Квантово-механическая модель атома

Строение атома, их энергетические характеристики. Описание ядерной, современной квантово-механической модели атома и модели Бора. Закон Мозли, квантовые числа и атомные орбитали. Принципы электронного строения атомов, периодическая система элементов.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 25.05.2014
Размер файла 47,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство спорта Российской Федерации

ФГБОУВПО «Волгоградская Академия Физической Культуры»

Реферат

Тема: Квантово-механическая модель атома

Выполнила

студентка11 группы

Горячева Елена

Волгоград-2014

Содержание

Введение

1. Ядерная модель атома

2. Закон Мозли

3. Модель атома Бора

4. Современная квантово-механическая модель атома

5. Квантовые числа и атомные орбитали

6. Принципы электронного строения атомов

7. Периодическая система элементов в свете теории строения атомов

8. Энергетические характеристики атомов

Список сайтов

Введение

Химия - наука, изучающая вещества и процессы их превращения. Объекты изучения в химии - химические элементы и их соединения.

Химический элемент - это совокупность атомов с одинаковым зарядом ядер. Атом - наименьшая частица химического элемента, сохраняющая его свойства. Молекула - это наименьшая частица вещества, способная к самостоятельному существованию и обладающая его основными химическими свойствами. Если молекулы вещества состоят из одинаковых атомов, то образуемое ими вещество является простым. Молекулы, состоящие из разных атомов, образуют вещество сложное.

Химия нужна человечеству, чтобы получать из веществ природы по возможности все необходимое для жизни - металлы, стройматериалы (цемент, бетон, керамику, стекло), искусственные волокна, топливо, фармацевтические препараты. электронный атом ядерный квантовый

Химию можно рассматривать в двух аспектах: описательном - открытие химических фактов и явлений и их описание, и теоретическом - разработка теорий. Так в основе объяснения многих фактов и явлений лежит одна из таких теорий - теория строения атома, которая неразрывно связана с периодическим законом и периодической системой.

К середине 19 века было известно более 60 химических элементов, определены их атомные массы, накоплен обширный материал по физическим и химическим свойствам веществ, образованных элементами. Важнейшей задачей стало выявление взаимосвязи между элементами.

В 1869 г. Д.И. Менделеев сформулировал открытый им периодический закон.

Свойства простых тел, а также формы и свойства соединений находятся в периодической зависимости от атомных масс элементов.

Открытый периодический закон позволил предсказать существование ряда новых элементов, описать их свойства, исправить значения атомных масс некоторых элементов. В настоящее время периодический закон используется химиками при создании новых соединений, при изучении их строения и свойств. Но причина периодической зависимости свойств элементов от атомной массы была не известна. И Менделеев был уверен, что причина эта кроется в строении атома.

1. Ядерная модель атома

В начале 20 века в результате изучения катодных лучей были обнаружены отрицательные частицы - электроны с зарядом 1,6.10?19 Кл, массой 9,11.10?31 кг, открыто рентгеновское электромагнитное излучение. Обобщив эти открытия, Дж.Томсон в 1897 году предложил свою модель атома - это положительно заряженная сфера, в которую вкраплены отрицательные электроны (подобно изюму в пудинге). Если эта модель верна, тогда металлическая фольга - это пленка положительного электричества, содержащая электроны и поток б- частиц должен легко проникать через нее, не меняя направление.

В 1909 г. сотрудники англ. ученого Э. Резерфорда это проверили. 1 из 100000 б - частиц при прохождении через золотую фольгу рассеивались на большие углы и даже поворачивали обратно. Анализируя результаты эксперимента, Резерфорд сделал вывод, что масса и заряд атома сконцентрированы в малой части объема, называемой ядром. Отклоняются те б - частицы, которые сталкиваются с ядрами. Большинство же б - частиц проходит через пространство между ядрами. Модель строения атома, предложенная Э. Резерфордом, напоминала солнечную систему. Ее называют планетарной моделью. Согласно ей, в центре атома находится положительное ядро, в котором сосредоточена вся масса атома. Вокруг ядра по круговым орбитам движутся электроны. Заряд ядра и число электронов одинаковы, т.е. атом нейтральная частица.

