Релейная защита и автоматика

Выявление поврежденного элемента и быстрейшее его отключение от энергосистемы как назначение релейной защиты. Основные требования, предъявляемые к устройствам релейной защиты. Структурная схема и подключение релейной защиты к защищаемому объекту.

Рубрика Физика и энергетика
Вид отчет по практике
Язык русский
Дата добавления 25.02.2014
Размер файла 1,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

АЛМАТИНСКИЙ УНИВЕРСИТЕТ ЭНЕРГЕТИКИ И СВЯЗИ
Кафедра электроснабжения промышленных предприятий
Отчет о практике
Специальность - 5В071800 - электроэнергетика
Выполнил: ст.гр. РЗк-10-1
Кудайбергенов Ж.О.
Проверила: Арыстанов Н.Н.
Алматы 2013

Релейная защита и автоматика

Назначение релейной защиты. Требования, предъявляемые к релейной защите

Ни один элемент электроэнергетической системы (генератор, трансформатор, линия электропередачи, сборные шины и др.) не обладает абсолютной надежностью. С большей или меньшей вероятностью он может быть поврежден, причем большинство повреждений сопровождается возникновением короткого замыкания (КЗ). Режим КЗ опасен для энергосистемы: устойчивая работа энергосистемы может быть нарушена, из-за существенного искажения параметров режима энергосистемы потребители электроэнергии теряют электропитание, длительное существование токов КЗ разрушает повредившийся элемент энергосистемы до неремонтопригодного состояния.

Назначением релейной защиты (РЗ) является выявление поврежденного элемента и быстрейшее его отключение от энергосистемы. Кроме того, устройства релейной защиты должны предупреждать повреждение элемента энергосистемы в случае возникновения ненормального и опасного для него режима работы (перегрузка, неполнофазный режим и др.).

Основные требования, предъявляемые к устройствам релейной защиты:

Селективность -- способность устройства релейной защиты выявить и отключить именно поврежденный элемент энергосистемы, а не какой-либо иной, хотя при наличии короткого замыкания нарушается нормальная работа многих элементов энергосистемы.

Быстродействие -- способность релейной защиты в кратчайший промежуток времени (лучше всего мгновенно) выявить и отключить поврежденный элемент энергосистемы.

Чувствительность -- способность устройства релейной защиты четко отличать режим короткого замыкания любого вида (трехфазное, двухфазное, однофазное короткое замыкание) от всевозможных, даже утяжеленных режимов работы защищаемого объекта при отсутствии короткого замыкания.

Надежность -- отсутствие отказов или ложных срабатываний релейной защиты, что обеспечивается как функциональной, так и аппаратной надежностью устройства защиты.

Устройства релейной защиты реагируют, естественно, на значения параметров режима защищаемого объекта (ток, напряжение, направление мощности и др.). По способу обеспечения селективности устройства релейной защиты подразделяются на две группы: с относительной селективностью и с абсолютной селективностью. Селективность защит первой группы обеспечивается выбором значений параметров срабатывания (уставок) защиты, а селективность защит второй группы обеспечивается принципом их действия, т.е. защиты с абсолютной селективностью по принципу своего действия не реагируют на внешние по отношению к защищаемому объекту КЗ. К защитам с относительной селективностью относятся в основном токовые и дистанционные защиты, а к защитам с абсолютной селективностью продольные и поперечные дифференциальные защиты, направленные защиты с высокочастотной блокировкой, дифференциально-фазные защиты, а также защиты, реагирующие на неэлектрические параметры (газовая защита трансформатора, дуговая защита шин и др.).

Структурная схема РЗ, подключение РЗ к защищаемому объекту

релейный защита энергосистема устройство

Любое устройство релейной защиты содержит, как правило, три составные части: измерительную, логическую и исполнительную (рис. 15.1). В состав измерительной части может входить один или несколько пусковых органов. Назначением измерительной части защиты является сравнение текущих значений параметров режима защищаемого объекта с заданными значениями, при которых защита должна срабатывать, т.е. с уставкой.

