшую подготовку.
UNIT-200. Площадка тестового сепаратора предназначена для проведения замера дебита, продукции скважин. Газоконденсатная смесь с тестового манифольда подогревается в подогревателе тестового сепаратора и направляется в скруббер газа низкого давления.
UNIT-201. Площадка установки сепараторов-разделителей газа среднего давления состоит из двух параллельных линий 'А' и 'B' и предназначена для первичной сепарации газа и газоконденсатной смеси
и разделения её на газ и конденсат, затем газ поступает в скруббер газа среднего давления, а с него направляется на установку обезвоживания высокосернистого газа среднего давления и контроля точки расы - UNIT-341, а часть - на очистки топливного газа и регенерации амина UNIT-339.
UNIT-202. Площадка сепаратора разделителя газа низкого давления предназначена для первичной сепарации газа и газоконденсатной смеси и разделения её на газ и конденсат. Газ с УКПГ№3, конденсат с тестового сепаратора и сепараторов-разделителей с площадки UNIT-201 поступает в сепаратор-разделитель газа низкого давления. Конденсат, стабилизация конденсата UNIT-210 А/В/С; Газ с сепаратора-разделителя поступает в скруббер газа низкого давления. Затем газ со скруббера направляется на установку компримирования газа мгновенного испарения низкого давления UNIT-362.
UNIT-210 А/В/С. Площадка установки стабилизации конденсата состоит из трёх параллельных линий и предназначена для обезвоживания и стабилизации конденсата. Конденсат с сепаратора-разделителя низкого давления поступает в питательные ёмкости клоны стабилизации конденсата. С питательной ёмкости конденсат подогревается и направляется в питательную ёмкость обессоливателя. Газ с питательной ёмкости колонны стабилизации конденсата направляется в расходную ёмкость компрессора газа мгновенного испарения. Вода, выделившаяся в питательной ёмкости обессоливателя, разделяется на два потока. Один поток направляется на установку очистки технологической воды UNIT-562, а другой откачивается обратно на вход в ёмкость. Пары конденсата с верха колонны стабилизации конденсата проходят через конденсатор колонны стабилизации и поступает в ёмкость орошения колонны
стабилизации конденсата. Конденсат с нижней части
колонны стабилизации направляется на установку колонны
разделителя конденсата. Газ с ёмкости орошения колонны объединяется с газом, поступающим с питательной емкости колоны и питательной ёмкости обессоливателя.
UNIT-213 А/В/С. Площадка установки колонны разделителя
конденсата состоит из трёх параллельных линий и предназначена для разделения газоконденсатной смеси.
UNIT-214 А/В/С. Площадка системы очистки газолина состоит из трех параллельных линий и предназначена для очистки газолина от меркаптанов и подачи его в систему хранения конденсата. Конденсат с насосов подачи орошения, распложенных на площадке установке UNIT-213 охлаждается в охладителе газолина и направляется на установку очистки газолина. Каустическая сода откачивается очистки газолина насосами перекачки с резервуара хранения каустической соды. Воздух на установку очистки газолина подаётся воздушным компрессором системы очистки газолина. Отработанный каустик направляется в нейтрализатор, расположенный на площадке системы стоков с высоким содержанием солей UNIT-550. Газолин с установки очистки газолина направляется на установку хранения конденсата UNIT-220.
UNIT-215 А. Площадка установки фракционирования нефтяного газа предназначена для разделения поступающего конденсата. Конденсат в колонну деэтанизатора поступает с установок обезвоживания высокосернистого газа высокого и низкого давления. Пары газа с верха колонны деэтанизатора проходят через конденсатор колонны деэтанизатора и охлажденный сжиженный
нефтяной газ поступает в ёмкость орошения колонны деэтанизатора. Охлаждение потока газа осуществляется за счет подачи в конденсатор жидкого пропана с установки UNIT-401. Конденсат с нижней части колонны деэтанизатора проходит через охладитель колонны депропанизатора и направляется в колонну депропанизатора. Пары газа с верха колонны депропанизатора проходят через конденсатор колонны депропанизатора и поступают в ёмкость орошения колонны депропанизатора. Газ с ёмкости орошения подаётся к котлам высокого давления расположенных
на площадке UNIT-621.
UNIT-230. Площадка факельной системы и дренажной системы
предназначена для сепарации газа высокого и низкого давления, поступающего с технологического оборудования и сбора дренажа с оборудования. Газ с компрессора высокого и низкого давления направляется в факельный сепаратор низкого давления. Конденсат, выделившийся в факельном сепараторе, откачивается в ёмкость неконденсированной нефти, расположенную на площадке UNIT-561.
Газ, выделившийся в сепараторе низкого давления, направляется на сжигание в факельную систему газа. Дренаж с оборудования
поступает в закрытую дренажную ёмкость. Газ с дренажной ёмкости
направляется в факельную систему.
UNIT-339. Площадка установки очистки топливного газа и регенерации амина предназначена для очистки газа от сероводорода и регенерации амина. Здесь очищенный газ с выходного сепаратора разделяется на два потока. Один поток направляется на установку обезвоживания топливного газа и контроля точки росы. Второй поток подогревается в высокотемпературном подогревателе и поступает в качестве топлива на газотурбинные установки, расположенные на площадке UNIT-470 и котельную, расположенную
на площадке UNIT-621.
UNIT-340. Площадка установки топливного газа и контроля росы предназначена для отделения топливного газа от воды и подачи его потребителям. Обессереный газ с выходного сепаратора абсорбера, расположенного на площадке №339, поступает в коалесцирующий фильтр. Вода, выделившаяся в фильтре направляется к сепаратору регенератора высокого давления. Газ с фильтра поступает в абсорберы, с них газ направляется в распределительную сеть для подачи его на УКПГ№2 и УКПГ№3, в систему газа низкого давления и в Аксай. Для поддержания температуры газа предусматривается режим подогревания газа и режим охлаждения газа.