2. Закон Мозли

В 1913г. английский физик Мозли измерил длины волн рентгеновских лучей, испускаемых разными металлами в катодной трубке, и построил график зависимости обратного значения квадратного корня из длины волны рентгеновских лучей от порядкового номера элемента. Этот график (рис.1) показывает, что порядковый номер отражает какую-то важную характеристику элемента. Мозли предположил, что этой характеристикой является заряд ядра атома, и что он возрастает на единицу при переходе от одного элемента к следующему за ним по порядку. Он назвал порядковый номер атомным номером - Z.

Закон Мозли:

Корень квадратный из величины, обратной длине волны рентгеновских лучей, испускаемых атомами различных элементов, находится в линейной зависимости от порядкового номера элемента.

,

где l- длина волны, а - постоянная величина, Z- порядковый номер элемента (заряд ядра).

Позже стало известно, что порядковый номер равен числу протонов в ядре. Таким образом, порядковый (атомный) номер равен заряду ядра и он же определяет наличие в нем протонов (положительных частиц). А так как атомы нейтральны, то число электронов в атоме должно быть равно числу протонов. Но массы атомов оказались больше суммарной массы протонов. Для объяснения избытка массы было высказано предположение о существовании нейтронов. Эти частицы должны были иметь ту же массу, что и протон, но нулевой заряд (1,675.10-27 кг). Нейтрон был открыт сотрудником Резерфорда Чедвигом в 1932 г. Было окончательно установлено, что атом состоит из ядра и электронов, а ядро - из протонов и нейтронов. Их сумму называютнуклонным числом или массовым - А.

А = Z + N,

Z- число протонов, N- число нейтронов.

Атомы с различным числом протонов (Z) и нейтронов (N), но с одинаковым числом нуклонов А, называют изобарами. Например,

Изотопы - атомы с одинаковым числом протонов (Z), но с разным числом нуклонов

Изотоны - атомы с одинаковым числом нейтронов (N)

Таким образом, дробные значения атомных масс в периодической системе объясняются наличием изотопов для одного и того же элемента.

3. Модель атома Бора

Наглядная и простая ядерная модель атома Резерфорда противоречила классической электродинамике. Система вращающихся вокруг ядра электронов не может быть устойчивой, т.к. электрон при вращении должен непрерывно излучать энергию, и это должно было привести к его слиянию с ядром, т.е. разрушению атома. На самом деле атомы являются устойчивыми системами. Эти противоречия частично разрешил Нильс Бор, разработавший в 1913 г. теорию водородного атома, в основу которой он положил постулаты, связав их с законами классической механики и с квантовой теорией излучения энергии М. Планка:

1) Электрон может вращаться вокруг ядра, не излучая энергии, только по определенным (стационарным) орбитам.

Бор рассчитал радиус круговых орбит для стационарных состояний, скорость движения электрона и его энергию. В нормальном состоянии атома электроны находятся на ближайшей к ядру орбите и энергия его минимальна (основное состояние). В возбужденном состоянии электрон обладает большей энергией по сравнению с основным состоянием

2) Переход электрона с орбиты, имеющей меньшую энергию на орбиту с большей энергией должен сопровождаться поглощением кванта энергии. Обратный переход - испусканием такого же кванта энергии.

Этими переходами Н.Бор объяснил происхождение и характер спектра водорода. Было известно, что атомы водорода, активированные нагреванием или электрическим полем, излучают свет. Спектр этого излучения состоит из волн строго определенной длины, т.е. спектр линейчатый, а не сплошной.

Но теория Н.Бора непригодна для объяснения строения сложных атомов. А наличие стационарных орбит теоретически не было обосновано, оно постулировалось.

