Методика применения устройств компенсации мощности электроснабжения на предприятии
Исследование методов и устройств компенсации реактивной мощности при электроснабжении нелинейных и резкопеременных нагрузок, а также разработка и внедрение данного устройства. Определение годового экономического эффекта от внедрения компенсатора.
Рубрика | Физика и энергетика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 02.03.2014 |
Размер файла | 915,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Величина соотношения темпов прироста производительности труда и средней заработной платы зависит от факторов роста производительности труда. Внедрение новой техники, механизации и автоматизации производства, совершенствование технологических процессов обеспечивают значительное снижение трудоемкости продукции и повышение производительности труда. При этом заработная плата рабочих увеличивается в меру их участия в техническом прогрессе и в связи с повышением квалификации. По этой группе факторов темп роста производительности труда значительно опережает рост заработной платы. Рост заработной платы на 1 % повышения производительности труда по группе факторов, связанных с повышением технического уровня производства, колеблется в пределах 0,1-0,3 %.
Рост производительности труда за счет повышения квалификации, сокращения потерь рабочего времени, снижения непроизводительных затрат, уплотнения рабочего дня зависит непосредственно от рабочих. Поскольку при внедрении этих мероприятий нормы изменяются в незначительной степени, то уменьшается разрыв в темпах роста производительности труда и средней заработной платы. Рост заработной платы на 1 % повышения производительности труда за счет этой группы факторов составляет 0,6-0,9 %. Средняя величина прироста заработной платы на 1 % повышения производительности труда по объединению, предприятию зависит от соотношения мероприятий этих двух групп.
Соотношение темпов роста этих важных экономических показателей предприятие регулирует планированием мероприятий, повышающих производительность труда. Это позволяет обеспечить опережающий рост производительности труда по сравнению с ростом средней заработной платы, что является непременным условием формирования экономических нормативов, фонда заработной платы и фонда материального поощрения.
Рассчитанный подробным, поэлементным методом фонд заработной платы промышленно-производственного персонала сопоставляется с фондом, установленным исходя из утвержденных нормативов формирования фонда заработной платы (фонда оплаты труда). При значительных расхождениях в величинах фонда заработной платы пересматриваются составляющие фонда, рассчитанного подробным методом, и принимаются соответствующие меры по совершенствованию организации труда и заработной платы с тем, чтобы не допустить перерасхода фонда заработной платы, установленного на основе норматива[38].
3.2 Определение годового экономического эффекта от внедрения проектируемого устройства
Рассчитаем экономические показатели устройства: себестоимость и оптовую цену.
Для расчета себестоимости единицы выпускаемой продукции применяется классификация затрат по калькуляционным статьям расходов:
1) сырье и материалы, покупные комплектующие и полуфабрикаты;
2) возвратные отходы;
3) топливо и энергия на технологические цели;
4) основная заработная плата производственных рабочих;
5) дополнительная заработная плата производственных рабочих;
6) отчисления на социальное страхование;
7) расходы на подготовку и освоение производства;
8) износ инструментов и приспособлений целевого назначения;
9) расходы на содержание и эксплуатацию оборудования;
10) цеховые расходы;
11) общезаводские расходы;
12) внепроизводственные расходы.
Исходными данными для составления калькуляции себестоимости на проектируемое устройство является статья калькуляции на покупные и комплектующие изделия.
Определяется стоимость комплектующих изделий: ? К = 146,43 грн.
Транспортно-заготовительные расходы составляют 10%, тогда общие затраты составят:
? Кобщ.-затр. = ? К * 0,1 + ? К = 161,07 грн.
Оплата 1 чел-час производится из расчета :
З (чел-час) = ТСмес * 12 / Фрв,
где - Тсмес - тарифная ставка рабочих за месяц, ТСмес = 350,00 грн.;
Фрв - фонд рабочего времени, Фрв = 2600 час.
Тогда З (чел-час) = 350 * 12 / 2600 = 1,615 (грн/час).
Тогда суммарная прямая заработная плата составит: ? ЗП = 214,10 грн.
Определим основную заработную плату: прямая зарплата + премии в размере 20% от прямой заработной платы: ОЗП = 256,92 грн.
Дополнительная заработная плата производственных рабочих определяется в размере 10% от основной зарплаты: ДЗП = 25,69 грн.
Отчисления в фонд социального страхования согласно действующему законодательству составляют:
- на обязательное государственное социальное страхование в связи с временной потерей трудоспособности и расходами, обусловленными рождением и погребением - 2,9%;
- на обязательное государственное социальное страхование на случай безработицы - 2,1%;
- на государственное (обязательное) пенсионное страхование (в Пенсионный фонд), а также отчисления на дополнительное пенсионное страхование - 32%;
- фонд страхования несчастных случаев на производстве и профессиональных заболеваний, приведших к утрате трудоспособности - 0,5 %.
Следовательно, отчисления составляют 37,5 % от суммы основной и дополнительной заработной платы:
Осоцстрах. = (ОЗП + ДЗП) * 0,375
Расходы на содержание и эксплуатацию оборудования составляют 150 % от основной заработной платы: Рс.э.о. = 385,38 грн.
Цеховые расходы составляют 160 % от основной заработной платы:
Рцех. = 411,07 грн.
Общезаводские расходы составляют 80 % от основной заработной платы: Робщ.з. = 205,54 грн.
Тогда производственная себестоимость определяется как сумма всех статей расходов: С/Спр. = 1551,65 грн.
Внепроизводственные расходы, связанные со сбытом продукции, составляют 2,5 % от производственной себестоимости: Рвнепр. = 38,79 грн.
Полная себестоимость устройства формируется из суммы производственной себестоимости и внепроизводственных расходов:
С/Сполная = 1590,44 грн.
Разрабатываемое в данной работе устройство компенсации реактивной мощности является многофункциональным устройством, применяемым в системах электроснабжения, питающих мощные тиристорные преобразователи. Это устройство производит компенсацию реактивной мощности в электрической сети, а также обеспечивает стабилизацию напряжения на шинах потребителей, фильтрацию высших гармоник, симметрирование токов и напряжений в сети.
В случае внедрения разработанного устройства на предприятиях, имеющих мощные тиристорные преобразователи, происходит экономия средств на оплату потребляемой предприятием из энергосистемы реактивной мощности, а также сокращение численности обслуживающего персонала.
