Традиционные источники электрической энергии

Тепловые конденсационные электростанции, их коэффициент полезного действия. Типы гидроэлетростанций по схеме использования водных ресурсов и концентрации напоров. Тепловые конденсационные электрические станции, принцип работы и виды топлива для них.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 02.05.2014
Размер файла 33,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Цель работы - прежде всего ознакомиться с современным положением дел в этой необычайно широкой проблематике. К традиционным источникам в первую очередь относятся: тепловая, атомная и энергия потока воды.

Задание: подготовить научный доклад по специальности .

Введение

Научно-технический прогресс невозможен без развития энергетики. Человечеству электроэнергия нужна, причем потребности в ней увеличиваются с каждым годом.

Потребление энергии - важный показатель жизнен-ного уровня. За время существования нашей цивилизации много раз происходила смена традиционных источников энергии на новые, более совершенные.

Современная наука и техника основываются на фундаментальных законах сохранения материи и энергии. Понимание этих законов необходимо для решения актуальных задач повышения эффективности преобразования и потребления энергии, разработки новых способов получения электроэнергии и т. д.

В работе рассмотрены традиционные источники электрической энергии.

Что такое энергия?

Энемргия (др.-греч. ?нЭсгейб -- «действие, деятельность, сила, мощь») -- скалярная физическая величина, являющаяся единой мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие. Введение понятия энергии удобно тем, что в случае, если физическая система является замкнутой, то её энергия сохраняется в этой системе на протяжении времени, в течение которого система будет являться замкнутой. Это утверждение носит название закона сохранения энергии. Понятие введено Аристотелем в трактате «Физика».

С фундаментальной точки зрения энергия представляет собой интеграл движения (то есть сохраняющуюся при движении величину), связанный, согласно теореме Нётер, с однородностью времени. Таким образом, введение понятия энергии как физической величины целесообразно только в том случае, если рассматриваемая физическая система однородна во времени.

Термин «энергия» происходит от слова energeia, которое впервые появилось в работах Аристотеля

Томас Юнг первым использовал понятие «энергия» в современном смысле слова

В 1807 году Томас Юнг первым использовал термин «энергия» в современном смысле этого слова взамен понятия живая сила.[1] Гаспар-Гюстав Кориолис впервые использовал термин «кинетическая энергия» в 1829 году, а в 1853 году Уильям Ренкин впервые ввёл понятие «потенциальная энергия».

Несколько лет велись споры, является ли энергия субстанцией или только физической величиной.

Значение законов сохранения материи и энергии при рассмотрении способов получения электрической энергии

Закон сохранения материи. Трудно назвать эпоху, в которую этот закон был открыт. Первые представления о сохранении материи складывались задолго до нашей эры в древней индийской философии, откуда они, видимо, проникли в Древнюю Грецию. Еще за 450 лет до н. э. древнегреческий философ Эмпедокл утверждал, что ничто не возникает из ничего и ничто не может быть уничтожено. Идея о сохраняемости вещества была развита в Древней Греции в связи с учением об атомном строении материи.

Экспериментальное подтверждение закона сохранения массы получало тем большую доказательную силу, чем выше достигалась точность определения масс.

Закон сохранения энергии. Закон сохранения энергии открыт в середине ХIX в. о знании законов сохранения материи и энергии физик Планк во введении к своей книге «Принцип сохранения энергии» писал что имеются два закона, которые служат фундаментом для современного зданияточных естественных наук: принцип сохранения материи и принцип сохранения энергии.

Основные спосыбы получения энергии

1. Тепловые электростанции.

Тепловая электростанция (ТЭС), электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Первые ТЭC появились в кон. 19 в и получили преимущественное распространение. В сер. 70-х гг. 20 в. ТЭС -- основной вид электрической станций. Доля вырабатываемой ими электроэнергии составляла: в России и США св. 80% (1975), в мире около 76% (1973).