4. Современная квантово-механическая модель атома

В 1924 г. французский физик Луи де Бройль высказал идею о том, что материя обладает как волновыми, так и корпускулярными свойствами. Согласно уравнению де Бройля (одному из основных уравнений квантовой механики),

,

(где h - постоянная Планка ([Дж.с])), частице с массой m, движущейся со скоростью v соответствует волна длиной л.

т. е. частице с массой m, движущейся со скоростью v соответствует волна длиной л; h -- постоянная Планка.

Длину волны такой частицы называют длиной волны де Бройля. Для любой частицы с массой т и известной скоростью v длину волны де Бройля можно рассчитать. Идея де Бройля была экспериментально подтверждена в 1927 г., когда были обнаружены у электронов как волновые, так и корпускулярные свойства. В 1927 г. немецким ученым В. Гейзенбергом был предложен принцип неопределенности, согласно которому для микрочастиц невозможно одновременно точно определить и координату частицы X, и составляющую рх импульса вдоль оси х. Математически принцип неопределенности записывают следующими уравнениями:

ДxДpx ? h;

ДxДpy ? h;

ДxДpz ? h.

Отсюда следует, что при точном определении координаты х микрочастицы исчезает информация о ее импульсе Дpx, так как при х=0 величина Дpx>?. Если удастся снизить погрешность Дp,то будет велика погрешность Дх. Источник этих погрешностей заключен не в приборах, а в самой природе вещей.

Поскольку постоянная Планка очень мала, то ограничения, накладываемые принципом неопределенности, существенны только в масштабах атомных размеров. Согласно принципу неопределенности, невозможно утверждать, что электрон, имеющий определенную скорость, находится в данной точке пространства, здесь можно использовать лишь вероятностное описание.

Для описания свойств электрона используют волновую функцию, которую обозначают буквой Ш (пси). Квадрат ее модуля |Ш|2, вычисленный для определенного момента времени и определенной точки пространства, пропорционален вероятности обнаружить частицу в этой точке в указанное время. Величину |Ш|2 называют плотностью вероятности. Наглядное представление о распределении электронной плотности атома дает функция радиального распределения. Такая функция служит мерой вероятности нахождения электрона в сферическом слое между расстояниями r и (r+dr) от ядра. Объем, лежащий между двумя сферами, имеющими радиусы r и (r+dr), равен 4Рr2dr, а вероятность нахождения электрона в этом элементарном объеме может быть представлена графически в виде зависимостей функции радиального распределения. На рис. 1 представлена функция вероятности для основного энергетического состояния электрона в атоме водорода. Плотность вероятности |Ш|2 достигает максимального значения на некотором конечном расстоянии от ядра. При этом наиболее вероятное значение r для электрона атома водорода равно радиусу орбиты a0 соответствующей основному состоянию электрона в модели Бора. Различная плотность вероятности дает представление об электроне, как бы размазанном вокруг ядра в виде так называемого электронного облака.

Чем больше величина |Ш|2, тем больше вероятность нахождения электрона в данной области атомного пространства.

В квантовой механике вместо термина «орбита» используют термин «орбиталь», которым называют волновую функцию электрона. Соответственно орбиталь характеризует и энергию и форму пространственного распределения электронного облака. Расчеты в квантовой механике проводят с помощью предложенного в 1926 г. австрийским ученым Э. Шредингером уравнения, которое является математическим описанием электронного строения атома в трехмерном-пространстве.

В простейшем случае уравнение Шредингера может быть записано в виде

где h -- постоянная Планка; m -- масса частицы; U -- потенциальная энергия; Е -- полная энергия; х, у, z -- координаты; Ш -- волновая функция.

Решая уравнение Шредингера, находят волновую функцию Ш=f(x, y, z). Решение уравнения Шредингера возможно лишь при определенных значениях полной энергии Е. Определив вероятностную функцию можно оценить величину |Ш|2dV -- вероятность нахождения электрона в объеме пространства dV, окружающего атомное ядро. Решение уравнения Шредингера представляет сложную математическую задачу.