Определим суммарную годовую зарплату рабочих, сокращаемых при введении в эксплуатацию разрабатываемого устройства:
? ЗПгод. = ЗПмес. * 12 * n,
где - ЗПмес. - заработная плата одного рабочего в месяц, грн.;
n - количество сокращаемых рабочих.
Эк. ЗП = 250,00 * 12 * 2 = 6000,00 грн.
Следовательно годовой экономический эффект составляет 6000,00 грн.
4. Охрана труда
4.1 Электробезопасность
Разрабатываемое в данной работе устройство компенсации реактивной мощности является многофункциональным устройством, применяемым в системах электроснабжения, питающих мощные тиристорные преобразователи. Это устройство производит компенсацию реактивной мощности в электрической сети, а также обеспечивает стабилизацию напряжения на шинах потребителей, фильтрацию высших гармоник, симметрирование токов и напряжений в сети.
В этом разделе проанализируем потенциальные опасные и вредные факторы, возникающие при эксплуатации разработанного устройства.
Все опасные факторы, которые могут возникнуть в процессе установки, наладки и эксплуатации устройства связаны с электробезопасностью.
Электробезопасность - система организационных и технических мероприятий и средств, обеспечивающих защиту людей от вредного и опасного воздействия электрического тока, электрической дуги, электромагнитного поля и статического электричества.
Проходя через живые ткани, электрический ток оказывает термическое, электролитическое и биологическое воздействия. Это приводит к различным нарушениям в организме, вызывая как местное поражение тканей и органов, так и общее поражение организма.
Опасность электрического тока в отличие от прочих опасностей усугубляется тем, что человек не в состоянии без специальных приборов обнаружить напряжение дистанционно, как, например, движущиеся части, раскаленные объекты, открытые люки, неогражденные края площадки, находящейся на высоте, и т. п.
Анализ смертельных несчастных случаев на производстве показывает, что на долю поражений электрическим током приходится до 40%, а в энергетике - до 60%. Большая часть смертельных электропоражений (до 80 %) наблюдается в электроустановках напряжением до 1000 В.
Эта статистика становится еще более актуальной, если учесть, что разработанное устройство предназначается для использования в энергетической отрасли промышленности, в том числе и в электроустановках напряжением до 1000В.
Анализ опасности электрических сетей практически сводится к определению значения тока, протекающего через тело человека в различных условиях, в которых может оказаться человек при эксплуатации электрических сетей и электроустановок. Анализ также ставит перед собой задачу оценки влияния различных факторов и параметров сети на опасность поражения.
Поражение человека электрическим током может наступить при двухфазном и однофазном прикосновении к токоведущим частям, при прикосновении к заземленным нетоковедущим частям, оказавшимся под напряжением, и при включении на шаговое напряжение.
Электроустановками называются установки, предназначенные для производства, преобразования, распределения энергии, а также потребления электроэнергии.
В различных электроустановках различна опасность поражения электрическим током, так как параметры электроэнергии, условия эксплуатации электрооборудования и характер среды помещений, в которых оно установлено, очень разнообразны. Комплекс защитных мер должен соответствовать виду электроустановки и условиям применения электрооборудования и обеспечивать достаточную безопасность.
Опасность поражения током, а также возможная его тяжесть прежде всего зависят от номинального напряжения. По напряжению различают электроустановки напряжением до 1000 В и электроустановки напряжением выше 1000 В.
Существенно влияние на безопасность условий среды, от которых зависит состояние изоляции, а также электрическое сопротивление тела человека.
В зависимости от вида электроустановки, номинального напряжения, режима нейтрали, условий среды помещения и доступности электрооборудования необходимо применять определенный комплекс необходимых защитных мер, обеспечивающих достаточную безопасность, которая редко может быть обеспечена единственной мерой.
В электроустановках применяют следующие технические защитные меры:
1) малые напряжения;
2) электрическое разделение сетей;
3) контроль и профилактика повреждений изоляции;
4) компенсация емкостной составляющей тока замыкания на землю;
5) обеспечение недоступности токоведущих частей;
6) защитное заземление;
7) зануление;
8) двойная изоляция;
9) защитное отключение.
Применение этих защитных мер регламентируется ПУЭ и другими Правилами.
Применение малых напряжений - эффективная защитная мера, но ее широкому распространению мешает трудность осуществления протяженной сети малого напряжения. Поэтому источник малого напряжения должен быть максимально приближен к потребителю. Вследствие того, что потребители рассредоточены на значительных территориях, надо устанавливать источники питания (трансформаторы) на небольшую группу потребителей или даже на каждый потребитель, что экономически невыгодно. Поэтому область применения малых напряжений 12, 36 и 42 В ограничивается ручным электрифицированным инструментом, ручными переносными лампами и лампами местного освещения в помещениях с повышенной опасностью и особо опасных.
Область применения защитного разделения сетей - электроустановки напряжением до 1000В, эксплуатация которых связана с повышенной степенью опасности, в частности передвижные электроустановки, ручной электрифицированный инструмент и т. п. Поскольку основная цель этой защитной меры - уменьшить ток замыкания на землю за счет высоких сопротивлений фаз относительно земли, не допускается заземление нейтрали или одного из выводов вторичной обмотки разделительного трансформатора или преобразователя.
Немалую опасность представляет возможность продолжения работы электроустановки при глухом замыкании на землю, так как человек, прикоснувшийся к исправной фазе, попадает под линейное напряжение. В этом случае защитное разделение сети не достигает цели. Чтобы избежать опасности возникновения замыкания на землю, необходимо постоянно следить за состоянием изоляции и своевременно устранять ее повреждения.
Контроль изоляции - измерение ее активного или омического сопротивления с целью обнаружения дефектов и предупреждения замыканий на землю и коротких замыканий.
Состояние изоляции в значительной мере определяет степень безопасности эксплуатации электроустановок. В сетях напряжением выше 1000 В снижение сопротивления изоляции почти всегда приводит к глухому замыканию на землю.
При заземленной нейтрали ток замыкания на землю и ток через человека не зависят от сопротивления изоляции. Но при плохом состоянии изоляции часто происходят ее повреждения, что приводит к глухим замыканиям на землю (корпус) и к коротким замыканиям. При замыкании на корпус возникает опасность поражения людей электрическим током, так как нетоковедущие части, с которыми человек нормально имеет контакт, оказываются под напряжением.
