Аксиомы статики

Формулировки основных аксиомы статики и их следствий. Понятие сходящихся систем сил, произвольно-плоской и произвольно-пространственной систем сил, центра тяжести твердого тела. Способы определения координат центров тяжести тел и геометрических фигур.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 06.06.2014
Размер файла 836,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Все теоремы и уравнения статики выводятся из нескольких исходных положений, принимаемых без математических доказательств и называемых аксиомами или принципами статики. Аксиомы статики представляют собою результат обобщений многочисленных опытов и наблюдений над равновесием и движением тел, неоднократно подтвержденных практикой. Часть из этих аксиом является следствиями основных законов механики, с которыми мы познакомимся в динамике.

Аксиома 1. Если на свободное абсолютно твердое тело действуют две силы, то тело может находиться в равновесии тогда и только тогда, когда эти силы равны по модулю (F1 = F2) и направлены вдоль одной прямой в противоположные стороны (рис. 10).

Аксиома 1 определяет простейшую уравновешенную систему сил, так как опыт показывает, что свободное тело, на которое действует только одна сила, находиться в равновесии не может.

Аксиома 2. Действие данной системы, сил на абсолютно твердое тело не изменится, если к ней прибавить или от нее отнять уравновешенную систему сил.

Эта аксиома устанавливает, что две системы сил, отличающиеся на уравновешенную систему, эквивалентны друг другу.

Следствие из 1-й и 2-й аксиом. Действие силы на абсолютно твердое тело не изменится, если перенести точку приложения силы вдоль ее линии действия в любую другую точку тела.

аксиома статика центр тяжести

В самом деле, пусть на твердое тело действует приложенная в точке А сила (рис.11). Возьмем на линии действия этой силы произвольную точку В и приложим к ней две уравновешенные силы и , такие, что , . От этого действие силы на тело не изменится. Но силы и согласно аксиоме 1 также образуют уравновешенную систему, которая может быть отброшена. В результате на тело. Будет действовать только одна сила , равная , но приложенная в точке В.

Таким образом, вектор, изображающий силу , можно считать приложенным в любой точке на линии действия силы (такой вектор называется скользящим).

Аксиома 3 (аксиома параллелограмма сил). Две силы, приложенные к телу в одной точке, имеют равнодействующую, приложенную в той же точке и изображаемую диагональю параллелограмма, построенного на этих силах, как на сторонах.

Вектор , равный диагонали параллелограмма, построенного на векторах и (рис.12), называется геометрической суммой векторов и :

Величина равнодействующей

.

Конечно, Такое равенство будет соблюдаться только при условии, что эти силы направлены по одной прямой в одну сторону. Если же векторы сил окажутся перпендикулярными, то

Следовательно, аксиому 3 можно еще формулировать так: две силы, приложенные к телу в одной точке, имеют равнодействующую, равную геометрической (векторной) сумме этих сил и приложенную в той же точке.

Аксиома 4. При всяком действии одного материального тела на другое имеет место такое же по величине, но противоположное по направлению противодействие.

Закон о равенстве действия и противодействия является одним из основных законов механики. Из него следует, что если тело А действует на тело В с силой , то одновременно тело В действует на тело А с такой же по модулю и направленной вдоль той же прямой, но противоположную сторону силой (рис. 13). Однако силы и не образуют уравновешенной системы сил, так как они приложены к разным телам.

Аксиома 5 (принцип отвердевания). Равновесие изменяемого (деформируемого) тела, находящегося под действием данной системы сил, не нарушится, если тело считать отвердевшим (абсолютно твердым).

Высказанное в этой аксиоме утверждение очевидно. Например, ясно, что равновесие цепи не нарушится, если ее звенья считать сваренными друг с другом и т. д.

Системма сходямщихся сил -- это такая система сил, действующих на абсолютно твёрдое тело, в которой линии действия всех сил пересекаются в одной точке.

Такая система сил является на плоскости статически определимой, если число неизвестных сил в ней не больше двух (а не трёх, как в других статически определимых системах)

В трёхмерном пространстве сходящаяся система сил является статически определимой, если число неизвестных сил в ней не превышает трёх.

Произвольная плоская система сил - это система сил, линии действия которых расположены в плоскости независимо.

Любая плоская произвольная система сил, действующих на абсолютно твердое тело, при приведении к произвольно избранному центру О, может быть заменена одной силой, равняющейся главному вектору системы и приложенной в центре приведения О, и одной парой с моментом, равняющемуся главному моменту системы относительно центра О.

Уравнения равновесия - это условия равновесия, в которые входят известные активные силы и неизвестные реакции связей, т.е. аналитические условия равновесия данной системы сил.

Задача называется статически определимой, если число неизвестных реакций связей равняется числу независимых уравнений равновесия.

Если для данной конструкции число всех реакций (неизвестных) будет больше количества уравнений, в которые входят реакции, то конструкция будет статически неопределимой.

В зависимости от взаимного движения тел трение между твердыми телами бывает трех видов:

· трение скольжения.

· трение качения;

· трение вращения.

