Теория и ряд Котельникова. Теорема Котельникова

Теорема Котельникова – история ее открытия, доказательства и развития. Способы аппроксимации сигналов с ограниченным спектром, обобщающие теорему отсчётов. Авномерная дискретизация, спектр дискретного сигнала. Интерполяционный ряд Котельникова-Шеннона.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 16.04.2014
Размер файла 227,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Теория и ряд Котельникова. Теорема Котельникова

Содержание

1. Пояснение

2. История открытия

3. Развитие теоремы

4. Теория и ряд Котельникова и их применение

Литература

1. Пояснение

теорема котельников дискретный сигнал

Теоремма Котемльникова (в англоязычной литературе -- теорема Найквиста -- Шеннона или теорема отсчётов) гласит, что, если аналоговый сигнал имеет конечный (ограниченный по ширине) спектр, то он может быть восстановлен однозначно и без потерь по своим отсчётам, взятым с частотой, строго большей удвоенной верхней частоты :

Такая трактовка рассматривает идеальный случай, когда сигнал начался бесконечно давно и никогда не закончится, а также не имеет во временномй характеристике точек разрыва. Именно это подразумевает понятие «спектр, ограниченный частотой ».

Разумеется, реальные сигналы (например, звук на цифровом носителе) не обладают такими свойствами, так как они конечны по времени и обычно имеют разрывы во временномй характеристике. Соответственно, их спектр бесконечен. В таком случае полное восстановление сигнала невозможно и из теоремы Котельникова вытекают два следствия:

· Любой аналоговый сигнал может быть восстановлен с какой угодно точностью по своим дискретным отсчётам, взятым с частотой , где -- максимальная частота, которой ограничен спектр реального сигнала;

· Если максимальная частота в сигнале превышает половину частоты дискретизации, то способа восстановить сигнал из дискретного в аналоговый без искажений не существует.

Говоря шире, теорема Котельникова утверждает, что непрерывный сигнал можно представить в виде интерполяционного ряда

где -- функция sinc. Интервал дискретизации удовлетворяет ограничениям Мгновенные значения данного ряда есть дискретные отсчёты сигнала .

2. История открытия

Хотя в западной литературе теорема часто называется теоремой Найквиста со ссылкой на работу 1928 года «Certain topics in telegraph transmission theory», в этой работе речь идёт лишь о требуемой полосе линии связи для передачи импульсного сигнала (частота следования должна быть меньше удвоенной полосы). Таким образом, в контексте теоремы отсчётов справедливо говорить лишь о частоте Найквиста. Примерно в это же время Карл Купфмюллер получил тот же результат. О возможности полной реконструкции исходного сигнала по дискретным отсчётам в этих работах речь не идёт. Теорема была предложена и доказана В. А. Котельниковым в 1933 году в работе «О пропускной способности эфира и проволоки в электросвязи», в которой, в частности, была сформулирована одна из теорем следующим образом: «Любую функцию , состоящую из частот от 0 до , можно непрерывно передавать с любой точностью при помощи чисел, следующих друг за другом через секунд». Независимо от него эту теорему в 1949 (через 16 лет) году доказал Клод Шеннон, поэтому в западной литературе эту теорему часто называют теоремой Шеннона. В 1999 году Международный научный фонд Эдуарда Рейна (Германия) признал приоритет В. А. Котельникова, наградив его премией в номинации «за фундаментальные исследования» за впервые математически точно сформулированную и доказанную в аспекте коммуникационных технологий теорему отсчётов. Исторические разыскания показывают, однако, что теорема отсчётов как в части утверждения возможности реконструкции аналогового сигнала по дискретным отсчётам, так и в части способа реконструкции, рассматривалась в математическом плане многими учеными и ранее. В частности, первая часть была сформулирована ещё в 1897 году Борелем.

3. Развитие теоремы

Впоследствии было предложено большое число различных способов аппроксимации сигналов с ограниченным спектром, обобщающих теорему отсчётов. Так, вместо кардинального ряда по функциям sinc, являющимся характеристическими функциями прямоугольных импульсов, можно использовать ряды по конечно- или бесконечнократным свёрткам функций sinc. Например, справедливо следующее обобщение ряда Котельникова непрерывной функции с финитным спектром на основе преобразований Фурье атомарных функций:

где параметры удовлетворяют неравенству

,

а интервал дискретизации

4. Теория и ряд Котельникова и их применение

Авномерная дискретизация.