5. Квантовые числа и атомные орбитали

Следствием решения уравнения Шредингера для атома водорода являются три квантовых числа, характеризующих поведение электрона в атоме. Эти же квантовые числа однозначно характеризуют состояние электронов любого атома периодической системы элементов.

Главное квантовое число n определяет энергию электрона и размеры электронных облаков. Энергия электрона главным образом зависит от расстояния электрона от ядра: чем ближе к ядру находится электрон, тем меньше его энергия. Поэтому можно сказать, что главное квантовое число n определяет расположение электрона на том или ином энергетическом уровне (квантовом слое). Главное квантовое число имеет значения ряда целых чисел от 1 до ?. При значении главного квантового числа, равного единице (n=1), электрон находится на первом энергетическом уровне, расположенном на минимально возможном расстоянии от ядра. Полная энергия такого электрона наименьшая.

Электрон, находящийся на наиболее удаленном от ядра энергетическом уровне, обладает максимальной энергией. Поэтому при переходе электрона с более удаленного энергетического уровня на более близкий выделяются порции (кванты) энергии. Энергетические уровни обозначают прописными буквами согласно схеме:

Значение n.........1 2 3 4 5

Обозначение......K L M N Q

Орбитальное квантовое число l. Согласно квантово-механиче-ским расчетам, электронные облака отличаются не только размерами, но и формой. Форму электронного облака характеризует орбитальное или азимутальное квантовое число. Различная форма электронных облаков обусловливает изменение энергии электронов в пределах одного энергетического уровня, т. е. ее расщепление на энергетические подуровни. Каждой форме электронного облака соответствует определенное значение механического момента движения электрона м, определяемого орбитальным квантовым числом:

.

Орбитальное квантовое число может иметь значения от 0 до n-1, всего n значений. Энергетические подуровни обозначают буквами:

Значение l..........0 1 2 3 4 5

Обозначение......5 р d f g h

При значении главного квантового числа, равного единице (n=1), орбитальное квантовое число имеет только одно значение, равное нулю (l=0). Таким значением l характеризуются электронные облака, имеющие шаровую симметрию. Электроны, орбитальное квантовое число которых равно нулю, называются s-электронами.

На первом энергетическом уровне могут находиться только s-электроны, его условная запись 1s. При значении главного квантового числа, равном двум (n=2), орбитальное квантовое число имеет два значения: l=0 и l=1. Орбитальному числу, равному единице (l=1), соответствует гантелевидная форма электронного облака (форма объемной восьмерки) (рис. 1.) Электроны, орбитальное квантовое число которых равно единице, называются р-электронами.

На втором энергетическом уровне могут находиться s- и р-электроны, которые образуют два подуровня: 2s и 2р. При значении главного квантового числа, равного трем (n=3), орбитальное квантовое число имеет три значения: l=0, l=1, l=2. Орбитальному квантовому числу, равному двум (l=2), соответствует более сложная форма электронных облаков (рис. 2). Электроны, орбитальное квантовое число которых равно двум, называются d-электронами.

На третьем энергетическом уровне могут находиться s-, р-и d-электроны, которые образуют три подуровня: 3s, Зр и 3d. При значении главного квантового числа, равного четырем (n=4), орбитальное квантовое число имеет четыре значения: l=0, l= 1, l=2 и l=3. Орбитальному числу, равному трем (l=3), соответствует еще более сложная форма облаков. Электроны, орбитальное квантовое число которых равно трем, называются f-электронами.

На четвертом энергетическом уровне могут находиться s-, р-, d- и f-электроны, которые образуют четыре подуровня; 4s, 4р, 4d и 4f.

Магнитное квантовое число ml. Из решения уравнения Шредингера следует, что электронные облака ориентированы в пространстве. Пространственная ориентация электронных облаков характеризуется магнитным квантовым числом.