Чтобы предотвратить замыкания на землю и другие повреждения изоляции, при которых возникает опасность поражения людей электрическим током, а также выходит из строя оборудование, необходимо проводить испытания повышенным напряжением и контроль изоляции.
При испытаниях повышенным напряжением дефекты изоляции обнаруживаются вследствие пробоя и последующего прожигания изоляции (током). Выявленные дефекты устраняются, и производятся повторно испытания исправленного оборудования.
Контроль и профилактика повреждений изоляции позволяют поддерживать ее сопротивление на высоком уровне. Емкость фаз относительно земли не зависит от каких-либо дефектов; она определяется общей протяженностью сети, высотой подвеса проводов воздушной сети, толщиной фазной изоляции жил кабеля, т.е. геометрическими параметрами. Поэтому емкость сети не может быть снижена. В процессе эксплуатации емкость сети изменяется лишь за счет отключения и включения отдельных линий, что определяется требованиями электроснабжения.
Поскольку невозможно уменьшить емкость сети, снижение тока замыкания на землю достигается путем компенсации его емкостной составляющей индуктивностью. В трехфазной сети нет необходимости включать индуктивность между каждой фазой и землей; компенсирующая катушка включается между нейтралью и землей.
Компенсация емкостной составляющей тока замыкания на землю применяется обычно в сетях напряжением выше 1000 В для гашения перемежающейся электрической дуги при замыкании на землю и снижения возникающих при этом перенапряжений. Одновременно уменьшается ток замыкания на землю.
В сетях напряжением до 1000 В компенсация емкостной составляющей тока замыкания на землю применяется лишь в подземных сетях шахт и рудников.
Компенсация емкостной составляющей тока замыкания на землю эффективна, когда емкостная проводимость фаз относительно земли больше активной и снижение полного тока замыкания на землю за счет компенсации емкостной составляющей значительно. Эта защитная мера применяется в дополнение к другим защитным мерам - защитному отключению и заземлению, так как самостоятельно безопасности в большинстве случаев не обеспечивает.
Прикосновение к токоведущим частям всегда может быть опасным даже в сети напряжением до 1000 В с изолированной нейтралью, с хорошей изоляцией и малой емкостью, не говоря уже о сетях с заземленной нейтралью и о сетях напряжением выше 1000 В. В последнем случае опасно даже приближение к токоведущим частям.
В электроустановках напряжением до 1000 В применение изолированных проводов уже обеспечивает достаточную защиту от поражения при прикосновении к ним. Изолированные провода, находящиеся под напряжением выше 1000 В, не менее опасны, чем голые, так как повреждения изоляция обычно остаются незамеченными, если провод подвешен на изоляторах.
Чтобы исключить возможность прикосновения или опасного приближения к изолированным токоведущим частям, должна быть обеспечена недоступность с помощью ограждения, блокировок или расположения токоведущих частей на недоступной высоте или в недоступном месте.
Ограждения применяют как сплошные, так и сетчатые. Сплошные ограждения в виде кожухов и крышек применяют в электроустановках напряжением до 1000 В. Сетчатые ограждений применяются в установках напряжением до 1000 В и выше. Сетчатые ограждения имеют двери, запирающиеся на замок.
Блокировки применяются в электроустановках, в которых часто производятся работы на ограждаемых токоведущих частях. Блокировки также применяются в электрических аппаратах, работающих в условиях, в которых предъявляются повышенные требования безопасности. Блокировки по принципу действия разделяют на электрические и механические.
Электрические блокировки осуществляют разрыв цепи специальными контактами, которые устанавливаются на дверях ограждений, крышках и дверцах кожухов.
Если управление электроустановкой производится дистанционно, блокировочные контакты включаются в цепь управления пускового аппарата. Наиболее целесообразно применение для этой цели магнитного пускателя или контактора, так как блокировочные контакты при открывании дверей размыкают цепь катушки пускателя. При обрыве этой цепи электроустановка отключается так же, как и при открывании дверей. Это предотвращает возможность несчастного случая при неисправной цепи блокировки. Электроустановка не может быть включена при закрытии дверей, т.к. замыкания блокировочных контактов еще недостаточно: для включения электроустановки требуется обязательно нажать кнопку пуска. Поэтому, если оператор вошел внутрь ограждения, он не может оказаться под напряжением при случайном закрытии дверей. Включение блокировочных контактов в силовую цепь не исключает этой возможности, и такая схема блокировки не должна применяться.
Блокировочные контакты, установленные в цепь отключающей катушки автоматического выключателя, при открывании дверей должны замыкать цепь катушки. При обрыве этой цепи замыкание контактов не приводит к отключению. При открывании дверей блокировка не сработает, человек может пройти за ограждение и попасть под напряжение.
Для обеспечения безопасности необходимо, чтобы блокировочные контакты размыкались уже при незначительном растворе дверей (10 - 15 см), чтобы человек не мог проникнуть за ограждение при неразомкнувшихся контактах. Блокировочные контакты должны устанавливаться на обеих половинках двустворчатых дверей, чтобы не было возможности включить электроустановку, оставив открытой одну из этих половин.
Механические блокировки применяются в электрических аппаратах - рубильниках, пускателях, автоматических выключателях и т. п.
В аппаратуре автоматики, вычислительных машинах и радиоустановках применяются блочные схемы. В общем корпусе устанавливаются отдельные блоки, которые соединяются с остальным устройством штепсельным соединением. Когда блок выдвигается или удаляется со своего места, штепсельный разъем размыкается. Таким образом, блок отключается автоматически при открывании его токоведущих части.
Блокировки применяются также для предупреждения ошибочных действий персонала при переключениях в распределительных устройствах и на подстанциях.
Расположение токоведущих частей на недоступной высоте или в недоступном месте позволяет обеспечить безопасность без ограждений, при этом следует учитывать возможность случайного прикосновения к токоведущим частям длинными предметами, которые человек может держать в руках.