В зависимости от вида РЗ такими параметрами могут быть ток, напряжение, направление мощности, отношение напряжения к току, т.е. сопротивление, и др. Если защита должна срабатывать при значениях параметра режима бульших уставки, она называется максимальной, а если при значениях параметра меньших уставки -- минимальной. При КЗ на защищаемом объекте ток увеличивается, напряжение снижается, изменяется фазовый сдвиг между током и напряжением, нарушается симметрия токов и напряжений, а при КЗ на землю сумма напряжений и сумма токов трех фаз оказывается не равной нулю. Эту информацию измерительная часть защиты получает от измерительных преобразователей (трансформатора тока ТА и трансформатора напряжения TV), изолирующих устройство релейной защиты от высокого напряжения на защищаемом объекте. Измерительная часть защиты обрабатывает входную информацию. В том случае, когда контролируемые параметры выходят за установленные пределы, пусковые органы измерительной части защиты выдают сигналы в логическую часть, реализующую логику действия защиты. В зависимости от вида релейной защиты она должна при срабатывании одного или при одновременном срабатывании нескольких пусковых органов измерительной части выдавать сигнал на отключение защищаемого объекта от энергосистемы без выдержки или с выдержкой времени. Сигнал на отключение объекта от энергосистемы поступает в исполнительную часть защиты, формирующую управляющее воздействие на выключатель (или выключатели), отключающий поврежденный объект от источников питания.

Помимо отключения объекта от источников питания при возникновении на нем КЗ на релейную защиту возлагаются также функции защиты объекта от ненормальных режимов работы, чаще всего от его перегрузки током внешнего короткого замыкания и от недопустимой перегрузки рабочим током. Практически на всех объектах энергосистемы (генераторах, трансформаторах, линиях электропередачи, сборных шинах и др.) устанавливаются, как правило, не одно, а несколько устройств релейной защиты, обеспечивающих защиту объекта от междуфазных коротких замыканий, от коротких замыканий на землю, а также от ненормальных режимов работы.

Измерительные преобразователи (трансформаторы тока и трансформаторы напряжения), от которых устройство релейной защиты получает информацию о параметрах режима защищаемого объекта, должны иметь погрешность преобразования значений тока и напряжения защищаемого объекта в их вторичные значения, поступающие в измерительную часть защиты, не превышающую в условиях срабатывания защиты 10 %.

Логическая и исполнительная части релейной защиты требуют для своего функционирования специальный источник питания -- источник оперативного тока. Измерительная часть защиты, если она выполнена на интегральных микросхемах или с использованием микропроцессоров, также требует питания от источника оперативного тока. К источникам оперативного тока предъявляются в основном три требования: автономность, т.е. независимость от режима работы защищаемого объекта; надежность, т.е. безотказность в работе; мощность достаточная как для питания устройства релейной защиты, так и для отключения выключателя (или выключателей) защищаемого объекта.

В распределительных электрических сетях и системах электроснабжения, имеющих, как правило, значительное число электрических подстанций без постоянного обслуживающего персонала, в качестве источников оперативного тока используются трансформаторы тока, трансформаторы напряжения, трансформаторы собственных нужд и предварительно заряженные конденсаторные батареи. На электрических станциях и крупных подстанциях источниками оперативного тока являются аккумуляторные батареи, работающие в режиме постоянного подзаряда.

Токовые защиты

Максимальная токовая защита отличает режим короткого замыкания от рабочего режима по значению тока, проходящего в защищаемом объекте, а селективность защиты обеспечивается выбором времени ее срабатывания. Максимальная токовая защита получила широкое распространение в радиальных электрических сетях с односторонним питанием напряжением ? 110 кВ (рис. 15.2).

Трансформаторы тока, к которым подключены токовые измерительные органы защиты, установлены в начале защищаемой линии, т.е. вблизи шин питающей подстанции. При коротком замыкании в точке К ток короткого замыкания проходит по линиям АБ, БВ и ВГ, что приводит к срабатыванию токовых измерительных органов защит. Для обеспечения отключения только поврежденной линии последовательно расположенным защитам придается время срабатывания защиты, возрастающее по мере приближения к источнику питания, т.е.

(15.1)

Таким образом, при КЗ в точке К (рис. 15.2) сработает РЗ линии ВГ и отключит выключатель Q3. Ток срабатывания защиты выбирается по условию возврата защиты в исходное состояние после отключения внешнего КЗ:

(15.2)

где kотс -- коэффициент отстройки, больший 1 и учитывающий погрешности трансформаторов тока и аппаратуры защиты; kз -- коэффициент самозапуска электрических двигателей потребителей, получающих питание по защищаемой линии, больший 1 и учитывающий возрастание тока в линии при самозапуске этих двигателей после ликвидации режима КЗ; kв -- коэффициент возврата, равный отношению тока возврата измерительного органа защиты в исходное состояние к току срабатывания этого органа (kв = 0,75--0,95); I раб max -- максимальное значение тока в защищаемой линии в рабочем режиме работы.

