Законы сохранения в механике

Исследование аспектов вычисления импульса силы. Характеристика второго закона Ньютона. Методики определения мощности. Основы потенциальной энергии упругих тел. Рассмотрение закона сохранения импульса. Особенности кинетической и потенциальной энергии.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 30.03.2014
Размер файла 98,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Реферат

По дисциплине физика

На тему: «Законы сохранения в механике»

Выполнил студент группы

Колесников С.А

2013

Законы сохранения энергии, импульса и момента импульса являются наиболее общими физическими законами. Они имеют глубокое происхождение, связанное с фундаментальными свойствами пространства и времени - однородностью и изотропностью. А именно: закон сохранения энергии связан с однородностью времени, закон сохранения импульса - с однородностью пространства, закон сохранения момента импульса с изотропностью пространства. Вследствие этого использование их не ограничивается рамками классической механики, они выполняются при описании всех известных явлений от космических до квантовых. Важность законов сохранения, как инструмента исследования, обусловлена следующими обстоятельствами:

Законы сохранения не зависят ни от траекторий частиц, ни от характера действующих сил. Поэтому они позволяют получить ряд весьма общих и существенных заключений о свойствах различных механических процессов без их детального рассмотрения с помощью уравнений движения. Если, например, выясняется, что некий анализируемый процесс противоречит законам сохранения, то можно утверждать: этот процесс невозможен, и бессмысленно пытаться его осуществить.

Независимость законов сохранения от характера действующих сил позволяет применять их даже в том случае, когда силы неизвестны. Так дело обстоит, например, в области микромира, где понятия материальной точки, а следовательно, и силы бессмысленны. Такая же ситуация имеет место при анализе систем большого числа частиц, когда технически невозможно определить координаты всех частиц, и поэтому - рассчитать действующие между частицами силы. Законы сохранения являются в этих случаях единственным инструментом исследования.

Даже в случае, если все силы известны и использование законов сохранения не дает новой по сравнению с уравнением движения (вторым законом Ньютона) информации, их применение может существенно упростить теоретические выкладки.

Импульс силы, мера действия силы за некоторый промежуток времени; равняется произведению среднего значения силы Fcp на время t1 её действия: S = Fcp t1. И. с. -- величина векторная и направлен он так же, какFcp. Точное значение И. с. за промежуток времени t1 определяется интегралом:

При движении материальной точки под действием силы F её количество движения получает за время t1 приращение, равное И. с.

(mv0 и mv1-- соответственно количество движения точки в начале и в конце промежутка времени t1).

Понятие о И. с. широко используется в механике, в частности в теории удара, где величина, равная импульсу ударной силы Fyд за время удара t, называется ударным импульсом.

Импульс тела

Пусть на тело массой m в течение некоторого малого промежутка времени Дt действовала сила Под действием этой силы скорость тела изменилась на

Следовательно, в течение времени Дt тело двигалось с ускорением

Из основного закона динамики (второго закона Ньютона) следует:

Физическая величина, равная произведению массы тела на скорость его движения, называется импульсом тела (или количеством движения). Импульс тела - векторная величина. Единицей измерения импульса в СИ является килограмм-метр в секунду (кг·м/с).

Физическая величина, равная произведению силы на время ее действия, называется импульсом силы. Импульс силы также является векторной величиной.

В новых терминах второй закон Ньютона может быть сформулирован следующим образом: изменение импульса тела (количества движения) равно импульсу силы.

Обозначив импульс тела буквой второй закон Ньютона можно записать в виде

Именно в таком общем виде сформулировал второй закон сам Ньютон. Сила в этом выражении представляет собой равнодействующую всех сил, приложенных к телу. Это векторное равенство может быть записано в проекциях на координатные оси:

Fx Дt = Дpx; Fy Дt = Дpy; Fz Дt = Дpz.

Таким образом, изменение проекции импульса тела на любую из трех взаимно перпендикулярных осей равно проекции импульса силы на эту же ось. Рассмотрим в качестве примера одномерное движение, т. е. движение тела по одной из координатных осей (например, оси OY). Пусть тело свободно падает с начальной скоростью х0 под действием силы тяжести; время падения равно t. Направим ось OY вертикально вниз. Импульс силы тяжести Fт = mg за время t равен mgt. Этот импульс равен изменению импульса тела

Fтt = mgt = Дp = m (х - х0), откуда х = х0 + gt.