Внешнее магнитное или электрическое поле изменяет пространственную ориентацию электронных облаков, поэтому при воздействии магнитного или электрического поля происходит расщепление энергетических подуровней электронов. В магнитном и электрическом полях наблюдается расщепление атомных спектральных линий.

Магнитное квантовое число принимает любое целое числовое значение от +l до -l, включая 0. Таким образом, число возможных значений магнитного квантового числа равно 2l+1. При значении орбитального квантового числа, равного нулю (l=0), магнитное квантовое число имеет только одно значение, равное нулю (ml=0). При значении орбитального квантового числа, равном единице (l=1), магнитное квантовое число имеет три значения: ml=1, ml=0 и ml =-1. Три значения магнитного числа характеризуют три состояния р-электронов, что соответствует ориентации р-облаков в пространстве в трех взаимно перпендикулярных плоскостях по осям координат х, у и z.

При значении орбитального квантового числа, равном двум (l=2), магнитное квантовое число имеет пять значений: ml=2, ml=1, ml=0, ml=-2, ml=-1. Пять значений магнитного квантового числа соответствуют пяти пространственным положениям d-электронных облаков. Орбитальному квантовому числу, равному трем (l=3), соответствует семь значений магнитного числа и семь пространственных положений f-облаков.

Атомные орбитали (АО). На основе представлений о квантовых числах можно уточнить определение электронной орбитали в атоме. Совокупность положений электрона в атоме, характеризуемых определенными значениями квантовых чисел n, l и ml, называют атомной орбиталью (АО). Условно АО обозначают в виде клетки (энергетической ячейки): . Число АО равно единице на s-энергетических подуровнях , трем -- на р-подуровнях , пяти -- на d-подуровнях и семи -- на f-подуровнях .

Три р-орбитали (рх, рy, pz) перпендикулярны друг другу и направлены вдоль трех осей координат: х, у и z. Три d-орбитали (dxz, dyz, dxy) имеют диагональное расположение между осями х, y и z, две остальные (dx2y2, dz2) направлены вдоль осей координат.

Изучение атомных спектров показало, что три квантовых числа n, l и ml не полностью характеризуют поведение электронов в атоме.

Спиновое квантовое число ms. Электрон, двигаясь в поле ядра атома, кроме орбитального момента импульса обладает также собственным моментом импульса, характеризующим его веретенообразное вращение вокруг собственной оси. Это свойство электрона получило название спина. Величину и ориентацию спина характеризует спиновое квантовое число ms, которое может принимать значения ms=+Ѕ и ms=-Ѕ . Положительное и отрицательное значения спина связаны с его направлением. Поскольку спин -- величина векторная, его условно обозначают стрелкой, направленной вверх или вниз: v или ^.

Электроны, имеющие одинаковое направление спина, т. е. либо ms=+Ѕ, либо ms=-Ѕ, называются параллельными, при противоположных направлениях спинов -- антипараллельными. Итак, состояние электрона в атоме полностью характеризуется четырьмя квантовыми числами: n, l, ml и ms.

6. Принципы электронного строения атомов

Распределение электронов в атоме по уровням, подуровням и атомным орбиталям получило название электронной формулы элемента. Обычно электронная конфигурация приводится для основного состояния атома. В случае если один или несколько электронов находятся в возбужденном состоянии, то и электронная конфигурация будет характеризовать возбужденное состояние атома. При записи электронной конфигурации указывают цифрами главное квантовое число (n), буквами - подуровни(s, p, d, f), а степень буквенных обозначений подуровней обозначает число электронов в данном подуровне. Например, электронная конфигурация водорода-1s1, лития - 1s22s1, бора - 1s22s22p1, магния - 1s22s22p63s2.

При составлении электронных конфигураций многоэлектронных атомов учитывают следующие принципы и правила.

