Истечение жидкости через отверстия, насадки

Классификация отверстий и их практическое применение. Формулы скорости и расхода жидкости при истечении через малое отверстие. Форма сечения струи жидкости. Опорожнение резервуара призматического сечения в атмосферу. Характерные особенности насадок.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 18.03.2014
Размер файла 1,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Истечение жидкости через отверстия, насадки

Классификация отверстий и их практическое применение

Вопрос истечения жидкости через отверстия является одним из узловых моментов гидравлики. Ученые и инженеры изучали этот вопрос начиная с XVII в. Уравнение Д. Бернулли впервые было выведено при решении одной из задач на истечение жидкости из отверстия. При расчетах диафрагм, дырчатых смесителей, наполнении и опорожнении резервуаров, бассейнов, водохранилищ, шлюзовых камер и других емкостей решаются задачи на истечение жидкостей через отверстия. При решении этих задач определяют скорости и расходы жидкостей.

Экспериментально установлено, что при истечении жидкости из отверстий происходит сжатие струи, т. е. уменьшение ее поперечного сечения. Форма сжатой струи зависит от формы и размеров отверстия, толщины стенок, а также от расположения отверстия относительно свободной поверхности, стенок и дна сосуда, из которого вытекает жидкость. Сжатие струи происходит вследствие того, что частицы жидкости подходят к отверстию с разных сторон и по инерции движутся в отверстии по сходящимся траекториям.

Параллельное течение струй в отверстии возможно только в том случае, когда толщина стенок сосуда близка к размерам отверстия, а стенки отверстия имеют плавные очертания, с расширением внутрь сосуда. При этом отверстие превращается в коноидальный осадок (см. ниже).

Отверстия классифицируют следующим образом:

1. По размеру.

Размещено на http://www.allbest.ru/

а) малые отверстия, когда или (рис. 1), где - диаметр круглого отверстия; - напор; - разность напоров при затопленном отверстии;

б) большие отверстия, когда или .

2. По толщине стенки, в которой сделано отверстие:

а) отверстия в тонкой стенке, когда или , где t - толщина стенки;

б) отверстия в толстой стенке, когда или .

3. По форме различают круглые, квадратные, прямоугольные, треугольные и другие отверстия.

Истечение жидкости через отверстия в тонкой стенке при постоянном уровне

Выведем формулы скорости и расхода жидкости при истечении через малое отверстие. Пусть жидкость вытекает из большого резервуара через малое отверстие в его дне или стенке (рис. 2).

Размещено на http://www.allbest.ru/

Опытами установлено, что сжатое сечение струи находится от внутренней поверхности резервуара на расстоянии около половины диаметра отверстия. Эта величина обычно бывает мала сравнительно с напором Н в резервуаре, и можно считать, что центр отверстия и центр сжатого сечения струи находятся на одинаковой высоте, тем более при отверстии в боковой стенке.

Высоту уровня жидкости в резервуаре Н над центром отверстия называют геометрическим напором. В общем случае давление в резервуаре отличается от давления в пространстве, куда истекает жидкость.

Проведем плоскость сравнения 2-2 через центр сжатого сечения струи.

Уравнение Д. Бернулли применить к сечению отверстия нельзя, так как струйки в последнем сходятся под большими углами, и движение жидкости в нем не плавно изменяющееся.

Напишем уравнение Д. Бернулли для сечений 1-1 и 2-2

, (124)

где - скорость подхода жидкости к отверстию в резервуаре; - средняя скорость течения в сжатом сечении; - коэффициент местного сопротивления при истечении через отверстие.

Перенесем наружное давление в левую часть и обозначим величину

. (125)

Эта величина называется напором истечения.

В правой части уравнения (124) вынесем за скобки . Тогда уравнение Д. Бернулли сведется к

,

откуда

.

Обозначим величину

. (126)

Величину называют коэффициентом скорости.

С учетом введенного обозначения

. (127)

Так как коэффициент Кориолиса , а коэффициент местных потерь напора в отверстии , то . По опытным данным , а . Отсюда

.

Для идеальной жидкости и . Тогда

. (128)

Это уравнение называется формулой Торичелли. Оно показывает, что скорость в начале вытекающей струи равна скорости свободного падения тела, упавшего с высоты .

Когда поперечное сечение резервуара много больше площади живого сечения отверстия, а скорость жидкости в резервуаре незначительна (к примеру, меньше 0,1 м/сек), то скоростным напором можно пренебречь. В случае, когда давления снаружи и в резервуаре одинаковы , то весь напор истечения сводится к геометрическому напору, т. е. . Это бывает обычно при расчете истечения из открытых резервуаров в атмосферу.