UNIT-314 А/В. Площадка установки обезвоживания высокосернистого газа среднего давления и контроль точки росы состоит из двух параллельных линий и предназначена для дегидрирования газа среднего давления и подачи его на установку компримирования высокосернистого газа. Высокосернистый газ с
сепаратора-разделителя низкого давления (UNIT-202) поступает в
гликолевый контактор. Вверх гликолевого контактора подаётся
раствор гликоля с установки регенерации гликоля. Газ при контактировании с ним в контакторе очищается и направляется в теплообменник высокосернистого газа. В теплообменнике газ охлаждается и поступает во входной сепаратор высокосернистого газа среднего давления. Вода с установки регенерации гликоля направляется на очистку на установку UNIT-562. Во входном сепараторе газ сепарируется, затем направляется в низкотемпературный сепаратор высокосернистого газа среднего давления, а с него через теплообменник направляется на установку
компримирования. Вода и сжиженный нефтяной газ с низкотемпературного направляется на установку UNIT-215.
UNIT-343А. Площадка установки обезвоживания газа низкого
давления и контроль точки росы предназначена для дегидрирования
газа низкого давления и подачи его на установку компримирования высокосернистого газа.
UNIT-360. Установка рекомпримирования кислого газа предназначена для рекомпримирования кислого газа, поступающего с установки регенерации амина UNIT-339 и газа мгновенно испарения с установки обезвоживания газа среднего и низкого давления UNIT-341, 343 и подачи его на установку газа мгновенного испарения.
UNIT-362 А/В/С. Площадка состоит из трех линий и предназначена для компримирования газа и подачи его на установку обезвоживания высокосернистого газа низкого давления и контроля точки росы UNIT-343.
UNIT-363 А/В/С. Площадка системы компримирования отходящих газов деэтанизатора предназначена для компримирования газа, поступающего с верха колонны деэтанизатора и подачи его на установку UNIT-364.
UNIT-364 А/В/С. Площадка предназначена для компримирования высокосернистого газа и подача его в систему обратной закачки газа.
UNIT-401А. Площадка установки фракционирования сжиженного нефтяного газа и охлаждение высокосернистого газа
низкого давления, предназначенного для хранения пропана, его
охлаждение и подача в систему охлаждения высокосернистого газа
низкого давления.
UNIT-410. Система подачи ДЭГА предназначена для хранения и подачи ДЭГА в распределительную систему. Раствор диэтиленгликоля поступает в расширительную ёмкость ДЭГА, затем идёт на приём насосов циркуляции ДЭГА, откачивается через теплообменник в систему распределения диэтиленгликоля. Для приготовления раствора ДЭГА предусмотрена подача переохлажденного пароконденсата на прием подпиточного насоса диэтиленгликоля.
UNIT-550. Площадка системы водных стоков с высоким содержанием солей предназначена для нейтрализации отработанного каустика с установки отчистки газолина, сбора отработанной воды из системы деминерализации воды UNIT-530, а также разбавления и деаэрации этих стоков перед сбросом и утилизацией. Для нейтрализации каустика в нейтрализатор подаётся 33% раствор серной кислоты. После того, как датчик кислотности показывает, что раствор нейтрализовался подача серной кислоты прекращается и отработанная промывочная вода и UNIT-530 подаётся в отстойник воды с высоким содержанием солей. Затем вода перекачивается насосами через фильтры в колонну деаэрации с целью удаления кислорода. Деаэрированная вода собирается в нижней части колонны. Насос возврата сточных вод откачивает воду с колонны обратно в ёмкость стабилизации конденсата (UNIT-210). Насосы откачки отработанной воды откачивают воду в уравнительный резервуар технологической воды на площадке UNIT-562.
UNIT-561. Площадка системы неконденсированной нефти предназначена для сбора нефти и конденсата с закрытой дренажной системы: уловленной нефти с сепаратора UNIT -560, с наклонно-пластинчатого сепаратора и с дренажной ёмкости технологической воды, расположенных на UNIT-562.
UNIT-562. Площадка предназначенная для очистки поступающей воды и подачи очищенной воды на установку повторной закачки воды.
UNIT-590. Площадка системы сброса воды предназначена для обратной закачки воды. Отфильтрованная вода с установки UNIT-562 подаётся на нагнетательные скважины. Непосредственно перед
скважиной обратной закачки устанавливаются защитные фильтры для предотвращения закачки посторонних предметов в скважину.
UNIT-650. Площадка хранения химических реагентов.
предназначена для хранения диэтиленгликоля и подачи его в распределительную систему.
UNIT-220. Площадка установки хранения конденсата. Состоит из двух резервуаров хранения конденсата и насосной по откачке конденсата, также предусмотрено строительство блока коммерческих замеров конденсата, состоящего из четырёх параллельных линий замера. Конденсат с насосов по трубопроводу диаметром 600 мм под давлением 5. 5 МПа и температуры равной 450С проходит через фильтр, замерный узел и направляется в магистральный трубопровод. Для тарировки замерных счётчиков предусмотрен прувер. Дренаж с блока замера производится в закрытую дренажную ёмкость. Объём резервуара составляет 28000 - это суточная норма хранения.
2. Электрооборудование
Потребителями электроэнергии являются электроприемники, установленные на проектируемых технологических площадках и вспомогательных объектах.
Силовыми электроприемниками являются электроприборы компрессоров, насосных агрегатов, вентиляционных установок, оборудование систем отопления и кондиционирования производственных помещений, осветительные установки, системы автоматизации, контроля, сигнализации.
Карачаганакский перерабатывающий комплекс (КПК) по обеспечению надёжности электроснабжения в целом относится к потребителям первой категории.