Около 75% всей электроэнергии России производится на тепловых электростанциях. Большинство городов России снабжаются именно ТЭС. Часто в городах используются ТЭЦ - теплоэлектроцентрали, производящие не только электроэнергию, но и тепло в виде горячей воды. Такая система является довольно-таки непрактичной т.к. в отличие от электрокабеля надежность теплотрасс чрезвычайно низка на больших расстояниях, эффективность централизованного теплоснабжения сильно снижается, вследствие уменьшения температуры теплоносителя. Подсчитано, что при протяженности теплотрасс более 20 км (типичная ситуация для большинства городов) установка электрического бойлера в одельно стоящем доме становится экономически выгодна.

На тепловых электростанциях преобразуется химическая энергия топлива сначала в механическую, а затем в электрическую.

Топливом для такой электростанции могут служить уголь, торф, газ, горючие сланцы, мазут. Тепловые электрические станции подразделяют наконденсационные (КЭС), предназначенные для выработки только электрической энергии, и теплоэлектроцентрали (ТЭЦ), производящие кроме электрической тепловую энергию в виде горячей воды и пара. Крупные КЭС районного значения получили название государственных районных электростанций (ГРЭС).

Тепловые конденсационные электростанции имеют невысокий кпд (30-- 40%),так как большая часть энергии теряется с отходящими топочными газами и охлаждающей водой конденсатора.

Сооружать КЭС выгодно в непосредственной близости от мест добычи

топлива. При этом потребители электроэнергии могут находиться на значительном расстоянии от станции.

Теплоэлектроцентраль отличается от конденсационной станции установленной на ней специальной теплофикационной турбиной с отбором пара. На ТЭЦ одна часть пара полностью используется в турбине для выработки электроэнергии в генераторе 5 и затем поступает в конденсатор 6, а другая, имеющая большую температуру и давление (на рис. штриховая линия), отбирается от промежуточной ступени турбины и используется для теплоснабжения. Конденсат насосом 7 через деаэратор 8 и далее питательным насосом 9 подается в парогенератор. Количество отбираемого пара зависит от потребности предприятий в тепловой энергии.

Коэффициент полезного действия ТЭЦ достигает 60--70%.

Такие станции строят обычно вблизи потребителей -- промышленных предприятий или жилых массивов. Чаще всего они работают на привозном топливе.

Рассмотренные тепловые электростанции по виду основного теплового

агрегата -- паровой турбины -- относятся к паротурбинным станциям. Значительно меньшее распространение получили тепловые станции с газотурбинными (ГТУ), парогазовыми (ПГУ) и дизельными установками. Наиболее экономичными являются крупные тепловые паротурбинные электростанции (сокращенно ТЭС). Большинство ТЭС нашей страны используют в качестве топлива угольную пыль. Для выработки 1 кВт-ч электроэнергии затрачивается несколько сот граммов угля. В паровом котле свыше 90% выделяемой топливом энергии передается пару. В турбине кинетическая энергия струй пара передается ротору. Вал турбины жестко соединен с валом генератора.

Современные паровые турбины для ТЭС -- весьма совершенные,

быстроходные, высокоэкономичные машины с большим ресурсом работы. Их мощность в одновальном исполнении достигает 1 млн. 200 тыс. кВт, и это не является пределом. Такие машины всегда бывают многоступенчатыми, т. е. имеют обычно несколько десятков дисков с рабочими лопатками и такое же количество, перед каждым диском, групп сопел, через которые протекает струя пара. Давление и температура пара постепенно снижаются.

2. Гидроэлектростанции.

Гидроэлектрическая станция, гидроэлектростанция (ГЭС), комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гидротехнических сооружений, обеспечивающих необходимую концентрацию потока воды и создание напора, и энергетического. оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения которая, в свою очередь, преобразуется в электрическую энергию.