Если защищаемая линия оборудована устройством автоматического повторного включения (АПВ), ток срабатывания защиты необходимо выбрать также по условию ее несрабатывания после успешного АПВ

(15.3)

где, как правило, k'з > kз, так как перерыв питания электродвигателей в этом случае больше, что приводит к увеличению тока их самозапуска.

В качестве уставки защиты по току срабатывания принимается большее из двух полученных значений Iс.з.

Время срабатывания защит смежных участков сети отличается на ступень селективности Дt (0,3--1 с), учитывающую с некоторым запасом время отключения выключателя, а также погрешность во времени срабатывания и инерционность этих защит, т.е. tс.з3 = tс.з4 + Дt; tс.з2 = tс.з3 + Дt; tс.з1 = tс.з2 + Дt.

Чувствительность защиты оценивается коэффициентом чувствительности

(15.4)

где Iр.к -- минимальное значение тока в реле измерительного органа защиты при КЗ, а

(15.5)

где KI -- коэффициент трансформации трансформаторов тока защиты, kсх -- коэффициент, учитывающий схему подключения реле тока защиты ко вторичным обмоткам трансформаторов тока.

Коэффициент чувствительности определяется при КЗ в конце защищаемой линии, а также при КЗ в конце смежной линии и за трансформатором приемной подстанции, так как на максимальную токовую защиту обычно возлагаются функции резервной защиты при отказе защиты или выключателя смежного элемента сети. Считается, что защита обладает достаточной чувствительностью, если в первом случае kч ? 2, а во втором kч ? 1,2.

Максимальная токовая защита, как правило, имеет хорошую чувствительность. Ее недостатком является относительно большое время срабатывания.

Токовая отсечка, как и максимальная токовая защита, реагирует на увеличение тока в защищаемом объекте. Однако селективность токовой отсечки обеспечивается не выбором времени срабатывания защиты, а выбором тока срабатывания. Ток срабатывания токовой отсечки отстраивается от максимального значения тока внешнего короткого замыкания. На рис. 15.3 изображена зависимость тока короткого замыкания Iк от удаленности точки короткого замыкания К1 от шин питающей энергосистемы А.

Токи срабатывания токовых отсечек линий АБ и БВ отстраиваются от токов короткого замыкания на шинах приемных подстанций

(15.6)

где Iк2, Iк3 -- ток при КЗ соответственно в точках К2 и КЗ; kотс-- коэффициент отстройки, больший 1;

-- ток срабатывания токовой отсечки соответственно линий АБ и БВ. Ясно, что при таком токе срабатывания токовая отсечка нечувствительна к внешним коротким замыканиям, а следовательно, время ее срабатывания может быть равным нулю (рис. 15.3).

(15.7)

Чувствительность токовой отсечки оценивается длиной защищаемого участка линии , при коротком замыкании, на котором , т.е. токовая отсечка защищает не всю длину линии.

Таким образом, достоинства и недостатки токовой отсечки и максимальной токовой защиты противоположны. Токовая отсечка не имеет выдержки времени, но не чувствительна к коротким замыканиям в конце линии, а максимальная токовая защита обладает хорошей чувствительностью, но имеет значительное время срабатывания. Поэтому их целесообразно использовать совместно.

Токовая ступенчатая защита. В качестве первой ступени защиты используется токовая отсечка без выдержки времени. В качестве второй ступени устанавливается токовая отсечка с выдержкой времени, назначением которой является быстрое отключение линии при возникновении КЗ вне зоны действия первой ступени. Ток и время срабатывания второй ступени защиты отстраиваются от тока и времени срабатывания первой ступени защиты смежной линии ( рис. 15.3):

(15.8)

Вторая ступень защиты считается чувствительной, если при коротком замыкании в конце линии ее коэффициент чувствительности

> 1,2.

В качестве третьей ступени используется максимальная токовая защита, назначением которой является резервирование первых ступеней своей защиты, а также отказов защит и выключателей смежных участков сети.