Расход жидкости определится как произведение скорости истечения на площадь сжатого сечения струи

, (129)

где - коэффициент сжатия струи, равный отношению площади сжатого сечения к площади отверстия .

Величину обозначают через и называют коэффициентом расхода.

Таким образом, расход жидкости, вытекающей через отверстие, определяют по формуле

. (130)

При точных измерениях размеров сжатого сечения струи установлено, что при совершенном сжатии струи . В этом случае . В общем же случае коэффициент расхода зависит от условий сжатия.

При истечении не в газовую среду, а в смежный резервуар с той же жидкостью (что принято называть истечением «под уровень»), т. е. когда отверстие затоплено с обеих сторон, в качестве геометрического напора Н принимают разность уровней жидкости в резервуарах. Числовые значения коэффициентов , и остаются при этом практически теми же.

В случае круглого отверстия, расположенного на значительном расстоянии от стенок, струя сжимается со всех сторон одинаково, и в сжатом сечении имеет также форму круга; при этом сжатое сечение находится от кромок отверстия на расстоянии около половины диаметра отверстия - . Величина коэффициента сжатия зависит от относительных размеров отверстия и от положения его относительно стенок резервуара и поверхности жидкости.

В зависимости от расположения отверстия различают следующие виды сжатия (рис. 3):

Размещено на http://www.allbest.ru/

1) полное сжатие со всех сторон (отверстия 1 и 2);

2) неполное, когда сжатия нет с одной или нескольких сторон (отверстия 3, 4 и 5).

Полное сжатие подразделяют на:

а) совершенное, когда и (отверстие 1);

б) несовершенное, когда и (отверстие 2).

Форма сечения струи жидкости при истечении претерпевает изменения.

Эти изменения называются инверсией. Инверсия происходит вследствие того, что скорости подхода к отверстию в разных точках его периметра различны и вследствие сил поверхностного натяжения.

Размещено на http://www.allbest.ru/

На рис. 4 показано изменение формы струи при истечении через квадратное отверстие по мере удаления от резервуара.

При несовершенном сжатии коэффициент расхода вычисляют по формулам:

для круглых отверстий

(131)

для прямоугольных отверстий

(132)

где - значение коэффициента расхода при совершенном сжатии; и - поправочные коэффициенты, зависящие от отношения площади сечения отверстий к площади сечения сосуда . Значения этих коэффициентов принимают по таблице:

Значение величин и при несовершенном сжатии

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

0,014

0,034

0,059

0,092

0,134

0,189

0,26

0,351

0,471

0,631

0,019

0,042

0,071

0,107

0,152

0,208

0,278

0,365

0,473

0,608

При неполном сжатии коэффициент расхода вычисляют по уравнениям:

для круглых отверстий

; (133)

для прямоугольных отверстий

, (134)

где - коэффициент расхода при полном сжатии; - часть периметра, на котором нет сжатия; Р - полный периметр отверстия.

При расчете больших отверстий значения коэффициентов расхода, рекомендованных Н.Н. Павловским, приведены в таблице:

Значения коэффициентов расхода для больших отверстий

Виды отверстий и характер сжатия струи

коэффициент расхода

Большие отверстия с несовершенным, но всесторонним сжатием

0,70

Большие отверстия с умеренным боковым сжатием, без сжатия по дну

0,80

Средние отверстия (шириной до 2 м) с весьма слабым боковым сжатием, без сжатия по дну

0,90

Большие отверстия (шириной 5-6 м) с весьма слабым боковым сжатием, без сжатия по дну

0,95

Истечение жидкости через отверстия в тонкой стенке при переменном уровне

Истечение жидкости при переменном уровне встречается при опорожнении и наполнении резервуаров, цистерн, шлюзовых камер, бассейнов и других емкостей. Обычно в этом случае необходимо определить время опорожнения или наполнения емкости.

Рассмотрим случай опорожнения резервуара через донное отверстие в атмосферу (рис. 5).

Размещено на http://www.allbest.ru/

Пусть резервуар призматического сечения и имеет площадь . Очевидно, движение жидкости будет неустановившимся, так как уровень е течением времени опускается, что вызывает постоянное уменьшение расхода.