Этот простой результат совпадает с кинематической формулой для скорости равноускоренного движения. В этом примере сила оставалась неизменной по модулю на всем интервале времени t. Если сила изменяется по величине, то в выражение для импульса силы нужно подставлять среднее значение силы Fср на промежутке времени ее действия. Рис. 1.16.1 иллюстрирует метод определения импульса силы, зависящей от времени.

Рисунок 1.16.1 Вычисление импульса силы по графику зависимости F(t)

Выберем на оси времени малый интервал Дt, в течение которого сила F (t) остается практически неизменной. Импульс силы F (t) Дt за время Дt будет равен площади заштрихованного столбика. Если всю ось времени на интервале от 0 до tразбить на малые интервалы Дti, а затем просуммировать импульсы силы на всех интервалах Дti, то суммарный импульс силы окажется равным площади, которую образует ступенчатая кривая с осью времени. В пределе (Дti > 0) эта площадь равна площади, ограниченной графиком F (t) и осью t. Этот метод определения импульса силы по графику F (t) является общим и применим для любых законов изменения силы со временем. Математически задача сводится кинтегрированию функции F (t) на интервале [0; t].

Импульс силы, график которой представлен на рис. 1.16.1, на интервале от t1 = 0 с до t2 = 10 с равен:

В этом простом примере

В некоторых случаях среднюю силу Fср можно определить, если известно время ее действия и сообщенный телу импульс. Например, сильный удар футболиста по мячу массой 0,415 кг может сообщить ему скорость х = 30 м/с. Время удара приблизительно равно 8·10-3 с.

Импульс p, приобретенный мячом в результате удара есть:

p = mх = 12,5 кг·м/с.

Следовательно, средняя сила Fср, с которой нога футболиста действовала на мяч во время удара, есть:

Это очень большая сила. Она приблизительно равна весу тела массой 160 кг.

Если движение тела во время действия силы происходило по некоторой криволинейной траектории, то начальный и конечный импульсы тела могут отличаться не только по модулю, но и по направлению. В этом случае для определения изменения импульса удобно использовать диаграмму импульсов, на которой изображаются вектора и , а также вектор построенный по правилу параллелограмма. В качестве примера на рис. 1.16.2 изображена диаграмма импульсов для мяча, отскакивающего от шероховатой стенки. Мяч массой m налетел на стенку со скоростью под углом б к нормали (ось OX) и отскочил от нее со скоростью под углом в. Во время контакта со стеной на мяч действовала некоторая сила направление которой совпадает с направлением вектора

При нормальном падении мяча массой m на упругую стенку со скоростью после отскока мяч будет иметь скорость

Следовательно, изменение импульса мяча за время отскока равно В проекциях на ось OX этот результат можно записать в скалярной форме Дpx = -2mхx. Ось OX направлена от стенки (как на рис. 1.16.2), поэтому хx < 0 и Дpx > 0. Следовательно, модуль Дp изменения импульса связан с модулем х скорости мяча соотношением Дp = 2mх.

Второй закон Ньютона

Второй закон Ньютона - основной закон динамики. Этот закон выполняется только в инерциальных системах отсчета.

Приступая к формулировке второго закона, следует вспомнить, что в динамике вводятся две новые физические величины - масса тела m и сила а также способы их измерения. Первая из этих величин - масса - является количественной характеристикой инертных свойств тела. Она показывает, как тело реагирует на внешнее воздействие. Вторая - сила - является количественной мерой действия одного тела на другое.

Второй закон Ньютона - это фундаментальный закон природы; он является обобщением опытных фактов, которые можно разделить на две категории. Если на тела разной массы подействовать одинаковой силой, то ускорения, приобретаемые телами, оказываются обратно пропорциональны массам:

при F = const.

Если силами разной величины подействовать на одно и то же тело, то ускорения тела оказываются прямо пропорциональными приложенн силам:

при m = const.