По схеме использования водных ресурсов и концентрации напоров ГЭС обычно подразделяют на русловые, приплотинные, деривационные с напорной и безнапорной деривацией, смешанные, гидроаккумулирующие и приливные. В русловых и приплотинных ГЭС напор воды создаётся плотиной, перегораживающей реку и поднимающей уровень воды в верхнем бьефе. При этом неизбежно некоторое затопление долины реки. В случае сооружения двух плотин на том же участке реки площадь затопления уменьшается. На равнинных реках наибольшая экономически допустимая площадь затопления ограничивает высоту плотины. Русловые и приплотинные ГЭС строят и на равнинных многоводных реках и на горных реках, в узких сжатых долинах.

В состав сооружений русловой ГЭС, кроме плотины, входят здание ГЭС и водосбросные сооружения (рис. 4). Состав гидротехнических сооружений зависит от высоты напора и установленной мощности. У русловой ГЭС здание с размещенными в нём гидроагрегатами служит продолжением плотины и вместе с ней создаёт напорный фронт. При этом с одной стороны к зданию ГЭС примыкает верхний бьеф, а с другой -- нижний бьеф. Подводящие спиральные камеры гидротурбин своими входными сечениями закладываются под уровнем верхнего бьефа, выходные же сечения отсасывающих труб погружены под уровнем нижнего бьефа. В соответствии с назначением гидроузла в его состав могут входить судоходные шлюзы или судоподъёмник, рыбопропускные сооружения, водозаборные сооружения для ирригации и водоснабжения. В русловых ГЭС иногда единственным сооружением, пропускающим воду, является здание ГЭС. В этих случаях полезно используемая вода последовательно проходит входное сечение с мусорозадерживающими решётками, спиральную камеру, гидротурбину, отсасывающую трубу, а по специальным водоводам между соседними турбинными камерами производится сброс паводковых расходов реки. Для русловых ГЭС характерны напоры до 30--40 м, к простейшим русловым ГЭС относятся также ранее строившиеся сельские ГЭС небольшой мощности. На крупных равнинных реках основное русло перекрывается земляной плотиной, к которой примыкает бетонная водосливная плотина и сооружается здание ГЭС. Такая компоновка типична для многих отечественных ГЭС на больших равнинных реках. Волжская ГЭС им. 22-го съезда КПСС-- наиболее крупная среди станций руслового типа.

При более высоких напорах оказывается нецелесообразным передавать на здание ГЭС гидростатичное давление воды. В этом случае применяется тип плотиной ГЭС, у которой напорный фронт на всём протяжении перекрывается плотиной, а здание ГЭС располагается за плотиной, примыкает к нижнему бьефу. В состав гидравлической трассы между верхним и нижним бьефом ГЭС такого типа входят глубинный водоприёмник с мусорозадерживающей решёткой, турбинный водовод, спиральная камера, гидротурбина, отсасывающая труба. В качестве дополнит, сооружений в состав узла могут входить судоходные сооружения и рыбоходы, а также дополнительные водосбросы Примером подобного типа станций на многоводной реке служит Братская ГЭС на реке Ангара.

Несмотря на снижение доли ГЭС в общей выработке, абсолютные значения производства электроэнергии и мощности ГЭС непрерывно растут вследствие строительства новых крупных электростанций. В 1969 в мире насчитывалось свыше 50 действующих и строящихся ГЭС единичной мощностью 1000 Мвт и выше, причём 16 из них -- на территории бывшего Советского Союза.

Важнейшая особенность гидроэнергетических ресурсов по сравнению с

топливно-энергетическими ресурсами -- их непрерывная возобновляемость. Отсутствие потребности в топливе для ГЭС определяет низкую себестоимость вырабатываемой на ГЭС электроэнергии. Поэтому сооружению ГЭС, несмотря на значительные, удельные капиталовложения на 1 квт установленной мощности и продолжительные сроки строительства, придавалось и придаётся большое значение, особенно когда это связано с размещением электроёмких производств.

3. Атомные электростанции.