Спектр дискретного сигнала. Допустим, что для обработки задается произвольный аналоговый сигнал s(t), имеющий конечный и достаточно компактный фурье-образ S(f). Равномерная дискретизация непрерывного сигнала s(t) с частотой F (шаг t = 1/F) с математических позиций означает умножение функции s(t) на гребневую функцию Ш?t(t) =(t-kt) - непрерывную последовательность импульсов Кронекера:

sDt(t) = s(t)ШDt(t) = s(t)d(t-kDt) =s(kDt)d(t-kDt). (7.2.1)

С учетом известного преобразования Фурье гребневой функции

ШDt(t) Ы (1/T)d(f-nF) = F·ШF(f), (7.2.2)

фурье-образ дискретной функции SF(f):

SF(f) = S(f) *F(f). (7.2.3)

Отсюда, для спектра дискретного сигнала имеем:

SF(f) = FS(f) *d(f-nF) = FS(f-nF). (7.2.4)

Из выражения следует, что спектр дискретного сигнала представляет собой непрерывную периодическую функцию с периодом F, совпадающую (при определенных условиях конечности спектра непрерывного сигнала) с функцией FS(f) непрерывного сигнала s(t) в пределах центрального периода от - от -fN до fN, где fN = 1/2t = F/2. Частоту fN (или для круговой частоты) называют частотой Найквиста. Центральный период функции SF(f) называют главным частотным диапазоном.

Интуитивно понятно, что если спектр главного частотного диапазона с точностью до постоянного множителя совпадает со спектром непрерывного сигнала, то по этому спектру может быть восстановлена не только форма дискретного сигнала, но и форма исходного непрерывного сигнала. При этом шаг дискретизации и соответствующее ему значение частоты Найквиста должны иметь определяющее значение.

Как правило, шаг дискретизации сигнала (шаг числовых массивов) условно принимают равным t = 1, при этом главный частотный диапазон занимает интервал -0.5 f 0.5, или, в шкале угловых частотсоответственно.

Физическая сущность формирования спектров дискретных сигналов достаточно проста. Наиболее наглядно это можно увидеть, если воспользоваться программой Mathcad (см. рис. 7.2.1).

Рис. 7.2.1 Формирование спектра дискретного сигнала.

Сначала представим себе непрерывный сигнал постоянной единичной амплитуды c(t) = const = 1 на произвольном интервале 0-Т, например, при Т=100. Начнем дискретизировать сигнал с равномерным шагом t=1. Вычислим спектр первого дискретного отсчета c0 = 1. При N=1 сигнал является импульсом Кронекера, а, соответственно, модуль спектра отсчета с0=1 представляет собой непрерывное частотное распределение С = const в диапазоне от - до + (показан только участок от -6 до +6 с нормировкой на N для наглядности сравнения спектров). Все частоты сигнала имеют нулевую фазу и при сложении взаимно компенсируются во всех временных точках за исключением точки t=0, в которой амплитуды частот суммируются, создавая единичный отсчет с0.

Добавим к сигналу второй дискретный отсчет с1=1 (N=2). Если вычислить спектр только второго отсчета, то его модуль будет равен модулю первого отсчета (так как с10), но нулевые фазы гармоник этого спектра переместятся в точку t=1, т.е. относительно точки t=0 фазы гармоник второго отсчета изменятся на - t в соответствии с теоремой запаздывания преобразования Фурье. При сложении этих двух спектров первого и второго отсчета наблюдается интерференция частот и возникают пульсации частотного спектра с максимумами на частотах, кратных F=1/?t или в угловых единицах 2/t, где фазы спектров первого и второго отсчетов совпадают и равны нулю. Форма модуля результирующего спектра при N=2 приведена на рисунке.