Обобщая подобные наблюдения, Ньютон сформулировал основной закон динамики:

Сила, действующая на тело, равна произведению массы тела на сообщаемое этой силой ускорение:

Это и есть второй закон Ньютона. Он позволяет вычислить ускорение тела, если известна его масса m и действующая на тело сила :

В Международной системе единиц (СИ) за единицу силы принимается сила, которая сообщает телу массой 1 кгускорение 1 м/с2. Эта единица называется ньютоном (Н). Ее принимают в СИ за эталон силы (см. §1.7):

Если на тело одновременно действуют несколько сил (например, и то под силой в формуле, выражающей второй закон Ньютона, нужно понимать равнодействующую всех сил:

Рисунок 1.8.1

Если равнодействующая сила то тело будет оставаться в состоянии покоя или равномерного прямолинейного движения. Таким образом, формально второй закон Ньютона включает как частный случай первый закон Ньютона, однако первый закон Ньютона имеет более глубокое физическое содержание - он постулирует существование инерциальных систем отсчета.

Модель. Движение тел на легком блоке

Закон Сохранения Импульса

Импульсом называют векторную величину, равную произведению массы тела на ее скорость:

При взаимодействии тел замкнутой системы полный импульс системы остается неизменным:

Закон сохранения импульса есть следствие второго и третьего законов Ньютона. Пример использования закона сохранения импульса.

Рассмотрим неупругое столкновение, при котором выполняется закон сохранения импульса.

Пусть при абсолютно неупругом столкновении двух тел их скорость будет общей после удара.

Ее нужно определить. Напишем векторное уравнение, соответствующее закону сохранения импульса системы:

После проецирования векторов на выбранную ось получим скалярное уравнение, которое позволит определить искомую величину vобщ. Еще один пример - реактивное движение. Рассмотрим простейший случай этого движения, при котором происходит одномоментное взаимодействие - выстрел из винтовки.

До выстрела скорости винтовки и пули были равны нулю. После выстрела они имели различные скорости. Если известна скорость пули, ее масса и масса ружья, можно определить скорость, которую приобрело ружье после выстрела:

Отсюда после проецирования векторов на выбранную ось получим:

Механическая работа и мощность. Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы. Работой A, совершаемой постоянной силой называется физическая величина, равная произведению модулей силы и перемещения, умноженному на косинус угла б между векторами силы и перемещения (рис. 1.18.1):

A = Fs cos б.

Работа является скалярной величиной. Она может быть как положительной (0° ? б < 90°), так и отрицательной (90° < б ? 180°). При б = 90° работа, совершаемая силой, равна нулю. В системе СИ работа измеряется в джоулях (Дж).

Джоуль равен работе, совершаемой силой в 1 Н на перемещении 1 м в направлении действия силы.

Рисунок 1.18.1

Работа силы :

Если проекция силы на направление перемещения не остается постоянной, работу следует вычислять для малых перемещений Дsi и суммировать результаты:

Это сумма в пределе (Дsi > 0) переходит в интеграл.

Графически работа определяется по площади криволинейной фигуры под графиком Fs(x) (рис. 1.18.2).

Рисунок 1.18.2 Графическое определениеработы. ДAi = FsiДsi

Примером силы, модуль которой зависит от координаты, может служить сила упругости пружины, подчиняющаясязакону Гука. Для того, чтобы растянуть пружину, к ней нужно приложить внешнюю силу модуль которой пропорционален удлинению пружины Зависимость модуля внешней силы от координаты x изображается на графике прямой линией (рис. 1.18.4).

Рисунок 1.18.4 Зависимость модуля внешней силы от координаты при растяжении пружины

По площади треугольника на рис. 1.18.4 можно определить работу, совершенную внешней силой, приложенной к правому свободному концу пружины:

Этой же формулой выражается работа, совершенная внешней силой при сжатии пружины. В обоих случаях работа упругой силы равна по модулю работе внешней силы и противоположна ей по знаку.

Если к телу приложено несколько сил, то общая работа всех сил равна алгебраической сумме работ, совершаемых отдельными силами. При поступательном движении тела, когда точки приложения всех сил совершают одинаковое перемещение, общая работа всех сил равна работе равнодействующей приложенных сил.

Работа силы, совершаемая в единицу времени, называется мощностью. Мощность N это физическая величина, равная отношению работы A к промежутку времени t, в течение которого совершена эта работа:

В Международной системе (СИ) единица мощности называется ватт (Вт). Ватт равен мощности силы, совершающей работу в 1 Дж за время 1 с.