Принцип наименьшей энергии:

устойчивому состоянию электрона в атоме соответствует наименьшее значение его энергии. Т.е. электроны заполняют орбитали в порядке повышения уровня энергии.

Правило Клечковского:

заполнение электронных орбиталей в атомах электронами происходит в порядке возрастания суммы квантовых чисел n + l. При равенстве этих сумм для 2-х орбиталей сначала заполняется орбиталь с меньшим значением n.

Правило Клечковского является теоретическим обоснованием периодической системы. В соответствии с ним подуровни заполняются в следующей последовательности: 1s < 2s < 2p < 3s < 3p< 4s = 3d < 4p < 5s = 4d < 5p… Исключение составляют элементы, у которых наблюдается провал электронов, Cu, Aq, Cr, Mo, Pd, Pt.

Принцип Паули (1925г.):

в атоме не может быть 2-х электронов, имеющих одинаковый набор всех 4-х квантовых чисел. Отсюда следует, что на каждой орбитали может быть не более двух электронов - s2, p6, d10,f14.

Правило Гунда:

суммарное спиновое число электронов данного подуровня должно быть максимальным.

Т.е. заполнение орбиталей подуровня начинается одиночными электронами с одинаковыми спинами. После того как одиночные электроны займут все орбитали в подуровне, заполняются орбитали вторыми электронами с противоположными спинами.

7. Периодическая система элементов в свете теории строения атомов

Учение о строении атомов вскрыло глубокий физический смысл периодического закона. Оказалось, главной характеристикой атома является не атомная масса, а заряд ядра. Он определяет число электронов в оболочке атома, ее строение, и тем самым все свойства элемента и его положение в периодической системе. Поэтому, современная формулировка периодического закона Д.И. Менделеева такова:

свойства химических элементов, а также формы и свойства соединений элементов находятся в периодической зависимости от заряда ядра атомов элементов или периодически повторяющихся сходных электронных структур.

Теория строения атомов объясняет периодическое изменение свойств элементов. Возрастание заряда ядра от 1 до 110 приводит к периодическому повторению строения электронных оболочек. А поскольку от них зависят химические свойства элементов, то они периодически повторяются. В этом физический смысл периодического закона.

Графическим выражением периодического закона является периодическая система. Первый вариант системы элементов имел длинную форму, т.е. в ней периоды располагались одной строкой. Короткая форма была опубликована в 1870 г. В этом варианте периоды разбиваются на ряды, группы - на подгруппы (А _ главную, В - побочную). В настоящее время известно более 500 вариантов графического изображения периодической системы. Наилучшие из них - варианты, предложенные Д.И.Менделеевым.

В периодической системе 7 периодов. 1, 2, 3 - малые периоды, 4,5,6,7 - большие, 7 - незавершенный. Элементы 2 и 3 периодов Д.И. Менделеев назвал типическими. Их свойства закономерно изменяются от типичного металла до инертного элемента

Период - это ряд элементов, в атомах которых происходит заполнение одинакового числа электронных уровней.

В системе имеется восемь групп. В группы объединяют элементы с одинаковым числом электронов на внешнем уровне. Номер группы определяет валентность элемента, а также высшую степень окисления элемента. В подгруппе располагаются элементы - аналоги (с аналогичными электронными структурами). В главную подгруппу входят элементы больших и малых периодов, валентные электроны которых располагаются на внешнем энергетическом уровне, а побочная подгруппа объединяет элементы, валентные электроны которых находятся на внешнем и предвнешнем энергетическом уровне.

8. Энергетические характеристики атомов

Так как электронное строение элементов изменяется периодически, то соответственно периодически изменяются и свойства элементов, определяемые их электронным строением, такие как энергия ионизации, сродство к электрону, электроотрицательность, размеры атомов окислительно-восстановительные и другие свойства.

Энергия ионизации.

Энергия, необходимая для удаления одного моля электронов от одного моля атомов какого либо элемента, называется первой энергией ионизации (потенциалом ионизации).