При дальнейшем увеличении количества отсчетов периодичность совпадения нулевых фаз и положения максимумов сохраняется, а интерференция частот между максимумами усложняется, при этом ширина главных пиков по всему частотному диапазону спектра от минус до плюс бесконечности становится все уже. На рис. 7.2.1 приведены примеры спектров сигналов при N=10 и N=50. В пределе, при двусторонней временной шкале ±Т ± и N , гребневая функция из импульсов Кронекера во временной области ct Ш?t(t) =(t-kt) превращается в идеальную гребневую функцию (1/T)(f-nF) = F·ШF(f) в частотной области (формула 7.2.2). Этот спектр непрерывен и физически реален в диапазоне частот от - до +.

Физический смысл интерференции частот остается тем же самым, если мы на произвольном интервале Т зададим произвольный сигнал, например - синусоиду u(t) U(f), и выполним его дискретизацию, т.е. умножим сигнал на непрерывную последовательность импульсов Кронекера c(t)u(t) u(t)(t-kt) = u(t) Шt(t). А так как каждый дискретный отсчет в этом случае имеет свою определенную амплитуду и, соответственно, свой уровень амплитуд гармоник своего спектра, то сложение частот дает более сложную картину интерференции с расщеплением спектра общего сигнала всех дискретных отсчетов на две зеркальных составляющих относительно кратных частот 2/t.

Рис. 7.2.2 Формирование спектра дискретного сигнала.

Математически произведение двух функций во временной области отображается сверткой спектров этих функций в частотном представлении, т.е. сверткой спектра сигнала u(t) с частотной гребневой функцией спектра, порожденной временной гребневой функцией дискретизации u(t)Ш?t(t) U(f) *F(f), откуда и следует формула (7.2.4). Пример дискретизации одного периода синусоиды приведен на рис. 7.2.2.

Вернемся к значению и роли частоты Найквиста при дискретизации сигналов.

На рис. 7.2.3 и 7.2.4. приведены примеры равномерной дискретизации аналоговых сигналов s1(t) = exp(-a|t|) и s2(t) = exp(-bt2) (дискретные отсчеты нанесены кружками) и спектры этих дискретных сигналов.

Рис. 7.2.3 Дискретные сигналы. Рис. 7.2.4 Спектры дискретных сигналов.

Для того чтобы периодическое повторение спектра, вызванное дискретизацией аналогового сигнала, не изменяло спектр в главном частотном диапазоне (по отношению к спектру исходного аналогового сигнала), необходимо и достаточно, чтобы максимальные частотные составляющие fmax в спектре аналогового сигнала не превышали частоты Найквиста (fmax fN = F/2). Это означает, что частота дискретизации сигнала должна быть минимум в два раза выше максимальной частотной составляющей в спектре сигнала:

F = 1/t 2fmax (7.2.5)

что обеспечивает выход спектра на нулевые значения на концах главного диапазона, как это имеет место для спектра S2(?) на рис. 7.2.4.

Другими словами, на одном периоде колебаний с частотой fmax должно быть минимум две точки отсчета. Это и понятно - по одной точке отсчета на периоде гармонического сигнала определение неизвестных параметров данной гармоники (амплитуда, фаза) невозможно.

Если условие (7.2.5) нарушается, искажения частотного спектра исходного аналогового сигнала неизбежны. На рис. 7.2.4 наглядно видно, что частота дискретизации для сигнала s1(t) данному условию не удовлетворяет, спектры периодов перекрылись, и результирующий спектр дискретных отсчетов сигнала s1(t) отличается от фактического спектра сигнала (фактический спектр и его периодические повторения в области перекрытия спектра главного частотного диапазона со спектрами боковых диапазонов показаны пунктиром). Аналоговый сигнал из спектра S1(?) будет восстановлен с искажениями.

Характер возникающих искажений во временной области при нарушении условия (7.2.5) можно наглядно видеть на рис. 7.2.5. На рисунке показаны три возможных варианта соотношения частот гармонических сигналов с постоянной частотой их дискретизации.

1. График А - частота гармонического сигнала меньше частоты Найквиста. Дискретным отсчетам может соответствовать только исходная гармоника, амплитуда, частота и фаза которой могут быть однозначно определены по любым трем последовательным точкам (три уравнения, три неизвестных).