Токовая защита нулевой последовательности. Как показывает статистика, большинство коротких замыканий (до 70--80 %) являются короткими замыканиями на землю. В сети с заземленной нейтралью ток короткого замыкания проходит по контуру фаза -- земля, а следовательно, сумма токов трех фаз не равна нулю, а равна утроенному значению симметричной составляющей тока нулевой последовательности

(15.9)

Поскольку в рабочем режиме сумма токов трех фаз равна нулю, токовую защиту, реагирующую на ток нулевой последовательности, не следует отстраивать от тока рабочего режима, что делает такую защиту гораздо более чувствительной по сравнению с максимальной токовой защитой. Ток срабатывания токовой защиты нулевой последовательности отстраивается от тока небаланса, обусловленного погрешностями трансформаторов тока защиты, который тем больше, чем больше ток в первичных обмотках этих трансформаторов тока. Ток срабатывания токовой защиты нулевой последовательности линии электропередачи отстраивается от тока небаланса при КЗ за трансформатором приемной подстанции, что позволяет не отстраивать эту защиту по времени срабатывания от времени срабатывания защит потребителей электроэнергии и делает ее более быстродействующей по сравнению с максимальной токовой защитой.

Обычно реализуется ступенчатая токовая защита нулевой последовательности, в которой в качестве первых ступеней используются токовые отсечки нулевой последовательности без выдержки и с выдержкой времени.

Замыкание одной фазы на землю в сети с изолированной нейтралью вызывает прохождение через место замыкания относительно небольшого тока, обусловленного емкостью электрической сети на землю, и в большинстве случаев не требует немедленного отключения. Ток срабатывания токовой защиты в сети с изолированной нейтралью отстраивается от емкостного тока защищаемого объекта, защита действует, как правило, не на отключение защищаемого объекта, а на сигнал.

Токовая направленная защита. В радиальной сети с несколькими источниками питания, как и в кольцевой сети с одним источником питания, максимальная токовая защита не может быть использована, так как обеспечить селективность этой защиты путем выбора времени срабатывания оказывается невозможным. При коротком замыкании на линии БВ (точка К1 на рис. 15.4) время срабатывания защиты 2 должно быть больше времени срабатывания защиты 3, а при коротком замыкании на линии АБ (точка К2) для селективного отключения поврежденного объекта защита 2 должна срабатывать раньше защиты 3. Максимальная токовая защита в такой сети может быть селективной только при наличии, кроме измерительного органа тока, органа направления мощности, который разрешает защите срабатывать только при направлении мощности короткого замыкания от шин в линию (см. стрелки на рис. 15.4).

Наличие органа направления мощности подразделяет защиты сети на две группы -- нечетную (1, 3, 5) и четную ( 2, 4, 6). Селективность защиты будет обеспечена, если

(15.10)

Ток срабатывания токовой направленной защиты определяется, как и ток срабатывания максимальной токовой защиты, в соответствии с выражениями (15.2) и (15.3). Однако под Iраб max понимается максимальный ток в рабочем режиме работы сети, проходящий в направлении действия защиты.

Поскольку из-за повреждений во вторичных цепях трансформатора напряжения орган направления мощности может сработать ложно, во избежание ложного срабатывания защиты ток срабатывания отстраивается также от тока в рабочем режиме сети, проходящего в направлении, противоположном направлению действия защиты:

(15.11)

В качестве тока срабатывания защиты принимается большее из трех полученных значений, после чего необходимо убедиться, что

(15.12)

При несоблюдении условия (15.12) защита может сработать неселективно.

Время срабатывания защиты принимается большим времени срабатывания защит смежных элементов сети в направлении действия защиты, т.е.

Основным недостатком защиты является наличие «мертвой зоны», т.е. участка защищаемой линии, при КЗ на котором защита отказывает в действии из-за малого значения напряжения, подаваемого на вход органа направления мощности. Однако при включении реле по 90-градусной схеме, предусматривающей подачу на реле тока фазы и разности напряжений двух других фаз (например, Iр = IА, Uр = UВ - UС), «мертвая зона» имеет место только при металлическом трехфазном КЗ. Токовые направленные защиты, как и ненаправленные токовые защиты, стараются выполнять трехступенчатыми. Причем в качестве первой ступени защиты лучше использовать ненаправленную токовую отсечку, если ее зона действия перекрывает «мертвую зону» направленной защиты.

Релейная защита в линиях до 10 кВ

Электротехническое оборудование, непосредственно участвующее в процессе производства, преобразования, передачи и распределения электроэнергии (генераторы, трансформаторы, выключатели), называется первичным, а электрические схемы соединений этого электрооборудования -- схемами электрических соединений первичных цепей. Монтаж первичных цепей выполняется шинами и кабелями. Все устройства, аппараты и приборы, с помощью которых осуществляется управление первичным электрооборудованием и контроль за его работой, называют вторичными. К ним относят: приборы и аппараты дистанционного, автоматического и телемеханического управления; устройства сигнализации; релейную защиту и автоматику; электроизмерительные приборы; приборы и аппараты регулирования и контроля; источники и преобразователи электроэнергии, служащие для питания вторичных устройств (источники оперативного тока).