В результате ионизации атомы превращаются в положительно заряженные ионы. Энергию ионизации выражают в кДж/моль, либо в эВ.

Эта энергия характеризует восстановительную способность элемента. Она возрастает в периоде слева направо и в группе снизу вверх, что обусловлено увеличением размеров атомов и расстояния внешних подуровней от ядра. Наименьшие значения энергии ионизации имеют щелочные элементы, находящиеся в начале периода, наибольшими значениями энергии ионизации характеризуются благородные газы, находящиеся в конце периода.

Сродство к электрону

энергетический эффект присоединения моля электронов к молю нейтральных атомов.

Единицы измерения кДж/моль или эВ. Наибольшие значения сродства к электрону имеют галогены фтор, кислород, сера. В периоде слева направо она увеличивается, а в группе снизу вверх растет.

Электроотрицательность:

характеристика способности атомов притягивать к себе электроны (ЭО).

Она зависит от типа соединений, валентного состояния элемента.

Существует несколько шкал электроотрицательности. Согласно Р.Малликену, ЭО равна полусумме энергии ионизации и энергии сродства к электрону. Наименьшие значения ЭО имеют s-элементы 1 группы, наибольшие значения - p-элементы 7 и 6 групп.

Список сайтов

1. www.allchem.ru

2. www.prosto-o-slognom.ru

3. www.chem-bsu.narod.ru

Размещено на Allbest.ru

...

Подобные документы

  • Нильс Бор ученый и человек. Успехи и недостатки теории Бора. Теория Бора позволила объяснить целый ряд сложных вопросов строения атома и фактов, чего была не в состоянии сделать классическая физика.

    реферат [41,2 K], добавлен 25.12.2002

  • Этапы исследований строения атома учеными Томсоном, Резерфордом, Бором. Схемы их опытов и интерпретация результатов. Планетарная модель атома Резерфорда. Квантовые постулаты Бора. Схемы перехода из стационарного состояния в возбужденное и наоборот.

    презентация [283,3 K], добавлен 26.02.2011

  • Строение атома. Атом как целое. Структура атома: опыты Резерфорда, планетарная модель атома Резерфорда, квантовые постулаты Бора. Лазеры: история создания, устройство, свойства, применение лазера в ювелирной отрасли, в медицине.

    реферат [481,9 K], добавлен 13.04.2003

  • Открытие сложного строения атома - важнейший этап становления современной физики. В процессе создания количественной теории строения атома, объясняющей атомные системы, сформированы представления о свойствах микрочастиц, описанные квантовой механикой.

    реферат [146,3 K], добавлен 05.01.2009

  • Модели строения атома. Формы атомных орбиталей. Энергетические уровни атома. Атомная орбиталь как область вокруг ядра атома, в которой наиболее вероятно нахождение электрона. Понятие протона, нейтрона и электрона. Суть планетарной модели строения атома.

    презентация [1,1 M], добавлен 12.09.2013

  • История открытия радиоактивности, модель атома Томсона. Опыты Резерфорда по рассеянию альфа-частиц. Правило квантования Бора-Зоммерфельда. Боровская теория водородоподобного атома, схема его энергетических уровней. Оптические спектры испускания атомов.

    презентация [3,7 M], добавлен 23.08.2013

  • Эволюция представлений о строении атомов на примере моделей Эрнеста Резерфорда и Нильса Бора. Стационарные орбиты и энергетические уровни. Объяснение происхождения линейчатых спектров излучения и поглощения. Достоинства и недостатки теории Н. Бора.

    реферат [662,9 K], добавлен 19.11.2014

  • Классификация элементарных частиц. Фундаментальные взаимодействия. Модель атома Резерфорда. Теория Бора для атома водорода. Атом водорода в квантовой механике. Квантово-механическое обоснование Периодического закона Д. Менделеева. Понятие радиоактивности.