К этим потребителям в составе компрессорных установок относятся и компрессоры, масляные насосы, аппараты воздушного охлаждения газа и масла, электрозадвижки, вентиляционные установки насосных станций перекачки уловленной нефти, промышленно-ливневых и хозяйственно-бытовых стоков, вентиляторной установки складов готовой продукции, контрольные пункты и узлы в система пожаротушения, вентиляционные установки, обеспечивающие взрывоопасность на технологических объектах, сети аварийного освещения.
Кроме того, в составе электропотребителей на КПК имеются группы электроприемников, перерыв в электроснабжении которых угрожает жизни и здоровью людей, взрывом, пожаром, повреждениями основного технологического оборудования. К ним относятся системы аварийного останова производства, системы управления и контроля основных технологических процессов, пожарные сигнализация и сигнализация утечек газа, систем связи, эвакуационное освещение. Эти потребители относятся к особой группе электроприемников первой категории.
Электроприемники второй категории на проектируемых
объектах КПК являются насосы, аппараты воздушного охлаждения, электрозадвижки на установках очистки и осушки газа и установках низкотемпературной конденсации, электроприёмники пунктов замера и приёма газа, очистки сооружений.
Электроприёмники систем инженерного обеспечения административных зданий (отопление, вентиляция, кондиционирование, водоснабжение и канализация, прочие установки вспомогательного значения), энергопотребители складских помещений и других зданий, служб, потребители систем электрохимзащиты, общее внутреннее и наружное освещение на объектах КПК относятся к потребителям третьей категории.
Для обеспечения нормальной работы оборудование технологических площадок проектом предусматривается создание для них систем бесперебойного питания электроэнергии в необходимом количестве и с нормируемым количеством. Степень бесперебойности электроснабжения для различных групп потребителей определяется их категоричностью с точки зрения требований [8]. Электроприёмники первой категории обеспечиваются электроэнергией от двух независимых источников питания, перерыв их электроснабжения допускается лишь на время автоматического ввода резервного питания.
Для особой группы электроприёмников первой категории предусматривается дополнительное питание от третьего независимого взаимно резервирующего источника питания.
Для электропотребителей второй категории перерыв электроснабжения допускается на время, необходимое для включения резервного питания действиями дежурного персонала или выездной оперативной бригады.
Для электроприёмников третьей категории допускается перерыв в электроснабжении на время, необходимое для ремонта или замены повреждённого элемента системы электроснабжения, но не более, чем на 24 часа.
Комплекс КПК является крупным энергоёмким предприятием. Распределение электроэнергии на нем от источника питания, от собственной электростанции, осуществляется в основном на напряжении 35 кВ, которое является первой ступенью схемы
распределения. На напряжении 6 кВ осуществляется только питание
собственных нужд электростанции, аварийных нагрузок и подстанций №5 и №6, от которых питаются потребители в предзаводской зоне.
Функции распределения электроэнергии на напряжении 35 кВ на КПК выполняет главная подстанция V-470 электростанции.
Распределение электроэнергии на подстанциях осуществляется через силовые трансформаторы, установленные на разных ступенях напряжения с учетом выбранных напряжений электропотребителей:
6 кВ, 6/0. 69 кВ; 0. 4/02. 23 кВ.
Во всех звеньях системы распределения электроэнергии предусматривается секционирование шин. Все элементы схемы постоянно находятся под нагрузкой, при аварии одного из них оставшиеся в работе принимают на себя его нагрузку путём перераспределения её между собой с учётом допустимой перегрузки.
Все электрооборудование на объектах КПК выбирается в соответствии с условиями среды, в которой оно будет эксплуатироваться, и классификацией объектов по взрывоопасности и пожароопасности.
Силовое электрооборудование, а также аппараты защиты, управления и сигнализации, типы и конструкции питающих и распределительных сетей на всех площадок КПК выбирается на основании электрических нагрузок технологических, отопительных, осветительных и прочих установок.
Технические характеристики этого оборудования определяются его назначением, условиями безопасности в эксплуатации, надёжностью в работе, удобством в обслуживании, доступностью запасных частей, необходимым резервом, экономической целесообразностью, опытом применения на аналогичных объектах.
Для электрообеспечения, устанавливаемого во взрывоопасных зонах, согласно [8] принимается соответствующий уровень взрывозащиты - в зависимости от класса взрывоопасной зоны и вид взрывозащиты - в зависимости от категории и группы взрывоопасной смеси, для которой оно предназначено.
Для подключения электропотребителей, расположены на технологических и вспомогательных производственных площадках, на территории КПК установлены распределительные трансформаторные подстанции NN4, 4-1, 1, 1-1.).
Все подстанции выполняются в как отдельно стоящие здания в стационарном исполнении, с бетонными стенами, с высокой степенью огнестойкости и устойчивости против взрыва. Здания оборудованы всеми необходимыми инженерными системы для создания в помещении распределительных устройств нормируемых условий эксплуатации электооборудования и оборудования систем отопления, вентиляции, кондиционирования. Система приточной вентиляции здания обеспечивает создание в нём избыточного давления, что позволяет расположить подстанцию на территории производственной зоны с принятыми расстояниями до других зданий и сооружений производственного назначения. Пол помещения распредустройств (РУ) подстанции расположены на отметке плюс
3. 075 м. На этой же отметке в отдельных помещениях размещается оборудование вентиляции, отопления, кондиционирования. Цокольные этажи зданий предназначены для размещения аккумуляторных батарей и для прокладки кабеля.
Все силовые трансформаторы подстанции приняты масляного типа и устанавливаются снаружи возле стен подстанции под навесом в трансформаторных отсеках. Между отсеками устанавливаются противопожарные перегородки. Под трансформаторами подразумеваются маслосборники, заполненные щебнем и соединенные с системой откачки маслосодержащих стоков.