Для защиты от прикосновения к частям нормально или случайно находящимся под напряжением применяется также двойная изоляция - электрическая изоляция, состоящая из рабочей и дополнительной изоляции. Рабочая изоляция - изоляция токоведущих частей электроустановки, обеспечивающая ее нормальную работу и защиту от поражения электрическим током. Дополнительная изоляция - изоляция, предусмотренная дополнительно к рабочей изоляции для защиты от поражения электрическим током в случае повреждения рабочей изоляции.
Наиболее просто двойная изоляция осуществляется путем покрытия металлических корпусов и рукояток электрооборудования слоем электроизоляционного материала и применением изолирующих ручек. Поверхностный слой изоляции подвержен механическим воздействиям и повреждениям. При разрушении этого слоя открывается доступ к металлическим частям, которые могут оказаться под напряжением. Повреждение и даже полное разрушение второго слоя изоляции не препятствует продолжению работы и не подает, таким образом, сигнала о потере защиты. Поэтому такой способ выполнения двойной изоляции не обеспечивает надежной защиты и может быть рекомендован лишь в редких случаях - для оборудования, не подвергающегося ударной нагрузке. Более совершенный способ - изготовление корпуса из изолирующего материала. Такой корпус несет на себе все токоведущие части, металлические нетоковедущие части и механическую часть. При разрушении корпуса освобождается доступ к металлическим токоведущим и нетоковедущим частям, но электрооборудование работать не может, так как нарушено взаимное расположение его частей.
Защитная двойная изоляция может обеспечить безопасность при эксплуатации любого электрооборудования. Однако из-за наличия некоторых недостатков у пластмасс, таких, как недостаточная механическая прочность, возможность значительных остаточных деформаций, ненадежность соединений с металлом, изменение в сторону ухудшения механических свойств по мере старения, область применения двойной изоляции ограничивается электрооборудованием небольшой мощности - электрифицированным ручным инструментом, некоторыми переносными устройствами, бытовыми приборами и ручными электрическими лампами.
Защитным заземлением называется преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением.
Корпуса электрических машин, трансформаторов, светильников, аппаратов и другие металлические нетоковедущие части могут оказаться под напряжением при замыкании их токоведущих частей на корпус. Если корпус при этом не имеет контакта с землей, прикосновение к нему также опасно, как и прикосновение к фазе.
Защитное заземление может быть эффективно только в том случае, если ток замыкания на землю не увеличивается с уменьшением сопротивления заземления. Это возможно в сетях с изолированной нейтралью, где при глухом замыкании на землю или на заземленный корпус ток не зависит от проводимости заземления, а также в сетях напряжением выше 1000 В с заземленной нейтралью. В последнем случае замыкание на землю является коротким замыканием, причем срабатывает максимальная токовая защита.
В сети с заземленной нейтралью напряжением до 1000 В заземление неэффективно. Поэтому защитное заземление применяется в сетях напряжением до 1000 В с изолированной нейтралью и в сетях напряжением выше 1000 В как с изолированной, так и с заземленной нейтралью.
По расположению заземлителей относительно заземленных корпусов заземления делят на выносные и контурные.
При выносном заземлении заземлители располагаются на некотором удалении от заземляемого оборудования. Поэтому заземленные корпуса находятся вне поля растекания - на земле, и человек, касаясь корпуса, оказывается под полным напряжением относительно земли. Выносное заземление защищает только за счет малого сопротивления заземления.
При контурном заземлении заземлители располагаются по контуру вокруг заземленного оборудования на небольшом (несколько метров) расстоянии друг от друга. Поля растекания заземлителей накладываются, и любая точка поверхности грунта внутри контура имеет значительный потенциал. Вследствие этого разность потенциалов между точками, находящимися внутри контура, снижена. Ток через человека, касающегося корпуса, меньше, чем при выносном заземлении. Иногда при выполнении контурного заземления внутри контура прокладывают горизонтальные полосы, которые дополнительно выравнивают потенциалы внутри контура.
В качестве искусственных заземлителей применяют стальные стержни из угловой стали 60х60 мм (или близкой по размеру), а также из стальных труб диаметром 35-50 мм и стальных шин сечением не менее 100мм2. Стержни длиной 2,5-3 м погружают (забивают) в грунт вертикально в специально подготовленной вокруг защищаемой территории траншее. Вертикальные заземлители соединяют стальной шиной, которую приваривают к каждому заземлителю.
Занулением называется преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением. Нулевой защитный проводник -- это проводник, соединяющий зануляемые части с глухозаземленной нейтральной точкой обмотки источника тока или ее эквивалентом.
Зануление применяется в четырехпроводных сетях напряжением до 1000В с заземленной нейтралью.
Зануление превращает замыкание на корпус в однофазное короткое замыкание, в результате чего срабатывает максимальная токовая защита и селективно отключает поврежденный участок сети. Кроме того, зануление снижает потенциалы корпусов, появляющиеся в момент замыкания на землю.
Основное назначение зануления - обеспечить срабатывание максимальной токовой зашиты при замыкании на корпус. Для этого ток короткого замыкания должен значительно превышать уставку защиты или номинальный ток плавких вставок.
Согласно ПУЭ ток однофазного короткого замыкания должен превышать не менее чем в 3 раза номинальный ток плавкой вставки ближайшего предохранителя или ток срабатывания расцепителя автоматического выключателя с обратно зависимой от тока характеристикой.
Нулевой провод должен иметь надежные соединения, и должна обеспечиваться непрерывность цепи от каждого корпуса до нейтрали источника. Нулевой провод соединяется со всеми заземленными металлическими конструкциями, создающими параллельные цепи короткого замыкания: металлическими конструкциями зданий, подкрановыми путями, стальными трубами электропроводок, свинцовыми и алюминиевыми оболочками кабелей, металлическими трубопроводами, проложенными открыто, исключая трубопроводы для горючих и взрывоопасных смесей. Эти проводники могут служить в качестве единственного нулевого провода, если по проводимости они удовлетворяют приведенным выше требованиям.
Зануление однофазных потребителей должно осуществляться специальным проводником, который не может одновременно служить проводом для рабочего тока.
Защитное отключение - система защиты, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения электрическим током. Опасность поражения возникает при следующих повреждениях электроустановки - замыкании на землю (глухом или неполном), снижении сопротивления изоляции, неисправностях заземления или зануления и устройства защитного отключения. Чтобы обеспечить безопасность, защитное отключение должно осуществлять некоторую совокупность из следующих защит: защиту от глухих и от неполных замыканий на землю (корпус), защиту от утечек, автоматический контроль цепи заземления или зануления, самоконтроль, т. е. автоматический контроль исправности защитного отключения.