Атомная электростанция (АЭС) - электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую. Генератором энергии на АЭС является атомный реактор. Тепло, которое выделяется в реакторе в результате цепной реакции деления ядер некоторых тяжёлых элементов, затем так же, как и на обычных тепловых электростанциях (ТЭС), преобразуется в электроэнергию. В отличие от ТЭС, работающих на органическом топливе, АЭС работает на ядерном горючем (в основе 233U, 235U, 239Pu). Установлено, что мировые энергетические ресурсы ядерного горючего (уран, плутоний и др.) существенно превышают энергоресурсы природных запасов органического топлива (нефть, уголь, природный газ и др.). Это открывает широкие перспективы для удовлетворения быстро растущих потребностей в топливе. Кроме того, необходимо учитывать всё увеличивающийся объём потребления угля и нефти для технологических целей мировой химической промышленности, которая становится серьёзным конкурентом тепловых электростанций. Несмотря на открытие новых месторождений органического топлива и совершенствование способов его добычи, в мире наблюдается тенденция к относительному, увеличению его стоимости. Это создаёт наиболее тяжёлые условия для стран, имеющих ограниченные запасы топлива органического происхождения. Очевидна необходимость быстрейшего развития атомной энергетики, которая уже занимает заметное место в энергетическом балансе ряда промышленных стран мира.

Первая в мире АЭС опытно-промышленного назначения (рис. 1) мощностью 5 Мвт была пущена в СССР 27 июня 1954 г. в г. Обнинске. До этого энергия атомного ядра использовалась в военных целях. Пуск первой АЭС ознаменовал открытие нового направления в энергетике, получившего признание на 1-й Международной научно-технической конференции по мирному использованию атомной энергии (август 1955, Женева).

Тепло, выделяется в активной зоне реактора, теплоносителем, вбирается водой (теплоносителем 1-го контура), которая прокачивается через реактор циркуляционным насосом. Нагретая вода из реактора поступав в теплообменник (парогенератор) , где передаёт тепло, полученное в реакторе воде 2-го контура. Вода 2-го контура испаряется в парогенераторе, и образованный пар поступает в турбину .

Наиболее часто на АЭС применяют 4 типа реакторов на тепловых нейтронах 1) водо-водяные с обычной водой в качестве замедлителя и теплоносителя; 2) графито-водные с водяным теплоносителем и графитовым замедлителем; 3) тяжеловодные с водяным теплоносителем и тяжёлой водой в качестве замедлителя 4) графито-газовые с газовым теплоносителем и графитовым замедлителем.

В России строят главным образом графито-водные и водо-водяные реакторы. На АЭС США наибольшее распространение получили водо-водяные реакторы. Графито-газовые реакторы применяются в Англии. В атомной энергетике Канады преобладают АЭС с тяжеловодными реакторами.

В зависимости от вида и агрегатного состояния теплоносителя создается тот или иной термодинамический цикл АЭС. Выбор верхней температурной границы термодинамического цикла определяется максимально допустимой температурой оболочек тепловыделяющих элементов (ТВЭЛ), содержащих ядерное горючее, допустимой темп-рой собственно ядерного горючего, а также свойствами теплоносителя, принятого для данного типа реактора. На АЭС тепловой реактор, которой охлаждается водой, обычно пользуются низкотемпературными паровыми циклами. Реакторы с газовым теплоносителем позволяют применять относительно более экономичные циклы водяного пара сповышенными начальными давлением и температурой. Тепловая схема АЭС в этих двух случаях выполняется 2-контурной: в 1-м контуре циркулирует теплоноситель, 2-й контур -- пароводяной. При реакторах с кипящим водяным или высокотемпературным газовым теплоносителем возможна одноконтурная тепловая АЭС. В кипящих реакторах вода кипит в активной зоне, полученная пароводяная смесь сепарируется, и насыщенный пар направляется или непосредственно в турбину, или предварительно возвращается в активную зону для перегрева.

В высокотемпературных графито-газовых реакторах возможно применение обычного газотурбинного цикла. Реактор в этом случае выполняет роль камеры сгорания.