В помещении распределительных устройств подстанций №4 и №1 разрешаются главные распределительные щиты напряжением 6кВ, 0. 69 кВ, 0. 4кВ, в подстанции 4-1- распределительные щиты 0. 4кВ; 0. 69кВ, в подстанции 1-1 - распределительные щиты 0. 4 кВ. Кроме того, в помещениях распределительных устройств этих подстанций размещается также остальное оборудование, обеспечивающее работу всех элементов системы электроснабжения и управления работой энергопотребителей.
Установленные на подстанциях распределительные устройства РУ-6кВ, РУ-0. 69кВ, РУ-0. 4кВ являются одновременно щитами управления двигателей, работающих от сети 6 кВ, 0. 69 кВ, а также других потребителей, подключенных к РУ-0. 4кВ. Распределительные щиты этих РУ укомплектованы шкафами соответствующего исполнителя в зависимости от назначения фидера, который подключен к этому шкафу: линия к трансформатору, линия к распределительному щиту, линия к электродвигателю.
Высоковольтные и низковольтные электродвигатели различных приводов на объектах КПК поставляются комплектно с технологическим оборудованием и имеют соответствующие климатическое исполнение, степени защиты от условий среды, необходимый уровень и вид взрывозащиты.
Все распределённые щиты, установленные в подстанциях и на проектируемых объектах поставляются в шкафном исполнении со сборными шинами. Все шкафы имеют естественную вентиляцию.
Для предотвращения доступа к токоведущим частям, находящимся под напряжением, все распределительные устройства и шкафы оборудованы необходимыми защитами электрическими и механическими блокировками, а также защитными кожухами.
Все выключатели, пускатели и контакторы, установленные в щитах, приняты с воздушном зазором, имеют компактное миниатюрное исполнение или исполнение в литом корпусе, пригодны для непрерывной работы, имеют категорию исполнения “B”.
Комплекты оборудования систем бесперебойного питания постоянного и переменного тока установлены в распределительном устройстве подстанции. Блоки бесперебойных источников питания постоянного тока - 110В в подстанциях имеют в своём составе два взваиморезервируемых выпрямителя и две аккумуляторные батареи. Автономное питание от батарей рассчитано на 24 часа, но, по мере возможности, продолжительность подключения потребителей к батарее сводится к минимуму. Блоки бесперебойного питания переменного тока напряжением 230В состоят из двух зарядных устройств, двух преобразователей постоянного тока в переменный, аккумуляторной батареи и аппаратов регулирования и управления. Все элементы блоков бесперебойного питания переменного тока напряжением 230B рассчитаны на полную нагрузку, аккумуляторы на 50% нагрузки.
В центрах управления двигателями, в распределительных
устройствах разных ступеней напряжения, а также для коммутационной аппаратуры, установленной на силовом электрооборудовании технических объектов предусмотрены системы встроенной (интегрированной) защиты и управления.
Устройства системы обеспечивают управление пусковыми
аппаратами через выходные реле блоков управления двигателей. Эти
устройства предусмотрены для пуска прямым включением нереверсивных и реверсивных приборов, а также в схемах пуска с применением переключателей со звезды на треугольник для двухскоростных двигателей, схемах плавного запуска и в инверторных приводах с переменной скоростью.
Для подключения токоприемников на площадках КПК объектах обустройства промысла запроектированы кабельные сети и электропроводки. Принятые для прокладки кабеля и провода выбираются по номинальным токам в соответствии с указаниями ПУЭ и стандартами IEC287 (расчет постоянных нагрузок на кабели) и IEC853 (расчёт циклических или аварийных нагрузок на кабели).
Сечения всех проводников к электродвигателям, находящимся во взрывоопасных зонах, должны допускать длительную нагрузку не менее 125%. Низковольтные кабели и контрольные кабели приняты с медным многожильными проводниками с полихлорвиниловой в оболочке, не распространяющей горения, армированной стальной проволокой. Силовые кабели напряжения 6кВ имеют аналогичную конструкцию. На участках совместной открытой прокладки кабелей с технологическими трубопроводами соблюдается все противопожарные требования по сближениям, защитным кожухам и т. п. Питающие кабели к особо ответственным потребителям первой категории прокладываются по отдельной трассе.
Для освещения открытых площадок и внутреннего освещения помещений на объектах КПК установлены светильники соответствующих видов. Сети наружного освещения управляются в автоматическом режиме от блоков управления фотоэлементами. Наружное освещение территории площадок осуществляется светильниками с 400-ватными натриевыми лампами высокого давления. Светильники устанавливаются на отдельно установленных мачтах и на возвышающихся частях зданий и сооружений. Во взрывоопасных зонах осветительная аппаратура имеет взрывозащищенное исполнение. Питание осветительной осуществляется переменным напряжением 220В, 50 Гц.
Кроме общего освещения на всех объектах КПК предусмотрено также устройство сети аварийного освещения. Аварийное освещение
включает две категории:
-категория первая - для отапливаемых помещений (подстанции,
помещения аппаратных с оборудованием контроля и управления, помещения с оборудованием связи, помещения для административных зданиях для офисов).
-категория вторая - для наружных площадок, а также помещений, обеспечивающих работу технологических установок, в том числе пуск обесточенного оборудования.
Проектом предусмотрено выполнение защитных мер электробезопасности в полном объеме, предусмотренном [8]. Основным средством защиты обслуживающего персонала от поражения электрическим током является защитное заземление или зануление.
На площадках КПК для питания электропотребителей до
1000 В приняты четырехпроводные сети переменного тока
напряжением 400/230 В и 690/400 B с глухозаземлённой нейтралью.
Занулению подлежат металлические корпуса всех электрических машин, трансформаторов, аппаратов и светильников, вторичные обмотки измерительных трансформаторов, металлические корпуса и каркасы распределительных щитов, шкафов управления, кабельные конструкции, связанные установкой электрообеспечения.