Связь между вторичными устройствами и первичным электрооборудованием, взаимодействие между отдельными аппаратами и приборами, передача ими аварийных и предупредительных сигналов, а также импульсов и команд на исполнительные механизмы и устройства осуществляются соединением этих приборов и аппаратов между собой и с исполнительными устройствами проводами и контрольными кабелями, которые составляют вторичные цепи.Схемы электрических соединений вторичных устройств называют схемами вторичных цепей.

Аппараты и приборы вторичных устройств, расположенные в одном месте и относящиеся к одному и тому же присоединению, устанавливают на общей панели щита или пульта, в общем шкафу и др. Они соединяются между собой (в пределах панели) изолированными проводами. При расположении аппаратов и приборов в разных помещениях или на разных панелях их соединяют контрольными кабелями.

При эксплуатации действующих электроустановок могут быть повреждения и нарушения нормальных режимов их работы из-за неисправности изоляции или неправильных действий обслуживающего персонала, что приводит к коротким замыканиям и перегрузкам. Большинство повреждений связано с разрушением изоляции, что приводит к замыканиям между фазами или между фазами и землей. Распространенным видом ненормального режима является перегрузка, в результате которой возможен недопустимый перегрев и повреждение изоляции, сопровождающиеся замыканием на землю или между фазами. Для ликвидации аварий и нарушения нормальной работы, опасных для электрооборудования, во всех электрических цепях имеется защита.

В сетях напряжением до 1000 В для защиты от коротких замыканий и перегрузок устанавливают плавкие предохранители или автоматические выключатели с расцепителями, воздействующие на отключающий механизм автомата при прохождении токов к. з. или токов перегрузки. В электроустановках напряжением свыше 1000 В применяют релейную защиту; плавкие предохранители для защиты от коротких замыканий используют редко. Релейной защитой называют специальное устройство, состоящее из реле и других аппаратов, которые предназначены для предотвращения аварий или их развития при повреждениях и ненормальных режимах работы, либо для обеспечения автоматического отключения поврежденной части электроустановки или сети. Основным элементом релейной защиты является реле. Если повреждение не представляет для установки непосредственной опасности, релейная защита должна привести в действие сигнальные устройства. Автоматическое отключение защищаемого элемента служит для предотвращения развития аварии и сохранения в работе всех неповрежденных элементов электроустановки. Релейная защита, срабатывающая на сигнал, приводит в действие сигнальное устройство (звонок, сирену, световое табло), извещающее обслуживающий персонал о необходимости принятия мер для устранения неисправности и восстановления нормального режима работы защищаемого элемента или всей электроустановки.

В современных электрических системах релейная защита тесно связана с автоматикой, предназначенной для быстрого автоматического восстановления нормального режима работы и питания потребителей, например устройство автоматического включения резервного питания (АВР) для электроприемников 1-и категории и автоматическое повторное включение (АПВ). Устройство АВР служит для восстановления электроснабжения с помощью автоматического ввода резервного источника питания при отключении основного источника как на напряжение 6--10, так и на 0,23--0,4 кВ. Для автоматического включения резерва в сетях напряжением до 1 кВ в качестве коммутационных аппаратов применяют автоматические выключатели и контакторы, а в сетях напряжением 3--10 кВ -- преимущественно выключатели с пружинным приводом, работающие на переменном оперативном токе. На промышленных предприятиях автоматическое включение резерва выполняется главным образом на секционных выключателях. При отключении одной из питающих линий или трансформатора действием АВР включается секционный выключатель и восстанавливается электроснабжение обесточенной секции. Устройство АПВ предназначено для наиболее быстрого восстановления электроснабжения объектов. Любое короткое замыкание в сети сопровождается действием соответствующей защиты и отключением линии, что приводит к перерыву электроснабжения объектов. Но в ряде случаев короткие замыкания носят кратковременный характер и нарушенная изоляция восстанавливается с помощью устройств АПВ, например при поверхностных разрядах на изоляторах, кратковременном перекрытии проводов воздушных линий и т. п.