Тепловые конденсационные электрические станции

Тепловая электростанция (ТЭС), электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Первые ТЭС появились в кон. 19 в и получили преимущественное распространение. В сер. 70-х гг. 20 в. ТЭС -- основной вид электрической станций. Доля вырабатываемой ими электроэнергии составляла: в России и США св. 80% (1975), в мире около 76% (1973).

ТЭС строятся быстро и дешево, но потребляют большое количество топлива, следовательно, затраты на добычу и перевозку топлива огромные. Они работают в постоянном режиме, но требуют длительной остановки при ремонтах. Угольные ТЭС выбрасывают много твердых отходов и вредных газов в атмосферу.

На тепловых электростанциях преобразуется химическая энергия топлива сначала в механическую, а затем в электрическую.

Топливом для такой электростанции могут служить уголь, торф, газ, горючие сланцы, мазут. Тепловые электрические станции подразделяют на конденсационные (КЭС), предназначенные для выработки только электрической энергии, и теплоэлектроцентрали (ТЭЦ), производящие кроме электрической тепловую энергию в виде горячей воды и пара. Крупные КЭС районного значения получили название государственных районных электростанций (ГРЭС).

Наиболее экономичными являются крупные тепловые паротурбинные электростанции (сокращенно ТЭС). Большинство ТЭС нашей страны используют в качестве топлива угольную пыль. Для выработки 1 кВт-ч электроэнергии затрачивается несколько сот граммов угля. В паровом котле свыше 90% выделяемой топливом энергии передается пару. В турбине кинетическая энергия струй пара передается ротору. Вал турбины жестко соединен с валом генератора.

По мнению ученых в основе энергетики ближайшего будущего по-прежнему останется теплоэнергетика на не возобновляемых ресурсах. Но структура ее изменится. Должно сократиться использование нефти. Существенно возрастет производство электроэнергии на атомных электростанциях. Начнется использование пока еще не тронутых гигантских запасов дешевых углей, например, в Кузнецком, Канско-Ачинском, Экибаcтузском бассейнах. Широко будет применяться природный газ, запасы которого в стране намного превосходят запасы в других странах.

Заключение

электрическая станция тепловая

Учитывая результаты существующих прогнозов по истощению к середине - концу следующего столе-тия запасов нефти, природного газа и других традиционных энергоресурсов. Можно считать, что на данном этапе развития науки и техники тепловые, атомные и гидроэлектрические источники будут еще долгое время преобладать над остальными источниками электроэнергии.

Немудрено, что нефть и газ будут с каждым годом стоить нам все дороже. Замена? Нужен новый лидер энергетики. Им, несомненно, станут ядерные источники. Запасы урана, если, скажем, 1сравнивать их с запасами угля, вроде бы не столь уж и велики. Но зато на единицу веса он содержит в себе энергии в миллионы раз больше, чем уголь. А итог таков: при получении электроэнергии на АЭС нужно затратить, считается, в сто тысяч раз меньше средств и труда, чем при извлечении энергии из угля. И ядерное горючее приходит на смену нефти и углю... Всегда было так: следующий источник энергии был и более мощным. То была, если можно так выразиться, "воинствующая" линия энергетики. В погоне за избытком энергии человек все глубже погружался в стихийный мир природных явлений и до какой-то поры не очень задумывался о последствиях своих дел и поступков.