В качестве заземляющих устройств применяются горизонтальные и глубинные заземлители. Горизонтальные прокладываются в траншее на глубине от 0. 5 до 1м. Глубинные заземлители в виде вертикальных электродов, установленных на глубину от 5 до 30 м, исходя из обеспечения переходного сопротивления заземления не более 1 Ом.
Все технологические и вспомогательные установки со взрывоопасными зонами оборудуются молнезащитной первой и
второй категории. Защита зданий и сооружений от прямых ударов молнии осуществляется установленными на самых высоких конструкциях этих объектов или на отдельно установленных опорах молниеприёмниками. в качестве молниеприёмников используется также металлическая кровля зданий и навесов или молниеприёмные сетки.
На всех протяженных металлических конструкциях и между параллельно проложенными металлическими трубопроводами при их сближениях на расстояние не менее 10 см устраиваются металлические перемычки.
Защита от заноса высокого потенциала по внешним наземным или подземным коммуникациям осуществляется присоединением их на вводе в здание или сооружение к заземлителю защиты от прямых ударов молний.
Защита силовых трансформаторов на стороне 6кВ осуществляется предохранителями или выключателями. Все распределительные устройства подстанций и остальные распределительные щиты, от которых осуществляется питание электропотребителей укомплектованы всеми необходимыми видами защиты от перегрузок и коротких замыканий.
Здания на территории КПК приняты каркасного типа из металлических конструкций со стеновыми и кровельными панелями.
Характеристика объектов по категориям и классам взрывопожарной и пожарной опасности приведена в таблице 2. 1.
3. Релейная защита и автоматика
Кроме перечисленного основного электрооборудования применяются многочисленные устройства релейной защиты, автоматики, сигнализации и др.
Релейная защита предусматривается в соответствии с [8] и требованиями нормативных указаний.
Устройства релейной защиты и автоматики ускоряют ликвидацию возникших аварий и нарушений режима работы установки и помогают быстрее восстановить её нормальный режим.
Для защиты от междуфазных коротких замыканий элементов электрической сети, особенно при их одностороннем питании, широко применяются Максимальные токовые защиты (МТЗ), а также токовые отсечки. Их широко применяют и для защиты от однофазных замыкание на землю.
МТЗ является одной из наиболее надежных, дешевых и простых по выполнению защит, относится к защитам с выдержкой времени.
Типовой отсечкой называют МТЗ, избирательностью действия которой обеспечивается не ступенчатым побором выдержки времени, а путём выбора соответствующего тока срабатывания, это быстродействующая токовая защита.
3.1 Расчёт защиты силового трансформатора
В соответствии с [8] для релейной защиты трансформатора должна быть предусмотрена следующие виды защит:
1. Упрощенная продольная дифференциальная защита (с двумя реле с торможением типа ДЗТ-11, тормозная обмотка включена на ток стороны низшего напряжения - от междуфазных коротких замыканий.)
2. Мелким ток. защита по схеме неполной звезды со стороны питания - от внешних коротких замыканий.
3. Газовая защита - от витковых замыканий и других внутрибаковых повреждений.
4. Токовая в одной фазе - от перегруза.
Продольная дифференциальная защита
Расчет в следующем порядке:
Определяются средние значения первичных и вторичных номинальных токов для всех сторон защищаемого трансформатора.
Результаты расчета сводятся в таблицу 5. 1
Таблица 4. 1
Средние значения первичных и вторичных номинальных токов трансформатора
Наименование величины |
Численное значение для стороны |
||
1 |
2 |
3 |
|
BH |
HH |
||
Первичный номинальный ток трансформатора, А |
(4. 1) |
(4. 2) |
|
Коофициент трансформации трансформатора тока |
(4. 3) |
||
Схема соединений трансформаторов |
звезда |
звезда |
|
Вторичный ток в плечах защиты, А |
(4. 4) |
(4. 5) |
2. При внешних коротких замыканиях в дифференциальной цепи появляется ток небаланса, следовательно первым условием выбора первичного тока срабатывания защиты является отстройка от этого тока небаланса:
(4. 6)
(4. 7)
где - коэффициент надёжности, =1. 3;
- составляющая, обусловленная погрешностью
трансформаторов тока, кА;
- составляющая, обусловленная неточностью
установки на коммутаторе реле типа ДЗТ-11
расчетных чисел витков обмотки (учитывается в
уточненном расчете), кА.
(4. 8)
Вторым условием выбора является отстройка от броска тела намагничивания при включении ненагруженного трансформатора под напряжением:
где - коэффициент отстройки от бросков тока
намагничивания,
- номинальный ток трансформатора на низшей
стороне, кА.
За предельное значение принимается большее из двух условий:
Уточненный расчет производится после выбора чисел витков уравнительных обмоток НТТ. Сторону дифференциальной цепи, где проходит наибольший ток принимают за основную.
Для этой стороны ток срабатывания реле:
За принимается ближайшее меньшее число витков по отношению к.
Число витков обмотки НТТ, включаемой на неосновной стороне:
где - первичный номинальный ток
трансформатора, А;
- вторичный ток в плечах защиты, А.
Принимается ближнее целое число:
Определяется :
Тогда уточнённое значение тока небаланса
Уточняется расчёт других величин:
Так как больше предварительного выбранного значения, то принимается за окончательное значение
и повторяется расчет величин.
Чувствительность защиты определяется по короткому двухфазному замыканию в зоне действия защиты на стороне 6кВ:
где - двухфазный ток К3,
(4. 17)
Максимально-токовая защита
Максимально-токовая защита выполняется с независимой выдержкой времени на реле типа РТ-40, включенных по схеме неполной звезды со стороны питания.