Повреждение электроустановки приводит к изменениям некоторых величин, которые могут быть использованы как входные автоматического устройства, осуществляющего защитное отключение. Так, при замыкании на корпус последний оказывается под напряжением относительно земли. Если корпус заземлен или замыкание произошло непосредственно на землю, возникает ток замыкания на землю. Вследствие нарушения симметрии сопротивлений фаз относительно земли при замыкании на землю изменяются напряжения фаз относительно земли и возникает напряжение между нейтралью источника и землей (напряжение нулевой последовательности).
Замыкание на землю, даже неполное, приводит к снижению общего сопротивления сети относительно земли. Это сопротивление уменьшается также при снижении сопротивления изоляции без замыкания на землю, даже если сопротивления фаз относительно земли остаются симметричными.
Напряжение корпуса относительно земли, ток замыкания на землю, напряжение нулевой последовательности, напряжения фаз относительно земли могут быть восприняты чувствительным элементом (датчиком) автоматического устройства как входная величина. При определенном значении входной величины защитное отключение срабатывает и отключает электроустановку, это значение входной величины называется уставкой. В зависимости от того, что является входной величиной, на изменение которой реагирует защитное отключение, выделяют следующие схемы: на напряжении корпуса относительно земли, на токе замыкания на землю, на напряжении нулевой последовательности, на напряжении фазы относительно земли, на токе нулевой последовательности, вентильные, на постоянном и переменном оперативном токе, комбинированные[41,42].
4.2 Расчет защитного заземления
Защитным заземлением называется преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением. В данном случае будет использоваться выносное заземление, т.е. заземлители будут располагаться на некотором удалении от заземляемого оборудования, и безопасность обеспечивается только за счет малого сопротивления заземления. Для расчета защитного заземления воспользуемся методом, изложенным в [43].
Цель расчета заземления: определить число и длину вертикальных элементов (труб), длину горизонтальных элементов (соединительных шин) и разместить заземлитель, исходя из регламентированных правилами значения допустимого сопротивления заземления.
Для защитного заземления установки принимаем следующие данные: напряжение сети - до 1000В; мощность трансформатора - до 100кВА; тип заземлительного устройства - вертикальный; размер заземлителей - длина труб:lT=3м, диаметр труб: d = 0,06м, ширина соединяющей полосы: bn = 0,05м, глубина заложения: hB = 0,8 м; расположение заземлителей - вертикально в один ряд; грунт - супесок; климатическая зона - вторая. Схема заземлительного устройства приведена на рисунке 1.
В соответствии с ПУЭ и ПТБ принимаем допустимое сопротивление заземляющего устройства: Rз = 10 Ом.
Определяем удельное расчетное сопротивление грунта для труб rтабл.т. с учетом неблагоприятных условий, учитываемых повышающим коэффициентом:
rрасч.т. = rтабл.ЧКп.т. = 300Ч1,5 = 450 (ОмЧм).
Определяем удельное расчетное сопротивление грунта для полосового заземлителя:
rрасч.п. = rтабл.ЧКп.п. = 300Ч3 = 900 (ОмЧм).
Определим необходимое число труб (одиночных заземлителей) с учётом коэффициента экранирования:
nт..э. = Rт/(RзЧhэ.т.) = 117,9/(10Ч0,55) = 21,44 » 22.
Определяем расчётное сопротивление растекания тока при принятом числе труб nт..э.:
Rрасч.т. = Rт/(nт.э.Ч hэ.т.) = 117,9/(22Ч0,55) = 9,74 (Ом).
Определяем длину соединяющей полосы:
Lс.п. = 1,057ЧLЧ(nт.э.-1) = 1,057Ч3Ч(22-1) = 66,59 (м).
Определяем расчётное сопротивление растекания тока в соединяющей полосе (с учётом коэффициента экранирования):
Rрасч.п. = Rс.п./hэ.с.п. = 31,4 / 0,37 = 94,9.
Определяем общее расчетное сопротивление растекания тока в трубах и соединяющей полосе:
Rобщ.расч. = 1/(1/Rрасч.т + 1/Rрасч.п.) = 1/(1/9,74 + 1/98,9) = 8,83 (Ом).
В результате расчета заземления мы получили расчетное значение сопротивления заземляющего устройства: Rобщ.расч. = 8,83 Ом, что меньше допустимого значения Rз = 10 Ом.
Таким образом, устройство с рассчитанными выше параметрами принимаем в качестве защитного заземления разработанного в данной работе устройства.
Заключение
В выпускной квалификационной работе рассмотрены вопросы компенсации реактивной мощности в системах промышленного электроснабжения преобразовательных установок.
Одним из основных вопросов, решаемых при проектировании и эксплуатации систем промышленного электроснабжения, является вопрос о компенсации реактивной мощности, включающей расчет и выбор компенсирующих устройств, их регулирование и размещение на территории предприятия.
Компенсация реактивной мощности имеет большое значение и является частью общей проблемы повышения КПД работы систем электроснабжения и улучшения качества электроэнергии.
Реактивная составляющая неизбежна при работе многих промышленных устройств, поэтому она не может быть исключена полностью, однако целесообразно применять средства, предназначенные для уменьшения ее потребления из питающей сети.
Для этого необходимо приближать источники покрытия реактивной мощности к местам ее потребления и уменьшать получение реактивной мощности из энергосистемы. Это разгружает в значительной степени питающие линии электропередачи и трансформаторы от реактивной мощности.
Уменьшение потребления реактивной мощности на предприятии достигается путем компенсации реактивной мощности как естественными мерами (сущность которых состоит в ограничении влияния приемника на питающую сеть путем воздействия на сам приемник), так и за счет специальных компенсирующих устройств (реактивной мощности) в соответствующих точках системы электроснабжения.
Применению устройств компенсации реактивной мощности и мощности искажения должен предшествовать тщательный технико-экономический анализ в связи с высокой стоимостью и достаточной сложностью этих устройств.
Интенсивное развитие силовой полупроводниковой преобразовательной техники и ее использование в тиристорных электроприводах переменного и постоянного тока, вентильных преобразователях для электротермических и электротехнологических установок различного назначения привело к ухудшению показателей качества электроэнергии.