Кинетическая и потенциальная энергия

Мышцы, приводящие в движение звенья тела, совершают механическую работу.

Работа в некотором направлении - это произведение силы (F), действующей в направлении перемещения тела на пройденный им путь (S): А = F * S.

Выполнение работы требует энергии. Следовательно, при выполнении работы энергия в системе уменьшается. Поскольку для того чтобы была совершена работа, необходим запас энергии, последнюю можно определить следующим образом: Энергия - это возможность совершить работу, это некоторая мера имеющегося в механической системе « ресурса» для её выполнения. Кроме того, энергия - это мера перехода одного вида движения в другой.

В биомеханике рассматривают следующие основные виды энергии:

* потенциальная, зависящая от взаимного расположения элементов механической системы тела человека;

* кинетическая поступательного движения;

* кинетическая вращательного движения;

* потенциальная деформации элементов системы;

* тепловая;

* обменных процессов.

Полная энергия биомеханической системы равна сумме всех перечисленных видов энергии.

Поднимая тело, сжимая пружину, можно накопить энергию в форме потенциальной для последующего её использования. Потенциальная энергия всегда связана с той или иной силой, действующей со стороны одного тела на другое. Например, Земля силой тяжести действует на падающий предмет, сжатая пружина - на шарик, натянутая тетива - на стрелу.

Потенциальная энергия - это энергия, которой обладает тело благодаря своему положению по отношению к другим телам, или благодаря взаимному расположению частей одного тела.

Стало быть сила тяготения и упругая сила являются потенциальными.

Гравитационная потенциальная энергия: Еп = m * g * h

Потенциальная энергия упругих тел:

,

где k - жёсткость пружины; х - её деформация.

Из приведённых примеров видно, что энергию можно накопить в форме потенциальной энергии (поднять тело, сжать пружину) для последующего использования.

В биомеханике рассматривают и учитывают два вида потенциальной энергии: обусловленную взаимным расположением звеньев тела к поверхности Земли (гравитационная потенциальная энергия); связанную с упругой деформацией элементов биомеханической системы (кости, мышцы, связки) или каких-либо внешних объектов (спортивных снарядов, инвентаря).

Кинетическая энергия запасается в теле при движении. Движущееся тело совершает работу за счёт её убыли. Поскольку звенья тела и тело человека совершают поступательное и вращательное движения, суммарная кинетическая энергия (Ек) будет равна:

,

где m - масса, V - линейная скорость, J - момент инерции системы, щ - угловая скорость.

Энергия поступает в биомеханическую систему за счёт протекания в мышцах метаболических обменных процессов. Изменение энергии, в результате которого совершается работа, не является высокоэффективным процессом в биомеханической системе, то есть не вся энергия переходит в полезную работу. Часть энергии теряется необратимо, переходя в тепло: только 25 % используется для выполнения работы, остальные 75 % преобразуются и рассеиваются в организме.

Для биомеханической системы применяют закон сохранения энергии механического движения в форме:

Епол = Ек + Епот + U,

где Епол - полная механическая энергия системы; Ек - кинетическая энергия системы; Епот - потенциальная энергия системы; U - внутренняя энергия системы, представляющая в основном тепловую энергию.

Полная энергия механического движения биомеханической системы имеет в своей основе два следующих источника энергии: метаболические реакции в организме человека и механическая энергия внешней среды (деформирующихся элементов спортивных снарядов, инвентаря, опорных поверхностей; противников при контактных взаимодействиях). Передаётся эта энергия посредством внешних сил.

Особенностью энергопродукции в биомеханической системе является то, что одна часть энергии при движении расходуется на совершение необходимого двигательного действия, другая идёт на необратимое рассеивание запасённой энергии, третья сохраняется и используется при последующем движении. При расчёте затрачиваемой при движениях энергии и совершаемой при этом механической работы тело человека представляют в виде модели многозвеньевой биомеханической системы, аналогичной анатомическому строению. Движения отдельного звена и движения тела в целом рассматривают в виде двух более простых видов движения: поступательного и вращательного.