Ток срабатывания защиты , А по условию отстройки от рабочего тока при возможности перегрузки трансформатора:
(4. 18)
где Iраб. max - максимальный рабочий ток, А
(4. 19)
Ток срабатывания реле , А находится по формулам:
ВН: (4. 20)
НН: (4. 21)
Коэффициент чувствительности при двухфазном коротком замыкании:
(4. 22)
ВН:
НН:
Так как коэффициент чувствительности удовлетворяет условию, то принятая схема обеспечивает надёжное резервирование.
Газовая защита
Газовая защита основана на использовании явления газообразования в баке повреждённого трансформатора. Она выполняется для трансформаторов с . Интенсивность газообразования зависит от характера и размеров повреждения. Это дает возможность выполнить газовую защиту, способную различать степень повреждения, и в зависимости от этого действовать на сигнал или отключение.
Основным элементом газовой защиты является газовое реле KSG, устанавливаемое в маслопроводе между баком и расширителем.
Достоинства газовой защиты: высокая чувствительность и реагирование практически на все виды повреждений внутри бака; сравнительно небольшое время срабатывания; простота выполнения, а также способность защищать трансформатор при допустимом понижении уровня масла по любым причинам.
Защита от перегруза
Выполняется одним реле тока, включённом на ток какой-либо фазы в цепь одного из трансформаторов тока защиты от внешних КЗ.
Ток срабатывания защиты , А:
(4. 23)
Ток срабатывания реле , А
, (4. 24)
где - коэффициент надёжности отстройки учитывает
только погрешность в токе срабатывания,
.
3.2 Защита конденсаторных установок
Конденсаторные установки, присоединяемые параллельно к приёмникам электроэнергии, предназначаются для повышения коэффициента мощности в системе электроснабжения. Их используют и для местного регулирования напряжения, поэтому конденсаторные установки снабжаются автоматическими регуляторами напряжения (АРН).
Защита от многофазных коротких замыканий предусматриваются для всей конденсаторной установки в целом. В сетях напряжением выше 1000В выполняется плавкими предохранителями или двухфазной токовой отсечкой. Кроме того, предусматривается групповая защита батарей, из которых состоит установка. Групповая защита не требуется, если конденсаторы снабжены индивидуальной защитой.
Номинальный ток плавкой вставки предохранителя и ток срабатывания защиты выбирается с учётом отстройки от токов переходного процесса при включении конденсаторной установки и толчков тока при перенапряжениях. Чувствительность защиты считается достаточной при .
Защита от перегрузки предусматривается в тех случаях, когда возможна перегрузка конденсаторов высшими гармоническими токами из-за непосредственной близости мощных выпрямительных установок.
Защита от повышения напряжения устанавливается, если при повышении напряжения к единичному конденсатору может быть длительно приложено напряжение более 1, 1 . Защита выполняется одним максимальным реле напряжения и реле времени. Предусматривается автоматическое повторное включение конденсаторной установки после восстановления первоначального уровня напряжения, но не ранее чем через пять минут после её отключения.
3.3 Защита и автоматика асинхронных двигателей напряжением выше 1000В
Для защиты от многофазных коротких замыканий применяются
плавкие предохранители, токовые отсечки без выдержки времени и продольные дифференциальные защиты.
Плавкие предохранители могут быть использованы при подключении электродвигателя к сети через выключатель нагрузки.
Токовая отсечка без выдержки времени устанавливается на электродвигателях мощностью Pд < 5000 кВт, причём для электродвигателей мощностью Pд < 2000 кВт она выполняется однорелейной, с включением реле на разность токов двух фаз. Если чувствительность отсечки оказывается недостаточной или если привод выключателя имеет два реле тока прямого действия, то применяется двухрелейная отсечка, которая является обязательной для электродвигателей мощностью Pд > 2000 кВт.
Продольная дифференциальная защита устанавливается на электродвигателях мощностью Pд 2000 кВт и меньше, если токовая отсечка оказывается недостаточной чувствительной. Для упрощения защиты выполняется двухфазной.
Защита от замыканий на землю, действующая на отключение, устанавливается на двигателях мощностью Pд 2000 МВт лишь в тех случаях, когда ток замыкания на землю Iз 10A. Реле защиты подключается к однотрансформаторному фильтру тока нулевой последовательности.
Защита от перегрузки предусматривается на электродвигателях, подверженных перегрузке по техническим причинам, а также на электродвигателях с особо тяжелыми условиями пуска и самозапуска длительностью 20 секунд и более. Осуществляется защита индукционными элементами реле РТ-80. При этом индукционный элемент с выдержкой времени, зависимой от кратности тока, используется для защиты от перегрузки, а элемент без выдержки времени - для выполнения отсечки.
Минимальная защита напряжения выполняется двухступенчатой. Первая ступень предназначается для облегчения самозапуска ответственных электродвигателей, она отключает электродвигатели неответственных механизмов. Вторая ступень защиты отключает часть электродвигателей ответственных механизмов, самозапуск которых недопустим по условиям техники безопасности (ТБ) или из-за особенностей технологического процесса.
Устройства автоматического повторного включения (АПВ) предусматриваются на основаниях электродвигателях, отключаемых минимальной защитой напряжения для обеспечения самозапуска других ответственных электродвигателях.
3.4 Защита кабельных линий напряжением выше 1000В
На кабельных линиях напряжением 6 кВ предусматриваются устройства релейной защиты от междуфазных замыканий и от однофазных замыканий на землю. Наиболее распространенным видом защиты является максимально токовая защита. От междуфазных замыканий такую защиту рекомендуется выполнять в двухфазном исполнении и включать ее в одни и те же фазы по всей сети данного напряжения с целью отключения в большинстве случаев двойных замыканий на землю только одного места повреждения. В зависимости от требований чувствительности защита может быть выполнена одно-, двух- или трехлинейной.
Токовая защита от замыкания на землю обычно выполняется с включением на фильтр токов нулевой последовательности. Она приходит в действие в результате прохождения по поврежденному участку токов нулевой последовательности, обусловленных емкостью всей электрически связанной сети без учета емкости поврежденной линии.