Релейная защита служит для автоматического отключения с наименьшим временем защищаемого элемента при повреждении, а также при возникновении условий, угрожающих повреждением (например, при резком снижении уровня масла в трансформаторе) или нарушением нормального режима работы всей электроустановки (например, при недопустимости снижения напряжения или частоты), для сигнализации о нарушении нормального режима работы защищаемого элемента, а также о возникновении повреждения, не представляющего непосредственной опасности для элемента или всей электроустановки. В соответствии с назначением релейная защита должна удовлетворять ряду требований, основными из которых являются быстрота, селективность и надежность действия, а также чувствительность. Для ограничения размеров повреждений необходимо, чтобы короткое замыкание отключалось возможно быстрее. Однако не всегда можно выполнить защиту, обладающую одновременно быстродействием и селективностью, поэтому применяют релейную защиту, действующую с выдержкой времени. Селективность, или избирательность,-- это свойство защиты отключать только поврежденный участок электрической сети, оставляя включенными исправные линии. Достигается это настройкой защиты на определенные выдержки времени и ток срабатывания. При неселективном действии защиты могут отключаться выключатели неповрежденных соседних элементов сети или установки. Ступень селективности в электрических сетях напряжением 6--10 кВ обычно выбирают от 0,5 до 0,7 с. Надежностью называется безотказное действие защиты во всех случаях, на которые она рассчитана. Не должно быть случаев неправильного действия защиты при возникновении повреждений или ненормальных режимов работы. Надежность защиты обеспечивается прежде всего простотой схемы, уменьшением числа реле и контактов, качеством аппаратуры и монтажных работ, правильной эксплуатацией. Чувствительностью называют свойство защиты реагировать на самые незначительные повреждения и нарушения нормального режима работы, которые могут возникнуть на защищаемых элементах. Чувствительность релейной защиты должна обеспечить ее действие при минимальных токах к. з., т. е. при коротком замыкании в конце защищаемого участка или через какое-то переходное сопротивление. Релейная защита состоит из основных и вспомогательных реле. Существует большое количество защит различного назначения, в частности в промышленных электроустановках применяют разнообразные релейные защиты.

Рис. 1 Схемы максимальной токовой защиты с реле прямого действия: а -- двумя, 6 -- одним; 1 -- трансформатор тока, 2 -- выключатель, 3 -- реле прямого действия

Наиболее распространена максимальная токовая защита от токов к. з. или с выдержкой времени, или с мгновенным отключением. Катушки реле включают в цепи вторичных обмоток трансформаторов тока.

Простейшая максимальная токовая защита выполняется с помощью двух или одного реле прямого действия, встроенных в привод выключателя. В схеме с двумя реле прямого действия (рис. 1, а) в их катушках проходит фазный ток, а в схеме с одним реле (рис. 1, б) его катушка для большей чувствительности защиты включена на разность токов двух фаз. Встроенное реле прямого действия представляет собой электромагнит с сердечником. При прохождении нормального рабочего тока сердечник электромагнита не будет втягиваться внутрь катушки. В случае короткого замыкания сердечник втянется в катушку и освободит защелку привода, удерживающую выключатель во включенном положении, после чего выключатель под действием отключающих пружин отключится. Для отключения с выдержкой времени к сердечнику электромагнита пристроен часовой механизм, удерживающий сердечник от мгновенного втягивания в катушку. Выключатель отключится только по истечении времени работы часового механизма. Максимальная токовая защита выполняется так, чтобы при коротком замыкании сработала защита поврежденного оборудования электроустановки и отключила его выключатель. При отказе данной защиты должна сработать защита ближайшего к месту повреждения элемента электросети и отключить его выключатель. Селективность срабатывания защиты обеспечивается разницей уставок по времени соседних ступеней на 0,5-- 0,7 с, причем большую выдержку должна иметь ступень, отстоящая дальше от места повреждения. Максимальная токовая защита с реле прямого действия не всегда может обеспечить условия селективности или чувствительности защиты. Кроме того, не во все приводы могут быть встроены реле прямого действия. В этих случаях максимальная токовая защита осуществляется с помощью реле косвенного действия, которые обычно устанавливают в пределах распределительного устройства: в камерах КРУ, на фасадах и стенах камер, выходящих в коридор управления, и т. п. Защиту элементов с дистанционным управлением размещают также на панели щита управления. Схема максимальной токовой защиты с одним реле косвенного действия на оперативном переменном токе от трансформаторов тока показана на рис. 2, а. Реле включено на разность токов двух фаз во вторичных обмотках трансформаторов тока. Отключение выключателей осуществляется отключающей катушкой привода. Нормально отключающая катушка обесточена, так как она зашунтирована замкнутыми контактами реле. В случае короткого замыкания в цепи защищаемого элемента реле срабатывает и размыкает контакты, шунтирующие отключающую катушку. При этом ток от трансформаторов тока пройдет через отключающую катушку привода, сердечник электромагнита втянется внутрь катушки и освободит защелку, в результате чего выключатель отключится.