2. График В - частота гармонического сигнала равна частоте Найквиста. Это означает периодическое повторение каждой пары последовательных отсчетов, а, следовательно, для решения имеется только два уравнения с тремя неизвестными с возможностью определения только частоты, и то при условии, что начальная фаза сигнала не совпадает с начальной фазой частоты дискретизации (в этом случае все отсчеты нулевые). Амплитуда и фаза сигнала определяются однозначно только при условии совпадения отсчетов с экстремумами гармоники.

Рис. 7.2.5 Дискретизация гармоник с разной частотой.

3. График С - частота гармонического сигнала больше частоты Найквиста. Решение трех уравнений по трем последовательным точкам позволяет определить амплитуду гармоники, но дает искаженные значения частоты и фазы колебания (показано пунктиром). Это так называемый эффект появления ложных (кажущихся) частот (aliasing). Частоты гармонических колебаний выше частоты Найквиста как бы зеркально "отражаются" в главный частотный диапазон от его границ (на частоте Найквиста), что можно видеть на рис. 7.2.4 для действительного спектра сигнала S1, показанного точками. Этот эффект аналогичен всем известному эффекту обратного вращения колес автомобиля (и любых других быстро вращающихся объектов) на экранах кино и телевизоров, когда скорость их вращения начинает превышать частоту смены кадров.

Интерполяционный ряд Котельникова-Шеннона. Спектр дискретизированного сигнала (7.2.4) представляет собой сумму сдвинутых копий исходного аналогового сигнала с шагом сдвига, равным частоте дискретизации. Очевидно, что если спектры копий не перекрываются, то по центральной копии дискретного спектра можно восстановить исходный аналоговый сигнал с абсолютной точностью. Умножая функцию (7.2.3) на прямоугольную весовую функцию ПF(f), равную 1 в пределах главного частотного диапазона [-F/2,F/2] и нулю за его пределами, получаем непрерывный спектр в бесконечных по частоте границах, равный спектру FS(f) в пределах главного частотного диапазона:

FS(f) = F[S(f) * ШF(f)]ПF(f). (7.2.6)

Обратное преобразование Фурье такого спектра должно давать конечный и непрерывный сигнал. Произведем обратное преобразование обеих частей равенства (7.2.6):

F·[S(f) * ШF(f)]--Ы sDt(t), ПF(f)--Ы Fsinc(pFt).

Fs(t) = sDt(t) * Fsinc(pFt).

s(t) = sinc(pFt) *s(kDt)d(t-kDt),

Дискретизированный сигнал представляет собой сумму последовательных весовых импульсов Кронекера, сдвинутых на интервал t, со значениями веса, равными значениям отсчетов функции s(t) в моменты kt. При прохождении такого сигнала через систему с импульсным откликом h(t)= sinc(Ft)= sin(Ft)/Ft каждый весовой импульс Кронекера возбудит на выходе соответствующую последовательную серию сдвинутых и масштабированных копий оператора фильтра. Отсюда, с учетом очевидного равенства

d(t-kDt) * sinc(pFt) = sinc[pF(t-kDt)],

выходной сигнал будет представлять собой сумму сдвинутых весовых импульсных откликов системы, где значение веса определяется отсчетами дискретного сигнала:

s(t)=s(kDt) sinc[pF(t-kDt)] =s(kDt) sinc[p(t/Dt-k)]. (7.2.7)

Эта конечная формула носит название интерполяционного ряда Котельникова-Шеннона. Из нее следует, что если наибольшая частота в спектре произвольной непрерывной функции s(t) не превышает частоты ее дискретизации, то она без потери точности может быть представлена в виде числовой последовательности дискретных значений s(k?t), k = 0,1,2,... , и однозначно восстановлена по этой последовательности. В этом и состоит сущность теоремы отсчетов Котельникова. В зарубежной литературе она называется также теоремой Шеннона или теоремой дискретизации (sampling teorem).