Выберем какой-то момент времени, в который уровень жидкости в резервуаре будет у. За бесконечно малый промежуток времени dt уровень жидкости уменьшится на величину dy (за этот промежуток времени движение можно считать установившимся). За что время вытечет объем жидкости, равный

, (135)

. (136)

Выражая тот же объем жидкости через размеры резервуара, имеем

. (137)

Знак минус поставлен потому, что dy величина отрицательная (снижение уровня), а объем должен быть величиной положительной.

Приравнивая правые части уравнений (136) и (137), получим

,

откуда

. (138)

Интегрируя полученное выражение, найдем время истечения

, (139)

или, вынося постоянные величины за знак интеграла,

,

.

Итак, время понижения уровня от до

. (140)

Время полного опорожнения, т. е. если равно

. (141)

Рассмотрим случай истечения под уровень (рис. 6). Пусть разность уравнений жидкости в резервуарах равна у, площади поперечного сечения резервуаров соответственно и .

Размещено на http://www.allbest.ru/

Определим время выравнивания уровней при истечении жидкости через отверстие в тонкой стенке. За бесконечно малый промежуток времени из первого резервуара вытечет объем жидкости

, (а)

во втором резервуаре прибудет тот же объем, равный

, (б)

в то же время

. (в)

Из чертежа имеем

или

, (г)

но , откуда

.

Подставим значение в уравнение (г)

,

откуда

. (д)

Подставим значение из выражения (д) в уравнение (а)

и приравняем правые части полученного уравнения и уравнения (в)

.

Разделим переменные и интегрируем

; (142)

в частном случае при

. (143)

Виды насадок и их применение. Истечение жидкости через насадки

Насадкой называется отрезок трубы, длина которого в несколько раз больше внутреннего диаметра. Рассмотрим случай, когда к отверстию в стенке резервуара присоединен насадок диаметром d, равным диаметру отверстия.

Размещено на http://www.allbest.ru/

На рис. 7 показаны наиболее распространенные виды насадок, применяемые на практике:

а - цилиндрический внешний; б - цилиндрический внутренний; в - конический расходящийся; г - конический сходящийся; д - коноидально-расходящийся; е - коноидальный.

Цилиндрические насадки встречаются в виде деталей гидравлических систем машин и сооружений. Конические сходящиеся и коноидальные насадки применяют для увеличения скорости и дальности полета струи воды (пожарные брандспойты, стволы гидромониторов, форсунки, сопла и др.).

Размещено на http://www.allbest.ru/

Конические расходящиеся насадки применяют для уменьшения скорости и увеличения расхода жидкости и давления на выходе во всасывающих трубах турбин и др. В эжекторах и инжекторах также имеются конические насадки, как основной рабочий орган. Водопропускные трубы под насыпями дорог (с точки зрения гидравлики) также представляют собой насадки.

Рассмотрим истечение через внешний цилиндрический насадок (рис. 8).

Струя жидкости при входе в насадку сжимается, а потом расширяется и заполняет все сечение. Из насадки струя вытекает полным сечением, поэтому коэффициент сжатия, отнесенный к выходному сечению, , а коэффициент расхода

.

Составим уравнение Д. Бернулли для сечений 1-1 и 2-2

,

где - потери напора.

Для истечения из открытого резервуара в атмосферу аналогично истечению через отверстие уравнение Д. Бернулли приводится к виду

. (144)

Потери напора в насадке складываются из потерь па входе и на расширение сжатой струи внутри насадка. (Незначительными потерями в резервуаре и потерями по длине насадка ввиду их малости можно пренебречь.) Итак,

. (145)

По уравнению неразрывности можем записать:

,

откуда

. (146)

Подставляя значение в уравнение (145), имеем

, (147)

где обозначено

. (148)

Полученное значение потерь напора подставим в уравнение (144), тогда

.

Отсюда скорость истечения

. (149)

Обозначая

, (150)

получим для скорости уравнение

. (151)

Определим расход жидкости

.

Но для насадка и

, (152)

где - коэффициент расхода насадки; - площадь живого сечения насадка.

Таким образом, уравнения для определения скорости и расхода жидкости через насадки имеют тот же вид, что и для отверстия, но другие значения коэффициентов. Для коэффициента сжатия струи (при больших значениях Re и ) можно приближенно принять , и тогда по формулам (148) и (149) получается . Фактически происходят и потери по длине, поэтому для истечения воды в обычных условиях можно принимать .

Сравнивая коэффициенты расхода и скорости для насадки и отверстия в тонкой стенке, устанавливаем, что насадок увеличивает расход и уменьшает скорость истечения.