    реферат [110,6 K], добавлен 21.02.2010

  • Классическая модель строения атома. Понятие орбиты электрона. Набор возможных дискретных частот. Водородоподобные системы по Бору. Недостатки теории Бора. Значение квантовых чисел. Спектр излучения атомов. Ширина спектральных линий. Доплеровское уширение.

    реферат [145,6 K], добавлен 14.01.2009

  • Квантово-механическая картина строения атома. Квантовые числа. Пространственное квантование. Спин электрона. Суть опыта Штерна и Герлаха. Эффект Зеемана. Расщепление энергетических уровней в магнитном поле. Орбитальный магнитный момент. Проекция спина.

    презентация [3,7 M], добавлен 07.03.2016

  • Дослідження та винаходи, які сприяли формуванню гіпотези про складну будову атома: відкриття субатомних частинок, рентгенівські промені та радіоактивність. Перша модель атома Дж.Дж. Томсона. Планетарна модель Резерфорда. Теорія та постулати Бора.

    курсовая работа [985,6 K], добавлен 26.09.2012

  • История открытий в области строения атомного ядра. Модели атома до Бора. Открытие атомного ядра. Атом Бора. Расщепление ядра. Протонно-нейтронная модель ядра. Искусственная радиоактивность. Строение и важнейшие свойства атомных ядер.

    реферат [24,6 K], добавлен 08.05.2003

  • Структура спектров испускания атомов щелочных металлов. Основные отличия схем уровней натрия и водородного атома. Характеристика рентгеновского излучения. Сравнительная характеристика Сплошной и дискретный спектр. Закон Мозли и эффект экранирования ядра.

    реферат [171,5 K], добавлен 12.12.2009

  • Ранняя модель микрочастицы, построенная по аналогии с Сатурном, предложенная Нагаокой. Сущность и результаты опыта Резерфорда по исследованию внутренней структуры атома путем его зондирования с помощью альфа-частиц. Сущность планетарной атомной модели.

    презентация [544,6 K], добавлен 27.01.2011

  • Изучение строения атомов и их ядер. Исследование постулатов Борна и выявление преимуществ и недостатков планетарной модели атома Резерфорда. Процесс деления тяжелых ядер и раскрытие понятия радиоактивности. Неуправляемая и управляемая цепная реакция.

    контрольная работа [35,7 K], добавлен 26.09.2011

  • Складові частини атома: ядро, протони, нейтрони та електрони. Планетарна модель атома або модель Резерфорда. Керована та некерована ланцюгова ядерна реакція. Поняття ядерного вибуху як процесу вивільнення великої кількості теплової і променевої енергії.

    презентация [2,3 M], добавлен 21.05.2012

  • Анализ развития идей атомизма в истории науки. Роль элементарных частиц и физического вакуума в строении атома. Суть современной теории атомизма. Анализ квантовой модели атома. Введение понятия "молекула" Пьером Гассенди. Открытие эффекта Комптона.

    контрольная работа [25,2 K], добавлен 15.01.2013

  • Строение и ядерная модель атома. Атомный номер элемента. Волновые свойства электрона. Звуковые волны и их свойства. Строение и анатомия уха человека. Свет и световые явления, процесс образования тени и полутени. Закон преломления света, его сущность.

    реферат [1,1 M], добавлен 18.05.2012

  • Теорія Бора будови й властивостей енергетичних рівнів електронів у водневоподібних системах. Використання рівняння Шредінгера, хвильова функція та квантові числа. Енергія атома водню і його спектр. Виродження рівнів та магнітний момент водневого атома.

    реферат [329,9 K], добавлен 06.04.2009

  • Экспериментальное наблюдение характеристического излучения атома натрия в возбуждённом состоянии - в процессе горения; определение длины волны и энергетического уровня перехода наружного электрона, которым обусловлен характеристический цвет излучения.

    практическая работа [13,7 K], добавлен 07.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.