4. Экономика и организация
4.1 Определение себестоимости передачи и распределения 1 кВт/ч электроэнергии
В экономической части дипломного проекта производится расчет по определению себестоимости передачи и распределения 1кВт/ч электроэнергии распределительной подстанции.
Себестоимость зависит от степени использования установленной мощности электростанции, то есть от режима её работы (графика нагрузки). Эта зависимость себестоимости единицы энергии от числа часов использования установленной мощности называется эксплуатационной экономической характеристикой.
Чем больше число часов использования установленной мощности тем ниже себестоимости единицы энергии, т. к. с повышением использования производительной ёмкости в себестоимости единицы снижается удельный вес условно-постоянных затрат, которые не зависят от количества вырабатываемой энергии.
Уровень себестоимости существенно зависит от мощности электростанции: с увеличением мощности электростанции и единичной мощности установленных на ней агрегатов себестоимости снижается.
Снижение себестоимости продукции является основным источником роста эффективности, увеличение прибыли и повышение рентабельности.
Основные пути снижения себестоимости: повышение производительности труда, снижение материальных затрат, совершенствование техники и технологии производства, внедрении
передовых методов организации производства и труда.
Таблица 6. 1
Капитальные затраты на строительство линии электропередач
Показатели |
Обозначение |
Единица измерения |
Количество |
|||
Кабельные линии |
КЛ |
|||||
Протяженность |
км |
1. 37 |
2. 00 |
1. 5 |
||
Капитальные вложения на КЛ |
тысяч тенге |
2500. 24 |
1654. 3 |
3590. 18 |
Таблица 6. 2
Капитальные затраты в элементы системы передачи электроэнергии
Показатели |
Удельные капиталовложения , ДОЛ. США |
Количество, шт. |
Капиталовложения |
|
1. Трансформатор 35 кВ - 16000кВА |
62000 |
2 |
124000 |
|
2. ТП 6/0. 69 -250 кВА |
4830 |
2 |
9660 |
|
3. ТП 6/0. 4 -1000 кВА |
15500 |
2 |
31000 |
|
4. РУ 6 кВ Д12/SK |
35180 |
2 |
70280 |
|
5. Выключатели |
11300 |
12 |
135600 |
|
6. БСК |
8400 |
3 |
25200 |
|
7. Разъединители |
950 |
6 |
5700 |
|
8. Предохранители |
65. 7 |
2 |
131. 4 |
|
9. Трансформаторы тока |
2000 |
2 |
4000 |
|
10. Трансформаторы напряжения |
1550 |
2 |
3100 |
Таблица 6. 3
Баланс рабочего времени
Показатели |
Режим работы |
|
Непрерывный 12 ч |
||
1. Календарный фонд, дни |
365 |
|
2. Праздники |
8 |
|
3. Выходные |
176 |
|
4. Номинальный фонд |
181 |
|
5. Невыхода |
29 |
|
5. 1 Трудовой отпуск |
25 |
|
5. 2 Болезни |
3 |
|
5. 3 Выполнение государственных обязанностей. |
1 |
|
6. Эффективный фонд рабочего времени. |
152 |
|
7. Коэффициент списочного состава (365: 6) |
2. 4 |
|
8. Эффективный фонд рабочего времени (6*12) или (6*8) |
1824 |
Таблица 6. 4
Расчет амортизационных отчислений
Виды основных фондов |
Балансовая стоимость, ДОЛ. США |
Норма амортизации, % |
Сумма амортизации, тг. |
|
1 |
2 |
3 |
4 |
|
1. Трансформатор 35 к. в |
124000 |
9, 4 |
1806680 |
|
2. ТП 6. 0/69 |
9660 |
9, 4 |
140746, 2 |
|
3. ТП 6/0. 4 |
31000 |
9, 4 |
451670 |
|
4. РУ 6кВ |
70280 |
9, 4 |
1023979, 6 |
|
5. Выключатели ВВЭ-10-55/1250 УЗ |
135600 |
9, 4 |
1975692 |
|
6. БСК УКЛ-6. 3-1350 УЗ |
25200 |
9, 4 |
367164 |
|
7. Разъединители РНД- 35/3200У |
5700 |
9, 4 |
83049 |
Таблица 6. 5
Расчёт затрат на вспомогательные материалы
Наименование материала |
Удельная норма расхода |
Общий расход |
Цена Единицы тг. |
Общая сумма тыс. тг. |
||
Ед. измерения |
Количество |
|||||
1 |
2 |
3 |
4 |
5 |
6 |
|
А. Кол-во полученной ЭЭ. |
тыс. квТ/ч |
185131, 4573 |
- |
- |
- |
|
Б. Расход материала |
||||||
1. Прокат Медный |
кг |
0, 0005 |
92, 566 |
100 |
9, 256 |
|
2. Изолента |
кг/тыс. кВт/ч |
0, 000018 |
3, 332 |
300 |
0, 9996 |
|
3. Предохра-нители |
шт/тыс. кВт/ч |
0, 0009 |
16, 662 |
1110 |
18, 3282 |
|
4. Бумага изоляционная |
кг/тыс. кВт/ч |
0, 0002 |
3, 703 |
200 |
0, 7406 |
|
5. Кабель |
м |
0, 002 |
370, 263 |
990 |
366, 56 |
|
6. Краска |
кг |
0, 0009 |
16, 662 |
150 |
2, 4993 |
|
7. ГСМ |
л |
0, 0001 |
18, 513 |
25 |
0, 4628 |
|
8. Итого |
- |
- |
- |
- |
198, 847 |
|
2 |
Подобные документы
Расчет параметров схемы замещения системы электроснабжения. Сопротивление и релейная защита кабельных линий. Расчёт токов короткого замыкания. Максимальная токовая и дифференциальная защита трансформатора. Защита замыканий на землю. Ток срабатывания реле.