Пространственная система сил. Система сил называется пространственной, если линии их действия расположены в пространстве произвольным образом. Для пространственных систем сил остаются справедливыми все те положения, которые были сформулированы для плоской системы сил.

Центр тяжести твердого тела

Центром тяжести твердого тела называется неизменно связанная с этим телом точка С, через которую проходит линия действия равнодействующей сил тяжести данного тела, при любом положении тела в пространстве.

Центр тяжести применяется при исследовании устойчивости положений равновесия тел и сплошных сред, находящихся под действием сил тяжести и в некоторых других случаях, а именно: в сопротивлении материалов и в строительной механике - при использовании правила Верещагина.

Существуют два способа определения центра тяжести тела: аналитический и экспериментальный. Аналитический способ определения центра тяжести непосредственно вытекает из понятия центра параллельных сил.

Координаты центра тяжести, как центра параллельных сил, определяются формулами:

где Р - вес всего тела; pk - вес частиц тела; xk, yk, zk - координаты частиц тела.

Для однородного тела вес всего тела и любой её части пропорционален объёму P=Vг, pk=vkг , где г - вес единицы объёма, V - объем тела. Подставляя выражения P, pk в формулы определения координат центра тяжести и, сокращая на общий множитель г, получим:

Точка С, координаты которой определяются полученными формулами, называется центром тяжести объема.

Если тело представляет собой тонкую однородную пластину, то центр тяжести определяется формулами:

где S - площадь всей пластины; sk - площадь её части; xk, yk - координаты центра тяжести частей пластины.

Точка С в данном случае носит название центра тяжести площади.

Числители выражений, определяющих координаты центра тяжести плоских фигур, называются статическими моментами площади относительно осей у и х:

Тогда центр тяжести площади можно определить по формулам:

Для тел, длина которых во много раз превышает размеры поперечного сечения, определяют центр тяжести линии. Координаты центра тяжести линии определяют формулами:

где L - длина линии; lk - длина ее частей; xk, yk, zk - координата центра тяжести частей линии.

Способы определения координат центров тяжести тел

Основываясь на полученных формулах, можно предложить практические способы определения центров тяжести тел.

1. Симметрия. Если тело имеет центр симметрии, то центр тяжести находится в центре симметрии.

Если тело имеет плоскость симметрии. Например, плоскость ХОУ, то центр тяжести лежит в этой плоскости.

2. Разбиение. Для тел, состоящих из простых по форме тел, используется способ разбиения. Тело разбивается на части, центр тяжести которых находится методом симметрии. Центр тяжести всего тела определяется по формулам центра тяжести объема (площади).

Пример. Определить центр тяжести пластины, изображенной на помещенном ниже рисунке. Пластину можно разбить на прямоугольники различным способом и определить координаты центра тяжести каждого прямоугольника и их площади.

Ответ: xc=17.0см; yc=18.0см.

Дополнение. Этот способ является частным случаем способа разбиения. Он используется, когда тело имеет вырезы, срезы и др., если координаты центра тяжести тела без выреза известны.

Пример. Определить центр тяжести круглой пластины, имеющей вырез радиусом r = 0,6 R

Круглая пластина имеет центр симметрии. Поместим начало координат в центре пластины. Площадь пластины без выреза

,

площадь выреза

.

Площадь пластины с вырезом

; .

Пластина с вырезом имеет ось симметрии О1x, следовательно, yc=0.

4. Интегрирование. Если тело нельзя разбить на конечное число частей, положение центров тяжести которых известны, тело разбивают на произвольные малые объемы , для которых формула с использованием метода разбиения принимает вид:

.

Далее переходят к пределу, устремляя элементарные объемы к нулю, т.е. стягивая объемы в точки. Суммы заменяют интегралами, распространенными на весь объем тела, тогда формулы определения координат центра тяжести объема принимают вид:

Формулы для определения координат центра тяжести площади:

Координаты центра тяжести площади необходимо определять при изучении равновесия пластинок, при вычислении интеграла Мора в строительной механике.

Пример. Определить центр тяжести дуги окружности радиуса R с центральным углом АОВ = 2б (рис. 6.5).

Дуга окружности симметрична оси Ох, следовательно, центр тяжести дуги лежит на оси Ох, = 0.

Согласно формуле для центра тяжести линии:

Экспериментальный способ. Центры тяжести неоднородных тел сложной конфигурации можно определять экспериментально: методом подвешивания и взвешивания. Первый способ состоит в том, что тело подвешивается на тросе за различные точки. Направление троса на котором подвешено тело, будет давать направление силы тяжести. Точка пересечения этих направлений определяет центр тяжести тела.

Метод взвешивания состоит в том, что сначала определяется вес тела, например автомобиля. Затем на весах определяется давление заднего моста автомобиля на опору. Составив уравнение равновесия относительно какой- либо точки, например оси передних колес, можно вычислить расстояние от этой оси до центра тяжести автомобиля.

Иногда при решении задач следует применять одновременно разные методы определения координат центра тяжести.