В условиях возрастающего использования вентильных преобразователей эта проблема сопровождается ощутимым технико-экономическим ущербом. Для ее устранения существует два пути: внешняя и внутренняя компенсация.
Внешняя компенсация основана на применении различных компенсирующих устройств, генерирующих реактивную мощность в сеть - конденсаторных батарей, синхронных компенсаторов, регулируемых и нерегулируемых источников реактивной мощности. К ним относятся также фильтрокомпенсирующие устройства, выполненные на базе реакторов и конденсаторов.
Внутренняя компенсация предполагает уменьшение как потребления реактивной мощности, так и генерации высших гармоник тока посредством изменений в самом преобразователе.
В сетях с повышенным содержанием высших гармоник, генерируемых резкопеременными нелинейными нагрузками с повышенным потреблением реактивной мощности (например, вентильные преобразователи), применение обычных средств компенсации реактивной мощности, рассчитанных на синусоидальные токи и напряжения, наталкивается на серьезные технические трудности.
Расчеты показывают, что установка широко применяемых для компенсации реактивной мощности конденсаторных батарей в системах электроснабжения промышленных предприятий при наличии вентильной нагрузки может оказаться недопустимой.
Поэтому на предприятиях с вентильной нагрузкой вопросы компенсации реактивной мощности до конца не решены.
Таким образом, можно сделать вывод о том, что в сетях со специфическими нагрузками (к ним относят нелинейные, несимметричные и резкопеременные нагрузки) существуют определенные особенности компенсации реактивной мощности, которые заключаются в следующем:
1. Из-за низкого коэффициента мощности потребителей и резкопеременного характера нагрузки необходимо осуществлять компенсацию как постоянной, так и переменной составляющей реактивной мощности.
2. Из-за быстрых изменений потребляемой реактивной мощности необходимо применение быстродействующих компенсирующих устройств, способных изменять регулирующую реактивную мощность со скоростью, соответствующей скорости наброса и сброса потребляемой реактивной мощности.
3. Из-за неравномерного потребления реактивной мощности по фазам необходимо и пофазное управление компенсирующими устройствами.
4. Ограничивается применение батарей конденсаторов для компенсации постоянной составляющей реактивной мощности в сети с резкопеременной вентильной нагрузкой. Это обусловлено наличием в сети высших гармоник тока и напряжения при работе нелинейных нагрузок. Высшие гармоники приводят к значительным перегрузкам батарей конденсаторов по току.
В связи с этим применительно к сетям с симметричными и несимметричными нелинейными нагрузками ведутся разработки и изготовление комплектных фильтрокомпенсирующих и фильтросимметрирующих устройств, обеспечивающих одновременно компенсацию дефицита реактивной мощности основной частоты, фильтрацию высших гармонических, компенсацию отклонений и колебаний напряжения, а также симметрирование напряжения сети.
При наличии быстрых и резкопеременных толчковых нагрузок становится перспективным применение статических компенсаторов реактивной мощности, обеспечивающих практически возможность безынерционного регулирования реактивной мощности. При этом улучшаются условия статической устойчивости энергосистемы в целом, что обеспечивает дополнительную экономию за счет повышения технико-экономических показателей работы электроустановок.
Статические компенсаторы реактивной мощности являются перспективным средством рациональной компенсации реактивной мощности в силу присущих им положительных свойств, таких, как быстродействующее регулирование, подавление колебаний напряжения, симметрирование нагрузок, отсутствие вращающихся частей, плавность регулирования реактивной мощности, выдаваемой в сеть и т. д. Поэтому в настоящее время уделяется большое внимание их разработке и освоению как в нашей стране, так и за рубежом.
Быстрое развитие мирового производства статических тиристорных компенсаторов определяется их преимуществами по отношению к традиционным средствам компенсации реактивной мощности в решении ряда актуальных задач электроэнергетики.
К числу таких задач относится необходимость компенсации реактивной мощности в местах потребления электроэнергии и на промежуточных подстанциях длинных линий с целью повышения стабильности напряжения у потребителей, снижения потерь в линиях электропередач и сетях электроснабжения потребителей, повышения пропускной способности электропередач.
На основании проведенного в работе исследования можно сделать вывод, что статические тиристорные компенсаторы открывают новые возможности по повышению надежности и качества электрических систем, обеспечивая помимо компенсации реактивной мощности ограничение коммутационных перенапряжений и соответствующее облегчение координации изоляции оборудования ультравысоковольтных передач, повышение предела мощности по длинным линиям, симметрирование режима, снижение потерь в линиях, компенсацию влияния резкопеременной нагрузки, фильтрацию высших гармоник.
При современном уровне развития высоковольтной преобразовательной техники предпочтительной схемой СТК является шести- или двенадцатипульсная тиристорно-реакторная схема с необходимым набором фильтрокомпенсирующих цепей.
Среди всех рассмотренных выше средств компенсации реактивной мощности особое место принадлежит компенсированным выпрямителям. Это специальные преобразовательные системы с усложненными законами управления отдельными мостами или вентильными группами. Действительно, не умаляя достоинств других средств повышения энергетических показателей, следует признать, что они не являются тождественно альтернативными компенсированным выпрямителям. Эти средства, как правило, уступают компенсированным выпрямителям по эффективности использования компенсирующих устройств, что в условиях отмеченного выше дефицита мощности конденсаторов во многих практических случаях имеет решающее значение.
Другим, характерным только для компенсированных выпрямителей, важным достоинством является то, что компенсация реактивной мощности осуществляется непосредственно в месте ее потребления. Последнее позволяет совершенствовать основные характеристики самих выпрямителей и эффективно доводить характеристики всей подстанции до такого уровня, который недостижим при других способах компенсации.
Такие схемы рекомендуется использовать в первую очередь для мощных электроприводов, так как система управления преобразователями оказывается сложнее и дороже.
В данной работе проведен синтез устройства компенсации реактивной мощности. Устройство проектировано на основе статического источника реактивной мощности, состоящего из индуктивности, регулируемой тиристорными преобразователями, и батареи конденсаторов.
Для управления тиристорными преобразователями в работе применена система импульсно-фазового управления, позволяющая преобразовать напряжение управления, подаваемое на ее вход, в импульсы управления тиристорами.