Академик В.А.Котельников, 1908-2005. Крупнейший ученый в области радиотехники, радиофизики и информатики. Окончил Московский энергетический институт в 1931 году. С 1931 г. по 1941 г. преподает в МЭИ и ведет научную работу в ЦНИИ связи. В 1933 г. формулирует знаменитую теорему отсчетов, которая носит его имя. В период Великой Отечественной войны (1941-1945 гг.) работал над созданием специальной аппаратуры связи. С 1948 г. по 1953 г. директор и главный конструктор ОКБ МЭИ. В 1953 году избран академиком АН СССР. С 1954 года - директор Института радиотехники и электроники АН СССР. Занимался теорией помехоустойчивой радиосвязи и радиолокации, радиолокационным исследованием планет. Лауреат Ленинской премии, дважды лауреат Государственной премии СССР. Дважды удостоен звания Героя Социалистического труда, награжден шестью орденами Ленина, орденом "За заслуги перед Отечеством" I степени.

По существу, ряд (7.2.7) представляет собой частный случай разложения сигнала в соответствии с формулой (7.1.2) по системе ортогональных функций интегрального синуса образующих базис пространства сигналов s(t). Для проверки ортогональности достаточно вычислить скалярное произведение базисных функций:

v(t,nDt) v(t,mDt) dt = .

Разложение (7.2.7) проще и понятнее, чем разложение в ряды Фурье, что можно видеть на рис. 7.2.6. Вес каждой функции отсчетов sinc[?F(t-k?t)] формирует пиковое значение интегрального синуса в каждой текущей точке t= k?t, равное значению сигнала s(k?t), при этом во всех остальных точках дискретных отсчетов sinc[?F(t-(k±j)?t))], j= 1,2,… значения интегрального синуса равны нулю. Ряд числовых значений интегрального синуса для дискретных значений t= n?t при суммировании по k полностью эквивалентен гребневой функции:

sinc[pF(nDt-kDt)] ШDt(t).

Однако, в отличие от гребневой функции, в интервале между дискретными отсчетами интегральный синус имеет не нулевые, а определенные осциллирующие значения. Суперпозицией этих значений по текущим значениям t от всех интегральных синусов, осцилляции которых доходят до данного значения t, и образуются значения аналогового сигнала в интервалах между отсчетами.

Рис. 7.2.6 Восстановление непрерывного сигнала по дискретным отсчетам.

Рис. 7.2.7, 7.2.8 Изменение масштаба при восстановлении аналоговой функции.

В принципе, функции отсчетов имеют бесконечные осцилляции, и восстанавливают аналоговый сигнал, бесконечный по аргументу. Амплитуда осцилляций функций отсчетов затухает достаточно медленно (см. рис. 7.2.7). Однако на рис. 7.2.6 нетрудно заметить, что, в силу знакопеременности функций отсчетов по интервалам дискретизации, осцилляции восстанавливаемых кривых с финитным спектром затухают достаточно быстро, и для данных без существенных выбросов и больших перепадов значений определяются, в основном, отсчетами, ближайшими к интерполируемому интервалу. Это позволяет ограничивать интервал суммирования в формуле (2.5.7) определенными окрестностями текущих точек интерполяции.

Рис. 7.2.9. Интерполяция по Котельникову-Шеннону.

Ряд (7.2.7) позволяет простым введением масштабного множителя в аргумент интегрального синуса изменять представление сигнала на временной оси, растягивать или сжимать сигнал:

s(t) =s(kDt) Ч sinc[pF(mt-kDt)].

По аналогичной формуле может выполняться пересчет дискретных данных на другой интервал дискретизации:

s(n·Dtnew) = s(kDt) Ч sinc[pF(n·Dtnew-kDt)].

Примеры восстановления аналоговой формы произвольного финитного сигнала и изменения шага дискретизации данных приведены на рис. 7.2.9.

На рис. 7.2.10 приведено моделирование дискретизации аналогового сигнала, влияние наложение спектров боковых периодов на спектр главного диапазона дискретного сигнала и восстановление из этого спектра аналоговой формы сигнала.

Рис. 7.2.10 Моделирование дискретизации аналогового сигнала.

Графики А и Б рисунка - модельный аналоговый сигнал, точки его дискретизации и модуль спектра дискретного сигнала. Вычисление спектра выполнено быстрым преобразованием Фурье (БПФ) и отображает, соответственно, частотный диапазон 0-2fN. Дискретизация выполнена корректно, с выполнением условия (7.2.5), о чем можно судить и по спектру дискретного сигнала (график Б, выход на незначимые значения к частоте Найквиста fN).