курсовая работа [894,8 K], добавлен 23.08.2012Устройства релейной защиты и автоматики. Расчет токов короткого замыкания. Защита питающей линии электропередач. Защиты трансформаторов и электродвигателей. Самозапуск электродвигателей и защита минимального напряжения. Автоматическое включение резерва.
курсовая работа [259,2 K], добавлен 23.08.2012Проект релейной защиты и автоматики однолинейной понизительной подстанции в режиме диалога. Расчёт токов короткого замыкания, защиты двигателя, кабельных линий, секционного выключателя, конденсаторной установки; регулирование напряжения трансформатора.
курсовая работа [1,2 M], добавлен 12.11.2011Теоретические расчеты выбора кабелей электроснабжения асинхронных двигателей, разновидность сечения кабелей. Предварительный расчет тока и определение сопротивления элементов. Расчёт уставок защиты магистрального участка сети и плавких предохранителей.
курсовая работа [706,8 K], добавлен 02.01.2011Расчет токов короткого замыкания. Расчет уставок токовых защит линии электропередач, защит трансформаторов и высоковольтных асинхронных электродвигателей. Самозапуск электродвигателей и защита минимального напряжения. Автоматическое включение резерва.
курсовая работа [324,1 K], добавлен 19.11.2013Основные виды электрической автоматики, без которой невозможна нормальная работа энергосистем. История развития релейной защиты. Требования к релейной защите, ее основные органы, виды и принцип действия. Продольная и поперечная дифференциальная защита.
отчет по практике [21,2 K], добавлен 21.09.2013Схемы замещения электрической сети прямой и нулевой последовательностей. Выбор вариантов выполнения основной и резервной защит, устанавливаемых на параллельных ЛЭП с ответвлениями. Проект токовых ненаправленных отсечек параллельных линий электропередачи.
дипломная работа [3,7 M], добавлен 14.01.2016Выбор необходимого объёма релейной защиты и автоматики. Расчет токов короткого замыкания. Расчет параметров схемы замещения сети. Проверка трансформатора тока. Газовая защита трансформатора. Расчет релейной защиты трансформатора собственных нужд.
курсовая работа [1,2 M], добавлен 13.02.2014Расчет короткого замыкания при конкретном сопротивлении линии, дифференциальная защита силового трансформатора aTSE-2000/6/0,4, построение карты селективности и выбор времени срабатывания МТЗ, расчет установок защит и максимальная тактовая частота линий.
курсовая работа [117,5 K], добавлен 23.08.2012Произведение расчетов токов короткого замыкания. Принципы осуществления релейной защиты кабельной линии, асинхронного двигателя, конденсаторных установок и понижающих трансформаторов. Приведение схемы автоматического ввода резерва секционного выключателя.
курсовая работа [291,4 K], добавлен 23.06.2011Релейная защита и автоматика систем электроснабжения. Расчёт токов короткого замыкания для целей релейной защиты. Функции защиты от асинхронного режима. Защита электродвигателей от многофазных коротких замыканий. Схема защиты синхронного электродвигателя.
курсовая работа [101,6 K], добавлен 08.11.2012Выбор вводного автомата серии ВА (Dmax). Расчет защиты высоковольтного асинхронного электродвигателя, дифференциальной и газовой защиты генератора. Выбор плавких вставок предохранителей F. Ток срабатывания защиты. Проверка равенства МДС трансреактора.
курсовая работа [116,4 K], добавлен 07.04.2015Применение в системах электроснабжения устройств автоматики энергосистем: синхронных компенсаторов и электродвигателей, регуляторов частоты вращения. Расчет токов короткого замыкания; защиты питающей линии электропередач, трансформаторов и двигателей.
курсовая работа [376,3 K], добавлен 23.11.2012Проектирование релейной защиты и автоматики энергосистем. Расчёт токов короткого замыкания. Максимальная токовая защита и токовая отсечка. Дифференциальная токовая защита без торможения. Расчёт трансформаторов тока, определение их полной погрешности.
курсовая работа [254,5 K], добавлен 30.06.2015Выбор рационального напряжения, числа и мощности силовых трансформаторов, тока короткого замыкания. Расчет и выбор питающей линии. Выбор оборудования на стороне первичного напряжения. Релейная защита силового трансформатора, автоматика электроснабжения.
курсовая работа [1,1 M], добавлен 07.07.2012Разработка схемы электрических соединений районной понизительной подстанции; графики нагрузок. Выбор числа и мощности силовых трансформаторов. Расчёт токов короткого замыкания. Выбор электрооборудования и токоведущих частей, релейная защита и автоматика.
курсовая работа [1,8 M], добавлен 15.02.2016Характеристика электроприемников подстанции. Расчет электрических нагрузок. Выбор числа и мощности трансформаторов. Проверка токоведущих частей и оборудования. Релейная защита и автоматика. Внедрение автоматизированной системы учета электропотребления.
дипломная работа [891,9 K], добавлен 25.12.2014Выбор, рассчет и согласование между собой защиты вводов, межсекционных выключателей и отходящих линий питающей трансформаторной подстанции напряжением 35 кВ. Схема автоматики на подстанции и согласование её работы с режимом работы электроустановок.
курсовая работа [387,3 K], добавлен 23.08.2012Определение параметров схемы замещения и расчет функциональных устройств релейной защиты и автоматики системы электроснабжения. Характеристика электроустановки и выбор установок защиты заданных присоединений: электропередач, двигателей, трансформаторов.
курсовая работа [422,5 K], добавлен 23.06.2011Расчет тока короткого замыкания. Защита трансформатора электродуговой печи, кабельных линий от замыканий на землю, высоковольтных асинхронных и синхронных двигателей от перегрузки, низковольтных двигателей. Устройство автоматического повторного включения.
курсовая работа [514,6 K], добавлен 25.02.2015