Полную механическую энергию некоторого i-го звена (Епол) можно подсчитать как сумму потенциальной (Епот) и кинетической энергии (Ек). В свою очередь Ек можно представить как сумму кинетической энергии центра масс звена (Ек.ц.м.), в которой сосредоточена вся масса звена, и кинетической энергии вращения звена относительно центра масс (Ек. Вр.).

Если известна кинематика движения звена, это общее выражение для полной энергии звена будет имевид:

импульс ньютон кинетический

,

где mi - масса i-го звена; g - ускорение свободного падения; hi - высота центра масс над некоторым нулевым уровнем (например, над поверхностью Земли в данном месте); - скорость поступательного движения центра масс; Ji - момент инерции i- го звена относительно мгновенной оси вращения, проходящей через центр масс; щ - мгновенная угловая скорость вращения относительно мгновенной оси.

Работа по изменению полной механической энергии звена (Аi) за время работы от момента t1 до момента t2 равна разности значений энергии в конечный (Еп(t2)) и начальный (Еп(t1)) моменты движения:

Естественно, в данном случае работа затрачивается на изменение потенциальной и кинетической энергии звена.

Если величина работы Аi > 0, то есть энергия увеличилась, то говорят, что над звеном совершена положительная работа. Если же Аi < 0, то есть энергия звена уменьшилась, - отрицательная работа.

Режим работы по изменению энергии данного звена называется преодолевающим, если мышцы совершают положительную работу над звеном; уступающим, если мышцы совершают отрицательную работу над звеном.

Положительная работа совершается, когда мышца сокращается против внешней нагрузки, идёт на разгон звеньев тела, тела в целом, спортивных снарядов и т. д. Отрицательная работа совершается, если мышцы противодействуют растяжению за счёт действия внешних сил. Это происходит при опускании груза, спуска по лестнице, противодействии силе, превышающей силу мышц (например в армрестлинге).

Замечены интересные факты соотношения положительной и отрицательной работ мышц: отрицательная работа мышц экономичней положительной; предварительное выполнение отрицательной работы повышает величину и экономичность следующей за ней положительной работы.

Чем больше скорость передвижения тела человека (во время легкоатлетического бега, бега на коньках, бега на лыжах и т. п.), тем большая часть работ затрачивается не на полезный результат - перемещение тела в пространстве, а на перемещение звеньев относительно ОЦМ. Поэтому при скоростных режимах основная работа тратится на разгон и торможение звеньев тела, так как с ростом скорости резко растут ускорения движения звеньев тела.

Размещено на Allbest.ru

...

Подобные документы

  • Законы сохранения в механике. Проверка закона сохранения механической энергии с помощью машины Атвуда. Применение закона сохранения энергии для определения коэффициента трения. Законы сохранения импульса и энергии.

    творческая работа [74,1 K], добавлен 25.07.2007

  • Анализ механической работы силы над точкой, телом или системой. Характеристика кинетической и потенциальной энергии. Изучение явлений превращения одного вида энергии в другой. Исследование закона сохранения и превращения энергии в механических процессах.

    презентация [136,8 K], добавлен 25.11.2015

  • Ускорение как непосредственный результат действия силы на тело. Теорема о кинетической энергии. Законы сохранения импульса и механической энергии. Особенности замкнутой и консервативной механических систем. Потенциальная энергия взаимодействующих тел.

    реферат [132,0 K], добавлен 22.04.2013

  • Исследование механизма упругих и неупругих столкновений, изучение законов сохранения импульса и энергии. Расчет кинетической энергии при абсолютно неупругом ударе и описание механизма её превращения во внутреннюю энергию, параметры сохранения импульса.

    лабораторная работа [129,6 K], добавлен 20.05.2013

  • Законы сохранения импульса и момента импульса. Геометрическая сумма внутренних сил механической системы. Законы Ньютона. Момент импульса материальной точки. Изотропность пространства. Момент импульса материальной точки относительно неподвижной оси.

    презентация [337,7 K], добавлен 28.07.2015

  • Понятие механической системы; сохраняющиеся величины. Закон сохранения импульса. Взаимосвязь энергии и работы; влияние консервативной и результирующей силы на кинетическую энергию частицы. Момент импульса материальной точки; закон сохранения энергии.