Кривая S1 на графике В - спектр модельного дискретного сигнала при нарушении условия (7.2.5). В данном случае это произойдет при увеличении шага дискретизации в 2 раза, что вызовет уменьшение в 2 раза новой частоты Найквиста и перемещение границы главного диапазона на отметку 0.5fN на графике Б, при этом произойдет перекрытие спектров поддиапазонов. На графике приведены кривые S1a и S1b, которые являются раздельными спектрами правой половины главного диапазона без сложения со спектром правого бокового диапазона (интервал 0-2fN, где fN - частота Найквиста новой дискретизации), и левой половины правого бокового диапазона на том же интервале 0-2fN без сложения со спектром главного диапазона. Хорошо видны «хвосты» спектров, выходящие за границы интервала Найквиста от центров диапазонов и заходящие в соседние диапазоны. Сложением этих спектров в интервале 0-2fN нетрудно убедиться, что полученный результат будет полностью соответствовать спектру S1 новой дискретизации исходного сигнала. Обратим внимание, что сложение спектров рядом расположенных диапазонов может вызывать не только увеличение высокочастотных составляющих (как это можно было видеть на рис. 7.2.4 - спектр S1), ни и их взаимную компенсацию, как имеет место для спектра S1 в данном случае (кривая точками на графике В).

Перекрытие спектров диапазонов вызовет искажение аналоговой формы сигнала, восстановленного из его дискретных отсчетов, что можно видеть на графике Г - кривая s2. В данном случае, при частичной взаимной компенсации перекрывающихся частей спектров, наиболее сильное искажение произошло во второй, высокочастотной части сигнала.

Дискретизируемые сигналы, как правило, содержат широкополосные шумы, высокочастотные составляющие которых неизбежно перекрываются при периодизации спектра, и увеличивают погрешность восстановления сигналов. Для исключения этого фактора перед проведением дискретизации должно быть обеспечено подавление всех частот выше частоты Найквиста, т.е. выполнена низкочастотная фильтрация сигнала. Если последнее не проведено, то при дискретизации целесообразно в 2-4 раза уменьшить интервал дискретизации относительно оптимального и первой операцией обработки данных выполнить низкочастотную цифровую фильтрацию, после чего можно провести децимацию данных.

Увеличение интервала дискретизации сигналов является довольно распространенной операцией при цифровой обработке данных, и не только при подготовке данных для хранения с целью сокращения их количества. При комплексной обработке данных различной природы интервалы дискретизации этих данных могут оказаться различными, и производится их приведение к одному значению. Аналогичная операция выполняется, как правило, и при создании многослойных информационных пакетов. В таких случаях снижение частоты дискретизации каких-либо данных является вынужденной необходимостью даже с потерей части высокочастотных составляющих информации. Предварительное отфильтровывание отбрасываемых данных перед децимацией (для исключения их попадания в главный частотный диапазон и искажения основной информации) в этом случае является обязательным, особенно при достаточно высокой энергии этих составляющих сигнала. Пример такой децимации приведен на рис. 7.2.10 на графиках В и Г - спектр S2(f) децимированных данных и аналоговый сигнал s3(t), восстановленный по дискретным отсчетам sd(k?t) - S2(f). Децимация выполнена непосредственно в частотной области путем смыкания на частотной части 0-0.5fN спектра SM(f) исходного сигнала sm(m?m) с сопряженной частью на интервале 1.5fN- fN, что сокращает новый интервал Найквиста в 2 раза и формирует спектр S2(f), соответствующий дискретному сигналу с увеличенным в два раза интервалом дискретизации данных с полностью подавленной частью спектральных составляющих от 0.5fN до 1.5fN. Такой метод может применяться для децимации (передискретизации) данных с любой кратностью.