Устройство позволяет регулировать генерируемую в сеть энергоснабжения промышленного предприятия реактивную мощность, контролировать текущие значения напряжения, тока и коэффициента мощности в сети, измерять значение генерируемой в систему реактивной мощности и поддерживать заданную потребителем величину коэффициента мощности в сети.
Достоинством проектируемого устройства является плавное регулирование генерируемой в систему реактивной мощности, что достигается за счет использования в качестве регулирующих элементов тиристорных преобразователей.
Список литературы
1. Федоров А.А., Каменева В.В. Основы электроснабжения промышленных предприятий: Учебник для вузов. - М.: Энергоатомиздат, 1984. - 472с.
2. Минин Г.П. Реактивная мощность. - М.: Энергия, 1978. - 88с.
3. Коновалова Л.А., Рожкова Л.Д. Электроснабжение промышленных предприятий и установок. - М.: Энергоатомиздат, 1989. - 528с.
4. Липкин Б.Ю. Электроснабжение промышленных предприятий и установок: Учебник для учащихся техникумов. - М.: Высшая школа, 1981. - 376с.
5. Дирацу В.С. и др. Электроснабжение промышленных предприятий. - К.: Вища школа, 1974. - 280с.
6. Справочник по электроснабжению и электрооборудованию: В 2т. Т.1. Электроснабжение / Под общ. ред. А.А. Федорова. - М.: Энергоатомиздат, 1986. - 568с.
7. Зимин Е.Н., Кацевич В.Л., Козырев С.К. Электроприводы постоянного тока с вентильными преобразователями. - М.: Энергоиздат, 1981. - 192с.
8. Мукосеев Ю.Л. Электроснабжение промышленных предприятий. - М.: Энергия, 1973. - 584с.
9. Красник В.В. Автоматические устройства по компенсации реактивной мощности в электросетях предприятий. - М.: Энергоатомиздат, 1983. - 136с.
10. Жежеленко И.В., Рабинович М.Л., Божко В.М. Качество электроэнергии на промышленных предприятиях.- К.: Техніка, 1981. - 160с.
11. Комплектные тиристорные электроприводы: Справочник / Под ред. В.М. Перельмутера. - М.: Энергоатомиздат, 1988. - 319с.
12. Федоров А.А., Старкова Л.Е. Учебное пособие для курсового и дипломного проектирования по электроснабжению промышленных предприятий: Учеб. пособие для вузов. - М.: Энергоатомиздат, 1987. - 368с.
13. Добрусин Л.А. Широкополосные фильтрокомпенсирующие устройства для тиристорных преобразователей // Электричество. - 1985. - №4. - с. 27-30.
14. Бортник И.М., Буряк С.Ф., Ольшванг М.В., Таратута И.П. Статические тиристорные компенсаторы для энергосистем и сетей электроснабжения //Электричество. - 1985. - №2 - с. 13-19.
15. Статические компенсаторы реактивной мощности в электрических системах: Пер. тематического сб. рабочей группы Исследовательского Комитета №38 СИГРЭ / Под ред. И.И. Карташева. - М.: Энергоатомиздат, 1990. - 174с.
16. Хохлов Ю.И. Компенсированные выпрямители с фильтрацией в коммутирующие конденсаторы нечетнократных гармоник токов преобразовательных блоков. - Челябинск: ЧГТУ, 1995. - 355с.
17. Супронович Г. Улучшение коэффициента мощности преобразовательных установок: Пер. с польск. - М.: Энергоатомиздат, 1985. - 136с.
18. Кашкалов В.И., Половинкин Б.И. Улучшение энергетических показателей управляемых выпрямителей. - К.: Тэхника, 1988. - 159с.
19. www.reis.zp.ua/preobraz/prcob_ru/produkc/pu/5.htm
20. Идельчик В. И. Электрические системы и сети: Учебник для вузов. - М.: Энергоатомиздат, 1989. - 592с.
21. Исследование существующих систем распределения электроэнергии напряжением до 1кВ с целью их оптимизации // Промислова електроенергетика та електротехніка. - 2000. - №3.
22. Иванов В. С., Соколов В. И. Режимы потребления и качество электроэнергии систем электроснабжения промышленных предприятий. - М.: Энергоатомиздат, 1987. - 336с.
23. Богаенко И. Н., Борисенко В. Я., Розинский Д. И., Рюмшин Н. А. Регулируемые компенсирующие устройства реактивной мощности / Справочник. - К.: Технiка, 1992. - 152с.
24. Проектирование электроприводов. Справочник / Под ред. А. М. Вейнгера. - Свердловск.: Средне-Уральское кн. изд-во, 1980. - 160с.
25. Александров К. К., Кузьмина Е. Г. Электротехнические чертежи и схемы. - М.: Энергоатомиздат, 1990. - 288с.
26. www.nokian_capaсitors.ru
27. Авторское свидетельство СССР № 1451797, 1989.
28. Авторское свидетельство СССР № 1576977, 1990.
29. Авторское свидетельство СССР № 1515253, 1989.
30. Вентильные преобразователи с улучшенным коэффициентом мощности. Ч.2. Компенсационные способы улучшения коэффициента мощности вентильных преобразователей. Информэлектро, М., 1980.
31. Авторское свидетельство СССР № 1116493, 1984.
32. Худяков В.А. и др. Управляемый статический источник реактивной мощности. Электричество, 1969, № 1.
33. Авторское свидетельство СССР № 1257746, 1986.
34. Авторское свидетельство СССР № 1091273, 1984.
35. Авторское свидетельство СССР № 1347118, 1987.
36. Авторское свидетельство СССР № 1471247, 1989.
37. Авторское свидетельство СССР № 1674306, 1991.
38. Организация, планирование и управление деятельностью промышленного предприятия / Под ред. С. М. Бухало. - К.: Высшая школа, 1989. - 472с.
39. Плоткин Я. Д., Янушкевич О. К. Организация и планирование приборостроительного производства. - Львов.: Свит, 1992. - 324с.
40. Организация и планирование машиностроительного производства / Под ред. М. И. Ипатова, В. И. Постникова и М. К. Захаровой. - М.: Высшая школа, 1988. - 367с.