Рис. 2 Схемы максимальной токовой защиты с реле косвенного действия и дешунтированием отключающей катушки контактами реле: а -- с одним реле, б -- с двумя реле, в -- с одним реле, но с двумя парами контактов

Схема такой же защиты с двумя реле косвенного действия показана на рис. 2, б. Каждое реле включено на фазный ток вторичной обмотки трансформаторов тока. При прохождении в каком-либо реле тока к. з. его контакты разомкнутся и дешунтируют цепь отключающей катушки выключателя, включенную на разность токов двух фаз. Для защиты применяют индукционные токовые реле с выдержкой времени с усиленными размыкающими контактами. Контакты размыкаются с помощью диска, который приводится во вращение магнитным полем катушки реле при прохождении в ней тока к. з. После отключения выключателя диск под действием пружины возвращается в исходное положение, и контакты реле вновь замыкаются. Реле при очень больших токах к. з. мгновенно отключают выключатель, для чего в них встроен электромагнит токовой отсечки, при повороте якоря которого контакты мгновенно размыкаются.

Недостатком защиты с дешунтированием отключающей катушки нормально замкнутыми контактами реле является возможность ложного срабатывания ее при любом случайном размыкании контактов, например от вибрации. В схеме, показанной на рис. 2, в, этот недостаток устранен: дешунтирование отключающей катушки произойдет только после предварительного замыкания нормально разомкнутых верхних контактов и последующего размыкания нормально замкнутых нижних контактов реле. При случайном размыкании нижних контактов выключатель не отключится, так как цепь отключающей катушки останется разомкнутой. В схемах максимальной токовой защиты часто применяют электромагнитные токовые реле без выдержки времени, работающие на принципе притяжения сердечника электромагнита при прохождении в обмотке реле тока к. з. В защитах с выдержкой времени электромагнитное реле применяют вместе с реле времени.

Газовая защита силовых трансформаторов осуществляется с помощью газового реле, устанавливаемого в рассечку трубопровода и соединяющего расширитель с баком трансформатора. Выделяющиеся газы приводят в действие простой механизм реле.

Список использованных литератур

1) Интернет ресурс: Электрические сети. http://leg.co.ua/.

2) Чернобровов Н.В., Семенов В.А. Релейная защита энергетических систем: Учеб. пособие для техникумов. М.: Энергоатомиздат, 1998.

3) Басс Э.И., Дорогунцев В.Г. Релейная защита электроэнергетических систем: Учеб. пособие для вузов / Под ред. А.Ф. Дьякова. М.: Издательство МЭИ, 2002.

4) Интернет ресурс:Энергетика. http://forca.ru/.

Размещено на Allbest.ru

...

Подобные документы

  • Расчет токов короткого замыкания и релейной защиты для рассматриваемого фрагмента электрической сети. Организация и выбор оборудования для выполнения релейной защиты. Расчет релейной защиты объекта СЭС. Выбор трансформатора тока и расчет его нагрузки.

    курсовая работа [911,3 K], добавлен 29.10.2010

  • Модернизация релейной защиты подстанции 110/35/10 кВ "Буда-Кошелёво". Совершенствование противоаварийной автоматики на подстанции, электромагнитной совместимости электрооборудования. Охрана труда и безопасность при эксплуатации устройств релейной защиты.

    дипломная работа [576,1 K], добавлен 15.09.2011

  • Основные органы релейной защиты, их функции. Пример логической части релейной защиты. Повреждения и ненормальные режимы работы в энергосистемах. Реле минимального напряжения типов РНМ и РНВ. Специальные защиты шин. Схема автоматического включения резерва.

    контрольная работа [892,5 K], добавлен 05.01.2011

  • Основные виды электрической автоматики, без которой невозможна нормальная работа энергосистем. История развития релейной защиты. Требования к релейной защите, ее основные органы, виды и принцип действия. Продольная и поперечная дифференциальная защита.

    отчет по практике [21,2 K], добавлен 21.09.2013

  • Выбор необходимого объёма релейной защиты и автоматики. Расчет токов короткого замыкания. Расчет параметров схемы замещения сети. Проверка трансформатора тока. Газовая защита трансформатора. Расчет релейной защиты трансформатора собственных нужд.

    курсовая работа [1,2 M], добавлен 13.02.2014

  • Требования к релейной защите, ее виды и принципы работы. Приборное обеспечение при выполнении работ по техническому обслуживанию устройств релейной защиты. Указания мер безопасности. Средства индивидуальной защиты, используемые при проведении работ.