Дискретизация с усреднением. Если дискретизация сигнала производится импульсами конечной ширины, то таким импульсам соответствуют средние значения сигнала на интервале длительности импульсов. При длительности импульсов r имеем:

s(kDt) = (1/r)s(t) dt. (7.2.8)

С использованием селектирующей и гребневой функций эта операция отображается следующим образом:

sDt(t) = (1/r)[s(t) * Пr(t)]ШDt(t). (7.2.9)

Соответственно спектр дискретной функции:

SF(f) = [S(f)sinc(pfr)] * F(f). (7.2.10)

Отсюда следует, что при дискретизации с усреднением спектр S(f) заменяется спектром S(f)sinc(fr), периодическое продолжение которого и образует спектр дискретной функции. При обратном преобразовании Фурье и при использовании интерполяционной формулы Котельникова-Шеннона, вместо исходной функции s(t) получаем функцию s'(t) = s(t) * Пr(t)/r, что эквивалентно пропусканию сигнала через фильтр с откликом h(t) = Пr(t)/r, т.е. через низкочастотный сглаживающий фильтр "скользящего" среднего с окном r.

Для этих условий частотная передаточная функция фильтра записывается в следующем виде: H(f) = sinс(f/fmax). Если потеря составляющих сигнала на всех частотах не должна превышать 3%, отсюда следует, что значение должно быть равно 0.27, т.е. ширина импульса дискретизации может составлять до 27 % интервала дискретизации.

Отметим, что в выражении (7.2.8) значения отсчетов относится к центру интервалов r импульсов дискретизации. Если отсчет будет относиться к концу интервалов r, что имеет место при обработке информации в режиме реального времени, то в выходной функции (7.2.9) появится сдвиг на интервал r/2, а в ее спектре соответственно сдвиг фаз на r/2 (в правой части выражения (7.2.10) добавится множитель exp(-jfr)).

Литература

1. Гольденберг Л.М. и др. Цифровая обработка сигналов: Справочник. - М.: Радио и связь, 1985.

2. Гольденберг Л.М. и др. Цифровая обработка сигналов: Учебное пособие для вузов.- М.: Радио и связь, 1990.- 256 с.

3. Дмитриев В.И. Прикладная теория информации: Учебник для вузов. - М.: Высшая школа, 1989.

4. Макс Ж. Методы и техника обработки сигналов при физических измерениях. - М.: Мир, 1983.

5. www.wikipedia.ru

Размещено на Allbest.ru

...

Подобные документы

  • Временные диаграммы периодических сигналов прямоугольной формы. Зависимость ширины спектра периодической последовательности прямоугольных импульсов от их длительности. Теорема Котельникова, использование для получения ИКМ-сигнала. Электрические фильтры.

    контрольная работа [1,3 M], добавлен 23.08.2013

  • Формулировка и доказательство теоремы Котельникова. Свойства функций отсчетов. Аспекты использования теоремы Котельникова, недостатки ее применения по отношению к реальным сигналам. Определение практической ширины спектра сигнала и энергии погрешности.

    лекция [79,6 K], добавлен 19.08.2013

  • Нахождение дискретных преобразований Фурье заданного дискретного сигнала. Односторонний и двусторонний спектры сигнала. Расчет отсчетов дискретного сигнала по полученному спектру. Восстановление аналогового сигнала по спектру дискретного сигнала.

    курсовая работа [986,2 K], добавлен 03.12.2009

  • Исходная математическая форма ряда Фурье. Спектр простого гармонического сигнала, периодического аналогового сигнала, бинарного периодического сигнала. Графическое представление объема сигнала. Амплитудная модуляция. Амплитудно-импульсная модуляция.

    реферат [389,5 K], добавлен 07.08.2008

  • Действие параметров периодического сигнала на амплитудно-частотный и фазочастотный спектры периодического сигнала. Спектр периодической последовательности прямоугольных видеоимпульсов. Влияние изменения времени задержки на спектр периодического сигнала.

    лабораторная работа [627,1 K], добавлен 11.12.2022

  • Интегральная теорема Кирхгофа–Гельмгольца. Угловой спектр плоских волн. Сущность квазиоптического приближения. Интеграл Кирхгофа, метод стационарной фазы. Решение дифракционной задачи с помощью интеграла Кирхгофа и соответствующей функции Грина.

    контрольная работа [56,2 K], добавлен 20.08.2015

  • Векторы угловой скорости и углового ускорения вращающегося тела. Производные от единичных векторов подвижных осей (формулы Пуассона). Теорема о сложении скоростей (правило параллелограмма скоростей). Теорема о сложении ускорений (теорема Кориолиса).