41. Охрана труда в электроустановках: Учебник для вузов / Под ред. Б. А. Князевского. - М.: Энергоатомиздат, 1983. - 336с.
42. Денисенко Г. Ф. Охрана труда: Учебное пос. для вузов. - М.: Высшая школа, 1985. - 319с.
43. Долин П. А. Справочник по технике безопасности. - М.: Энергоатомиздат, 1984. - 824с.
Размещено на Allbest.ru
...Подобные документы
Разработка алгоритма управления режимом реактивной мощности при асимметрии системы электроснабжения промышленного предприятия. Источники реактивной мощности. Адаптивное нечеткое управление синхронного компенсатора с применением нейронной технологии.
дипломная работа [1,6 M], добавлен 20.05.2017Анализ влияния компенсации реактивной мощности на параметры системы электроснабжения промышленного предприятия. Адаптивное нечеткое управление синхронного компенсатора с применением нейронной технологии. Моделирование измерительной части установки.
дипломная работа [1,7 M], добавлен 02.06.2017Оценка стоимости конденсаторных установок и способы снижения потребления реактивной мощности. Преимущества применения единичной, групповой и централизованной компенсации. Расчет экономии электроэнергии и срока окупаемости конденсаторных установок.
реферат [69,8 K], добавлен 14.12.2012Математические модели оптимизационных задач электроснабжения. Обзор способов повышения коэффициента мощности и качества электроэнергии. Выбор оптимальных параметров установки продольно-поперечной компенсации. Принцип работы тиристорного компенсатора.
дипломная работа [986,2 K], добавлен 30.07.2015Капитальные затраты на внедрение в систему электроснабжения компенсирующих устройств. Определение эксплуатационных расходов. Расчет экономической эффективности от установки компенсирующего устройства. Срок окупаемости дополнительных номинальных затрат.
задача [28,6 K], добавлен 07.12.2010Основные принципы компенсации реактивной мощности. Оценка влияния преобразовательных установок на сети промышленного электроснабжения. Разработка алгоритма функционирования, структурной и принципиальной схем тиристорных компенсаторов реактивной мощности.
дипломная работа [2,1 M], добавлен 24.11.2010Оптимизация систем промышленного электроснабжения: выбор сечения проводов и жил кабелей, способ компенсации реактивной мощности, автоматизация и диспетчеризация. Выбор числа и мощности цеховых трансформаторов. Установка компенсирующих устройств.
курсовая работа [382,2 K], добавлен 06.06.2015Определение осветительной нагрузки цехов, расчетных силовых нагрузок. Выбор числа и мощности цеховых трансформаторов с учетом компенсации реактивной мощности. Определение потерь мощности и электроэнергии. Выбор параметров схемы сети электроснабжения.
курсовая работа [4,4 M], добавлен 14.06.2015Характеристика цеха и потребителей электроэнергии. Определение нагрузок и категории электроснабжения. Расчёт нагрузок, компенсации реактивной мощности. Выбор типа, числа и мощности трансформаторов. Выбор распределительных сетей высокого напряжения.
курсовая работа [308,4 K], добавлен 21.02.2014Анализ технико-экономических показателей и электрических нагрузок при выборе варианта электроснабжения инструментального цеха. Определение компенсации реактивной мощности. Расчёт токов короткого замыкания, заземляющих устройств, релейной защиты.
курсовая работа [878,0 K], добавлен 22.06.2012Разработка системы электроснабжения агропромышленного предприятия. Расчет электрических нагрузок, их центра. Определение числа и мощности трансформаторов. Проектирование распределительной сети предприятия. Проблемы компенсации реактивной мощности.
курсовая работа [1,7 M], добавлен 16.01.2016Расчет электрических нагрузок цехов, определение центра электрических нагрузок. Выбор местоположения главной распределительной подстанции. Расчет мощности цехов с учетом потерь в трансформаторах и компенсации реактивной мощности на низкой стороне.
курсовая работа [1,2 M], добавлен 22.11.2010Определение электрических нагрузок, выбор цеховых трансформаторов и компенсации реактивной мощности. Выбор условного центра электрических нагрузок предприятия, разработка схемы электроснабжения на напряжение выше 1 кВ. Расчет токов короткого замыкания.
курсовая работа [304,6 K], добавлен 23.03.2013Проектирование системы электроснабжения локомотивного депо с использованием устройств компенсации реактивной мощности и без них. Расчет электрических нагрузок цеха. Выбор местного источника питания, схемы питающей, осветительной и распределительной сети.
курсовая работа [1020,1 K], добавлен 23.01.2014Расчет электрических нагрузок систем электроснабжения. Нагрузка группы цехов. Обоснование числа, типа и мощности трансформаторных подстанций. Расчет токов короткого замыкания. Выбор токопроводов, изоляторов и средств компенсации реактивной мощности.
дипломная работа [3,0 M], добавлен 06.04.2014Определение электрических нагрузок предприятия. Выбор цеховых трансформаторов и расчет компенсации реактивной мощности. Разработка схемы электроснабжения предприятия и расчет распределительной сети напряжением выше 1 кВ. Расчет токов короткого замыкания.
дипломная работа [2,4 M], добавлен 21.11.2016Категория надежности электроснабжения электроприемников. Выбор рода тока и напряжения, схемы электроснабжения. Расчет компенсации реактивной мощности. Схема управления вертикально-сверлильного станка модели 2А125. Расчет электрических нагрузок.
дипломная работа [171,6 K], добавлен 28.05.2015Характеристика потребителей по категории надежности электроснабжения и среды производственных помещений. Определение расчетных электрических нагрузок. Выбор количества, мощности и тип трансформаторов цеха и компенсирующих устройств реактивной мощности.
курсовая работа [219,8 K], добавлен 12.06.2019Выбор напряжения питающей линии предприятия, схема внешнего электроснабжения и приемной подстанции; определение мощностей трансформаторов по суточному графику нагрузки, проверка их работы с перегрузкой. Расчет экономического режима работы трансформатора.
курсовая работа [1,2 M], добавлен 26.12.2010Расчет электрических нагрузок цехов и разработка проекта по электроснабжению автомобильного завода. Выбор числа трансформаторов и определение порядка компенсации реактивной мощности энергосети. Технико-экономическое обоснование схемы электроснабжения.
курсовая работа [923,6 K], добавлен 02.05.2013