Но времена изменились. Сейчас, в начале XXI века, начинается новый, значительный этап земной энергетики. Появилась энергетика "щадящая". Построенная так, чтобы человек не рубил сук, на котором он сидит. Заботился об охране уже сильно поврежденной биосферы. Несомненно, в будущем параллельно с линией интенсивного развития энергетики получат широкие права гражданства и линия экстенсивная: рассредоточенные источники энергии не слишком большой мощности, но зато с высоким КПД, экологически чистые, удобные в обращении. Яркий пример тому - быстрый старт электрохимической энергетики, которую позднее, видимо, дополнит энергетика солнечная. Энергетика очень быстро аккумулирует, ассимилирует, вбирает в себя все самые новейшие идей, изобретения, достижения науки. Это и понятно: энергетика связана буквально со всем, и все тянется к энергетике, зависит от нее. Поэтому энергохимия, водородная энергетика, космические электростанции, энергия, запечатанная в антивеществе, "черных дырах", вакууме, - это всего лишь наиболее яркие вехи, штрихи, отдельные черточки того сценария, который пишется на наших глазах и который можно назвать Завтрашним Днем Энергетики.

Список использованной литературы

1. Букейханова Р.К., Смирнова Ю.Г., Жанабаева Е.Б. Русский язык-Методические указание и комплекс упражнении (для всех специальносей).-Алматы,АЭУС,2009.-66 с.

2. Веников В. А., Путятин Е. В. Введение в специальность: Электроэнергетик: Учеб. Для вузов/Под ред. В.А. Веникова. - 2-е изд.,

3. Зельдович Б.З. Деловое общение: Учебное пособие. - М.: Издательство «Альфа-Пресс», 2007.-456 с.

4. Нурмаханова М.К., Ажибаева М.А., Русский язык-2. Методические указание и варианты к выполнению семестровых работ № 1, 2, 3, для студентов бакалавриата всех специальности и форм обучения АУЭС. Алматы, 2008

Перераб. И доп. - М.: Высш. Шк., 1988. - 239 с.: ил.

5. Салагаев В. Культура делового общения. Деловая риторика. Деловые документы: Учебное пособие. - Алматы:?аржы-?аражат; Республиканский издательский кабинет Казахской академии образования им. И. Алтынсарина, 2003.- 232с.

Размещено на Allbest.ru

...

Подобные документы

  • Электрическая станция. Тепловые установки. Тепловые конденсационные электростанции. Теплоэлектроцентраль и ее особенности. Преимущества тепловых станций по сравнению с другими типами станций. Особенности принципов работы, преимущества и недостатки.

    реферат [250,8 K], добавлен 23.12.2008

  • Паровая турбина как один из элементов паротурбинной установки. Паротурбинные (конденсационные) электростанции для выработки электрической энергии, их оснащение турбинами конденсационного типа. Основные виды современных паровых конденсационных турбин.

    реферат [1,3 M], добавлен 27.05.2010

  • Проблемы развития и существования энергетики. Типы альтернативных источников энергии и их развитие. Источники и способы использования геотермальной энергии. Принцип работы геотермальной электростанции. Общая принципиальная схема ГеоЭС и ее компоненты.

    курсовая работа [419,7 K], добавлен 06.05.2016

  • Состав паротурбинной установки. Электрическая мощность паровых турбин. Конденсационные, теплофикационные и турбины специального назначения. Действие теплового двигателя. Использование внутренней энергии. Преимущества и недостатки различных видов турбин.

    презентация [247,7 K], добавлен 23.03.2016

  • Капиталовложения в строительство ТЭЦ. Полезный отпуск теплоты с коллекторов станции. Годовая выработка электрической энергии. Коэффициент полезного действия станции на отпуск электроэнергии. Калькуляции себестоимости электрической энергии и теплоты.

    курсовая работа [255,8 K], добавлен 08.02.2011

  • Существующие источники энергии. Типы электростанций. Проблемы развития и существования энергетики. Обзор альтернативных источников энергии. Устройство и принцип работы приливных электростанций. Расчет энергии. Определение коэффициента полезного действия.

    курсовая работа [82,0 K], добавлен 23.04.2016

  • Общая характеристика, работа и основные узлы теплоэлектростанции. Виды тепловых паротурбинных электростанций. Схема конденсационной электрической станции. Топливно-экономические показатели работы станций. Расчет себестоимости вырабатываемой энергии.