    курсовая работа [623,5 K], добавлен 27.10.2014

  • Расчет и график напряжения на выходе цепи. Спектральная плотность сигнала на входе и выходе. Дискретизация входного сигнала и импульсная характеристика цепи. Спектральная плотность входного сигнала. Расчет дискретного сигнала на выходе корректора.

    курсовая работа [671,8 K], добавлен 21.11.2011

  • Теорема Гаусса для электростатического поля в вакууме. Циркуляция вектора напряженности электростатического поля. Условия на границе раздела двух диэлектрических сред. Вывод основных законов электрического тока в классической теории проводимости металлов.

    шпаргалка [619,6 K], добавлен 04.05.2015

  • Формула для сигнала при гармонической модуляции. Амплитуда и частота несущего колебания. Компьютерное моделирование ЧМ-сигналов с помощью программного пакета Electronics Workbench. Спектр частотно-модулированного сигнала. Частота модулирующего колебания.

    лабораторная работа [565,1 K], добавлен 04.06.2015

  • Ударные силы и импульсы. Главный вектор и главный момент ударных импульсов. Теорема импульсивного движения, теорема об изменении количества движения и кинематической энергии. Удар по свободному твердому телу и удар по телу с одной неподвижной точкой.

    презентация [666,9 K], добавлен 30.07.2013

  • Способы преобразования звука. Применение преобразования Фурье в цифровой обработке звука. Свойства дискретного преобразования Фурье. Медианная фильтрация одномерных сигналов. Применение вейвлет-анализа для определения границ речи в зашумленном сигнале.

    курсовая работа [496,8 K], добавлен 18.05.2014

  • Внешние и внутренние силы механической системы. Дифференциальные уравнения движения системы материальных точек: теорема об изменении количества движения системы; теорема о движении центра масс. Момент инерции, его зависимость от положения оси вращения.

    презентация [1,7 M], добавлен 26.09.2013

  • Характеристика спектрального метода анализа сигналов, при помощи которого можно оценить спектральный состав сигнала, а также количественно выяснить его энергетические показатели. Корреляционный анализ сигнала для оценки прохождения сигнала через эфир.

    курсовая работа [169,7 K], добавлен 17.07.2010

  • Найпростіша модель кристалічного тіла. Теорема Блоха. Рух електрона в кристалі. Енергетичний спектр енергії для вільних електронів у періодичному полі. Механізм електропровідності власного напівпровідника. Електронна структура й властивості твердих тіл.

    курсовая работа [184,8 K], добавлен 05.09.2011

  • Эвристические соображения, приводящие к градиентным методам. Теорема о линейной сходимости градиентного метода с постоянным шагом. Эвристические соображения, приводящие к методу Ньютона безусловной оптимизации. Теорема о квадратичной сходимости метода.

    курсовая работа [209,1 K], добавлен 03.06.2014

  • Свойства силовых линий. Поток вектора напряженности электрического поля. Доказательство теоремы Гаусса. Приложение теоремы Гаусса к расчету напряженности электрических полей. Силовые линии на входе и на выходе из поверхности. Обобщенный закон Кулона.

    реферат [61,6 K], добавлен 08.04.2011

  • Примеры расчета магнитных полей на оси кругового тока. Поток вектора магнитной индукции. Теорема Гаусса-Остроградского для вектора: основное содержание, принципы. Теорема о циркуляции вектора. Примеры расчета магнитных полей: соленоида и тороида.

    презентация [522,0 K], добавлен 24.09.2013

  • История открытия радиоактивности, модель атома Томсона. Опыты Резерфорда по рассеянию альфа-частиц. Правило квантования Бора-Зоммерфельда. Боровская теория водородоподобного атома, схема его энергетических уровней. Оптические спектры испускания атомов.

    презентация [3,7 M], добавлен 23.08.2013

  • Основные понятия теории электрических цепей: переходные процессы; интеграл Дюамеля; передаточные характеристики; дискретизация. Первый и второй законы коммутации. Классический метод расчета переходных процессов. Сопоставление дискретизированных сигналов.

    курсовая работа [997,1 K], добавлен 22.08.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.