Характерной особенностью насадки является то, что давление в сжатом сечении меньше атмосферного. Это положение доказывается уравнением Бернулли, составленным для сжатого и выходного сечений.

Во внутренних цилиндрических насадках сжатие струи на входе больше, чем у внешних, и поэтому значения коэффициентов расхода и скорости меньше. Опытами найдены коэффициенты для воды .

В наружных конических сходящихся насадках сжатие и расширение струи на входе меньше, чем в наружных цилиндрических, но появляется внешнее сжатие на выходе из насадки. Поэтому коэффициенты , и зависят от угла конусности. С увеличением угла конусности до 13° коэффициент расхода растет, а с дальнейшим увеличением угла уменьшается.

Конические сходящиеся насадки применяют в тех случаях, когда нужно получить большую выходную скорость струи, дальность полета и силу удара струи (гидромониторы, пожарные стволы и т. п.).

В конических расходящихся насадках внутреннее расширение струи после сжатия больше, чем в конических сходящихся и цилиндрических, поэтому потери напора здесь возрастают и коэффициент скорости уменьшается. Внешнего сжатия при выходе нет.

Коэффициенты и зависят от угла конусности. Так, при угле конусности значения коэффициентов можно принимать равными ; при (предельный угол) . При струя вытекает, не касаясь стенок насадка, т. е. как из отверстия без насадка.

Значения коэффициентов , и для насадок

Тип насадок

Наружный цилиндрический

1

0,82

0,82

Внутренний цилиндрический

1

0,71

0,71

Конический сходящийся при

0,982

0,963

0,946

Конический расходящийся

1

0,45

0,45

Коноидальный

1

0,98

0,98

Примечание. Для конических насадок коэффициенты дапы для выходного сечения.

Конические расходящиеся насадки применяют в тех случаях, когда необходимо уменьшить скорость истечения, например, насадки для подачи смазочных масел и т. п. В конических расходящихся насадках в месте сжатия струи создается большой вакуум, поэтому их еще применяют там, где требуется создать большой эффект всасывания (эжекторы, инжекторы и т. п.).

Коноидальные насадки имеют очертания формы струи, вытекающей через отверстие в тонкой стенке. Для этих насадок значение коэффициентов составляет: .

Их применяют в пожарных брандспойтах, но редко, так как изготовление их очень сложное.

Для коноидально-расходящейся насадки можно получить коэффициент расхода больше единицы за счет увеличения выходного сечения.

В таблице приводятся средние значения коэффициентов для различных насадок.

истечение жидкость струя насадка

Размещено на Allbest.ru

...

Подобные документы

  • Вычисление параметров и характеристик напора при истечении через отверстие в тонкой стенке и насадке с острой входной кромкой (цилиндрической и наружной), с коническим входом, с внутренней цилиндрической, с конически сходящейся и расходящейся насадками.

    задача [65,4 K], добавлен 03.06.2010

  • Построение эпюры гидростатического давления жидкости на стенку, к которой прикреплена крышка. Расчет расхода жидкости, вытекающей через насадок из резервуара. Применение уравнения Д. Бернулли в гидродинамике. Выбор поправочного коэффициента Кориолиса.

    контрольная работа [1,2 M], добавлен 24.03.2012

  • Реальное течение капельных жидкостей и газов на удалении от омываемых твердых поверхностей. Уравнение движения идеальной жидкости. Уравнение Бернулли для несжимаемой жидкости. Истечение жидкости через отверстия. Геометрические характеристики карбюратора.

    презентация [224,8 K], добавлен 14.10.2013

  • Физические свойства жидкости. Гидростатика и гидродинамика: движение жидкости по трубопроводам и в каналах; ее истечение через отверстия и насадки. Сельскохозяйственное водоснабжение и мелиорация. Сила давления на плоскую и криволинейную поверхности.

    методичка [6,3 M], добавлен 08.04.2013

  • Потенциальная энергия жидкости. Определение теоретической скорости и теоретического расхода (идеальная жидкость). Сравнение истечения через отверстие и внешний цилиндрический насадок. Кавитация в цилиндрическом насадке. Гидравлический удар в трубопроводе.

    презентация [337,3 K], добавлен 29.01.2014

  • Поле вектора скорости: определение. Теорема о неразрывности струн. Уравнение Бернулли. Стационарное течение несжимаемой идеальной жидкости. Полная энергия рассматриваемого объема жидкости. Истечение жидкости из отверстия.