    курсовая работа [111,6 K], добавлен 06.12.2014

  • Кинетическая энергия, работа и мощность. Консервативные силы и системы. Понятие потенциальной энергии. Закон сохранения механической энергии. Условие равновесия механических систем. Применение законов сохранения. Движение тел с переменной массой.

    презентация [15,3 M], добавлен 13.02.2016

  • Гидроаэромеханика. Законы механики сплошной среды. Закон сохранения импульса. Закон сохранения момента импульса. Закон сохранения энергии. Гидростатика. Равновесие жидкостей и газов. Прогнозирование характеристик течения. Уравнение неразрывности.

    курсовая работа [56,6 K], добавлен 22.02.2004

  • Понятие работы и мощности, их измерение. Взаимосвязь между работой и энергией. Кинетическая и потенциальная энергии. Закон сохранения энергии и импульса. Столкновение двух тел. Формулы, связанные с работой и энергией при поступательном движении.

    реферат [75,6 K], добавлен 01.11.2013

  • Секрет летающей тарелки или противоречия в некоторых умах. Законы сохранения. Главные законы физики (механики): три Закона Ньютона и следствия из них - законы сохранения энергии, импульсов, моментов импульсов.

    статья [77,4 K], добавлен 07.05.2002

  • Физическое содержание закона сохранения энергии в механических и тепловых процессах. Необратимость процессов теплопередачи. Формулировка закона сохранения энергии для механических процессов. Передача тепла от тела с низкой температурой к телу с высокой.

    презентация [347,1 K], добавлен 27.05.2014

  • Пространство и время в нерелятивистской физике. Принципы относительности Галилея. Законы Ньютона и границы их применимости. Физический смысл гравитационной постоянной. Законы сохранения энергии и импульса. Свободные и вынужденные механические колебания.

    шпаргалка [7,1 M], добавлен 30.10.2010

  • Равномерное и равноускоренное прямолинейное движение. Законы динамики, проявление закона сохранения импульса в природе и использование его в технике. Закон всемирного тяготения. Превращение энергии при механических колебаниях. Закон Бойля–Мариотта.

    шпаргалка [243,2 K], добавлен 14.05.2011

  • Удар абсолютно упругих и неупругих тел. Закон сохранения импульса и сохранения момента импульса. Физический смысл соударения упругих и неупругих тел. Практическое применение физического явления соударения тел. Механический метод разрушения пород.

    контрольная работа [240,4 K], добавлен 16.09.2013

  • Определение работы равнодействующей силы. Исследование свойств кинетической энергии. Доказательство теоремы о кинетической энергии. Импульс тела. Изучение понятия силового физического поля. Консервативные силы. Закон сохранения механической энергии.

    презентация [1,6 M], добавлен 23.10.2013

  • Закон сохранения импульса, закон сохранения энергии. Основные понятия движения жидкостей и газов, закон Бернулли. Сила тяжести, сила трения, сила упругости. Законы Исаака Ньютона. Закон всемирного тяготения. Основные свойства равномерного движения.

    презентация [1,4 M], добавлен 22.01.2012

  • Закон сохранения импульса в классической механике и его связь с законом динамики Ньютона. Суть законов Кеплера, их связь с законом всемирного тяготения. Понятие о метрической системе. Развитие идей эволюции видов. Понятие солнечной активности, излучения.

    контрольная работа [123,7 K], добавлен 26.05.2008

  • Механическое движение. Ускорение при движении по окружности. Основы динамики. Силы упругости. Закон Гука, трение. Гравитационное взаимодействие. Условие равновесия тел. Закон сохранения импульса, энергии в механике. Архимедова сила для жидкостей и газов.

    реферат [160,9 K], добавлен 15.02.2016

  • Измерение полного импульса замкнутой системы. Строение и свойства лазерного наноманипулятора. Направление момента силы относительно оси. Закон изменения и сохранения момента импульса. Уравнение движения центра масс. Системы отсчета, связанные с Землей.

    презентация [264,6 K], добавлен 29.09.2013

  • Виды механической энергии. Кинетическая и потенциальная энергии, их превращение друг в друга. Сущность закона сохранения механической энергии. Переход механической энергии от одного тела к другому. Примеры действия законов сохранения, превращения энергии.

    презентация [712,0 K], добавлен 04.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.