    курсовая работа [206,4 K], добавлен 09.12.2014

  • Понятие релейной защиты. Изучение специальных устройств (реле, контакторов, автоматов и т.д.), обеспечивающих автоматическое отключение повреждённой части установки или приводящих в действие сигнализацию. Описание конструкции различных типов реле.

    лабораторная работа [845,3 K], добавлен 12.01.2010

  • Выбор системы релейной защиты блока генератор-трансформатор электрической станции. Расчет уставок срабатывания и разработка схемы подключения выбранных устройств релейной защиты. Техническое обслуживание дифференциального устройства защиты типа ДЗТ-21.

    курсовая работа [1,0 M], добавлен 22.02.2015

  • Принцип действия защиты линии в сети с изолированной нейтралью от замыкания на землю, устройства защиты, принципиальная схема защиты и внешних связей. Сегодняшние тенденции в развитии и использовании релейной защиты. Промышленные образцы защиты.

    курсовая работа [2,0 M], добавлен 23.08.2012

  • Схема электрических соединений и схема собственных нужд. Выбор электрооборудования схемы собственных нужд, его обоснование. Выбор устройств релейной защиты и автоматики для элементов. Разработка схем релейной защиты блока генератор-трансформатор.

    дипломная работа [604,1 K], добавлен 09.04.2012

  • Расчёт токов короткого замыкания в объеме, необходимом для выбора защит. Выбор коэффициентов трансформации трансформаторов тока и напряжения, необходимых для выполнения релейной защиты и автоматики. Разработка полных принципиальных схем релейной защиты.

    курсовая работа [1,4 M], добавлен 14.12.2017

  • Релейная защита и автоматика систем электроснабжения. Расчёт токов короткого замыкания для целей релейной защиты. Функции защиты от асинхронного режима. Защита электродвигателей от многофазных коротких замыканий. Схема защиты синхронного электродвигателя.

    курсовая работа [101,6 K], добавлен 08.11.2012

  • Теоретические основы методики расчета экономической эффективности от внедрения релейной защиты подстанции. Описание проекта по внедрению релейной защиты на подстанции "Бишкуль" 110/10 кВ. Показатели финансово-экономической эффективности инвестиций.

    дипломная работа [1,5 M], добавлен 24.06.2015

  • Устройства релейной защиты и автоматики. Расчет токов короткого замыкания. Защита питающей линии электропередач. Защиты трансформаторов и электродвигателей. Самозапуск электродвигателей и защита минимального напряжения. Автоматическое включение резерва.

    курсовая работа [259,2 K], добавлен 23.08.2012

  • Общие сведения о токовой защите в сетях 6-10 кВ. Требования, предъявляемые к релейной защите, основные органы токовых защит. Расчет уставки релейной защиты и проверка пригодности трансформаторов тока. Расчет токовой отсечки, максимальная токовая защита.

    курсовая работа [2,8 M], добавлен 20.03.2013

  • Расчет релейной защиты заданных объектов, используя реле указанной серии в соответствии с расчетной схемой электроснабжения. Расчета токовой защиты и токовой отсечки асинхронного двигателя. Расчеты кабельной линии от однофазных замыканий на землю.

    курсовая работа [178,6 K], добавлен 16.09.2010

  • Выбор и расчет устройства релейной защиты и автоматики. Расчёт токов короткого замыкания. Типы защит, схема защиты кабельной линии от замыканий. Защита силовых трансформаторов. Расчетная проверка трансформаторов тока. Оперативный ток в цепях автоматики.

    курсовая работа [1,3 M], добавлен 08.01.2012

  • Определение параметров схемы замещения и расчет функциональных устройств релейной защиты и автоматики системы электроснабжения. Характеристика электроустановки и выбор установок защиты заданных присоединений: электропередач, двигателей, трансформаторов.

    курсовая работа [422,5 K], добавлен 23.06.2011

  • Понятие и назначение релейной защиты, принцип ее работы и основные элементы. Технические характеристики и особенности указательного реле РУ–21, промежуточного реле РП–341, реле прямого действия ЭТ–520, реле тока РТ–80, реле напряжения и времени.

    практическая работа [839,9 K], добавлен 12.01.2010

  • Расчет токов короткого замыкания. Выбор тока плавкой вставки предохранителей для защиты асинхронного электродвигателя. Параметры установок автоматов. Чувствительность и время срабатывания предохранителя. Селективность между элементами релейной защиты.

    дипломная работа [2,8 M], добавлен 24.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.