    реферат [1,8 M], добавлен 18.06.2007

  • Определение веса находящейся в баке жидкости. Расход жидкости, нагнетаемой гидравлическим насосом в бак. Вязкость жидкости, при которой начнется открытие клапана. Зависимость расхода жидкости и избыточного давления в начальном сечении трубы от напора.

    контрольная работа [489,5 K], добавлен 01.12.2013

  • Механика жидкостей, физическое обоснование их главных свойств и характеристик в различных условиях, принцип движения. Уравнение Бернулли. Механизм истечения жидкости из отверстий и насадков и методика определения коэффициентов скорости истечения.

    реферат [175,5 K], добавлен 19.05.2014

  • Выведение уравнения движения вязкой несжимаемой жидкости - уравнения Стокса. Рассмотрение основных режимов движения жидкости в горизонтальных трубах постоянного поперечного сечения - ламинарного и турбулентного. Определение понятия профиля скорости.

    презентация [1,4 M], добавлен 14.10.2013

  • Теория движения жидкости. Закон сохранения вещества и постоянства. Уравнение Бернулли для потока идеальной и реальной жидкости. Применение уравнения Д. Бернулли для решения практических задач гидравлики. Измерение скорости потока и расхода жидкости.

    контрольная работа [169,0 K], добавлен 01.06.2015

  • Три случая относительного покоя жидкости в движущемся сосуде. Методы для определения давления в любой точке жидкости. Относительный покой жидкости в сосуде, движущемся вертикально с постоянным ускорением. Безнапорные, напорные и гидравлические струи.

    презентация [443,4 K], добавлен 18.05.2019

  • Изучение механики материальной точки, твердого тела и сплошных сред. Характеристика плотности, давления, вязкости и скорости движения элементов жидкости. Закон Архимеда. Определение скорости истечения жидкости из отверстия. Деформация твердого тела.

    реферат [644,2 K], добавлен 21.03.2014

  • Анализ и особенности распределения поверхностных сил по поверхности жидкости. Общая характеристика уравнения Бернулли, его графическое изображение для потока реальной жидкости. Относительные уравнение гидростатики как частный случай уравнения Бернулли.

    реферат [310,4 K], добавлен 18.05.2010

  • Постоянство потока массы, вязкость жидкости и закон трения. Изменение давления жидкости в зависимости от скорости. Сопротивление, испытываемое телом при движении в жидкой среде. Падение давления в вязкой жидкости. Эффект Магнуса: вращение тела.

    реферат [37,9 K], добавлен 03.05.2011

  • Силы и коэффициент внутреннего трения жидкости, использование формулы Ньютона. Описание динамики с помощью формулы Пуазейля. Уравнение Эйлера - одно из основных уравнений гидродинамики идеальной жидкости. Течение вязкой жидкости. Уравнение Навье-Стокса.

    курсовая работа [531,8 K], добавлен 24.12.2013

  • Исследование распространения акустических возмущений в смесях жидкости с газовыми пузырьками с учетом нестационарных и неравновесных эффектов межфазного взаимодействия. Расчет зависимости фазовой скорости и коэффициента затухания в пузырьковой жидкости.

    курсовая работа [433,2 K], добавлен 15.12.2014

  • Основные функции рабочей жидкости в гидравлических системах. Выбор рабочей жидкости. Расчет гидравлического цилиндра, расхода жидкости при перемещениях рабочих органов. Способы обеспечения нормальной работы гидропривода, тепловой расчет гидросистемы.

    курсовая работа [309,5 K], добавлен 21.10.2014

  • Определение пористости материалов по капиллярному подъёму магнитной жидкости в неоднородном магнитном поле. Методика оценки диаметра капилляров по измерению скорости капиллярного подъёма магнитной жидкости при помощи датчиков.

    статья [1,2 M], добавлен 16.03.2007

  • Экспериментальная проверка формулы Стокса и условий ее применимости. Измерение динамического коэффициента вязкости жидкости; число Рейнольдса. Определение сопротивления жидкости, текущей под действием внешних сил, и сопротивления движущемуся в ней телу.

    лабораторная работа [339,1 K], добавлен 29.11.2014

  • Основные понятия гидродинамики. Условие неразрывности струи, уравнение Бернулли. Внутреннее трение (вязкость) жидкости. Течение вязкой жидкости. Факторы, влияющие на вязкость крови в организме. Особенности течения крови в крупных и мелких сосудах.

    реферат [215,7 K], добавлен 06.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.