    реферат [165,2 K], добавлен 01.02.2012

  • Электростанции, вырабатывающие электроэнергию посредством преобразования химической энергии топлива в механическую энергию вращения вала электрогенератора. Общие сведения о работе тепловых паротурбинных станций. Основные способы увеличения КПД.

    реферат [1,4 M], добавлен 23.03.2014

  • Круговой процесс, в результате которого термодинамическое тело возвращается в исходное состояние. Цикл, совершаемый идеальным газом. Термический коэффициент полезного действия для кругового процесса. Принцип действия тепловых двигателей, их КПД.

    презентация [4,2 M], добавлен 13.02.2016

  • Главное преимущество теплоэлектроцентрали. Конденсационные турбины с отбором пара. Характеристики паровых котлов. Выбор питательных насосов и деаэраторов, подбор градирен. Коэффициент полезного действия турбоустановки по производству электроэнергии.

    курсовая работа [94,3 K], добавлен 24.01.2014

  • Основные способы получения энергии, их сравнительная характеристика и значение в современной экономике: тепловые, атомные и гидроэлекростанции. Нетрадиционные источники энергии: ветровая, геотермальная, океаническая, энергия приливов и отливов, Солнца.

    курсовая работа [57,0 K], добавлен 29.11.2014

  • Технологическая схема электростанции. Показатели ее тепловой экономичности. Выбор начальных и конечных параметров пара. Регенеративный подогрев питательной воды. Системы технического водоснабжения. Тепловые схемы и генеральный план электростанции.

    реферат [387,0 K], добавлен 21.02.2011

  • Атомные электростанции (АЭС)–тепловые электростанции, которые используют тепловую энергию ядерных реакций. Ядерные реакторы, используемые на атомных станциях России: РБМК, ВВЭР, БН. Принципы их работы. Перспективы развития атомной энергии в РФ.

    анализ книги [406,8 K], добавлен 23.12.2007

  • Химические источники тока. Химическая реакция сжигания углерода. Переход химической энергии в тепловую. Структурная схема электростанции на топливном элементе. Процесс восстановления окислителя на катоде. Применение и проблемы топливных элементов.

    реферат [210,0 K], добавлен 20.11.2011

  • Тепловые сети, их характеристика. Потери тепловой энергии при транспортировке к потребителю. Источники потерь, сложность их выявления. Существующие трубопроводы теплосетей. Теплоизоляционные материалы.

    реферат [35,3 K], добавлен 24.07.2007

  • Использование солнечной энергии в Республике Беларусь, тепловые гелиоустановки. Биомасса как аккумулятор солнечной энергии, получение энергии из когенерационных установок. Описание работы гидроэлектростанций. Принцип действия ветроэлектрических установок.

    курсовая работа [2,2 M], добавлен 11.03.2010

  • Источники энергии Древнего мира, раннего Средневековья и Нового времени. Технологии, используемые в процессе получения, передачи и использования энергии. Тепловые двигатели, двигатели внутреннего сгорания, электрогенераторы. Развитие ядерной энергетики.

    презентация [2,7 M], добавлен 15.05.2014

  • Существующие источники электроэнергии, типы электростанций. Современные проблемы развития энергетики. Альтернативные источники энергии и их типология. Устройство и принцип работы морской волновой электростанции, расчет ее производительности и мощности.

    курсовая работа [862,7 K], добавлен 28.03.2016

  • Мировые лидеры в производстве ядерной электроэнергии. Схема работы атомной электростанции с двухконтурным водо-водяным энергетическим реактором. Главный недостаток АЭС. Реакторы на быстрых нейтронах. Проект первой в мире плавучей атомной электростанции.

    реферат [1,4 M], добавлен 22.09.2013

  • Характеристика видов и классификации топливно-энергетических ресурсов или совокупности всех природных и преобразованных видов топлива и энергии. Вторичные топливно-энергетические ресурсы - горючие, тепловые и энергоресурсы избыточного давления (напора).

    контрольная работа [45,8 K], добавлен 31.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.