Центры тяжести некоторых простейших геометрических фигур

Для определения центров тяжести тел часто встречающейся формы (треугольника, дуги окружности, сектора, сегмента) удобно использовать справочные данные.

Координаты центра тяжести некоторых однородных тел

Наименование фигуры

Рисунок

1

Дуга окружности: центр тяжести дуги однородной окружности находится на оси симметрии (координата уc=0).

где б - половина центрального угла; R - радиус окружности.

2

Однородный круговой сектор: центр тяжести расположен на оси симметрии (координата уc=0).

где б - половина центрального угла; R - радиус окружности.

3

Сегмент: центр тяжести расположен на оси симметрии (координата уc=0).

где б - половина центрального угла; R - радиус окружности.

4

Полукруг:

5

Треугольник: центр тяжести однородного треугольника находится в точке пересечения его медиан.

где x1, y1, x2, y2, x3, y3 - координаты вершин треугольника

6

Конус: центр тяжести однородного кругового конуса лежит на его высоте и отстоит на расстояние 1/4 высоты от основания конуса.

7

Полусфера: центр тяжести лежит на оси симметрии.

8

Трапеция:

- площадь фигуры.

9

- площадь фигуры;

10

- площадь фигуры;

Размещено на Allbest.ru

...

Подобные документы

  • Статика - розділ механіки, в якому вивчаються умови рівноваги механічних систем під дією прикладених до них сил і моментів. Історична довідка. Аксіоми статики. Паралелограм сил. Рівнодіюча сила. Закон про дію та протидію. Застосування законів статики.

    презентация [214,2 K], добавлен 07.11.2012

  • Линия действия силы. Основные аксиомы статики. Принцип освобождаемости от связей. Геометрический способ сложения сил. Разложить силу на составляющие. Теорема о проекции вектора суммы. Равновесие системы сходящихся сил. Момент силы относительно точки.

    презентация [262,9 K], добавлен 09.11.2013

  • Кинематика как раздел механики, в котором движение тел рассматривается без выяснения причин, его вызывающих. Способы определения координат центра тяжести. Статические моменты площади сечения. Изменение моментов инерции при повороте осей координат.

    презентация [2,0 M], добавлен 22.09.2014

  • Понятие и история создания статики, вклад Архимеда в ее развитие. Определение первого условия равновесия тела по второму закону Ньютона. Сущность правила моментов сил, вычисление центра тяжести. Виды равновесия: устойчивое, неустойчивое, безразличное.

    презентация [842,9 K], добавлен 28.03.2013

  • Аксиомы статики. Моменты системы сил относительно точки и оси. Трение сцепления и скольжения. Предмет кинематики. Способы задания движения точки. Нормальное и касательное ускорение. Поступательное и вращательное движение тела. Мгновенный центр скоростей.

    шпаргалка [1,5 M], добавлен 02.12.2014

  • Определение реакций опор плоской составной конструкции, плоских ферм аналитическим способом. Определение скоростей и ускорений точек твердого тела при плоском движении, усилий в стержнях методом вырезания узлов. Расчет главного вектора и главного момента.

    курсовая работа [1,6 M], добавлен 14.11.2017

  • Движение тела по эллиптической орбите вокруг планеты. Движение тела под действием силы тяжести в вертикальной плоскости, в среде с сопротивлением. Применение законов движения тела под действием силы тяжести с учетом сопротивления среды в баллистике.

    курсовая работа [1,2 M], добавлен 17.06.2011

  • Основные задачи динамики твердого тела. Шесть степеней свободы твердого тела: координаты центра масс и углы Эйлера, определяющие ориентацию тела относительно центра масс. Сведение к задаче о вращении вокруг неподвижной точки. Описание теоремы Гюйгенса.

    презентация [772,2 K], добавлен 02.10.2013

  • Определение равнодействующей плоской системы сил. Вычисление координат центра тяжести шасси блока. Расчёт на прочность элемента конструкции: построение эпюр продольных сил, прямоугольного и круглого поперечного сечения, абсолютного удлинения стержня.

    курсовая работа [136,0 K], добавлен 05.11.2009

  • Динамические уравнения Эйлера при наличии силы тяжести. Уравнения движения тяжелого твердого тела вокруг неподвижной точки. Первые интегралы системы. Вывод уравнения для угла нутации в случае Лагранжа. Быстро вращающееся тело: псевдорегулярная прецессия.

    презентация [422,2 K], добавлен 30.07.2013

  • Теорема об изменении момента количества движения системы. Плоско-параллельное движение или движение свободного твердого тела. Работа сил тяжести, действующих на систему, приложенных к вращающемуся телу. Вращательное и плоско-параллельное движение.

    презентация [1,6 M], добавлен 26.09.2013

  • Поступательное, вращательное и сферическое движение твердого тела. Определение скоростей, ускорения его точек. Разложение движения плоской фигуры на поступательное и вращательное. Мгновенный центр скоростей. Общий случай движения свободного твердого тела.

    презентация [954,1 K], добавлен 23.09.2013

  • Изучение понятия "вес тела" - силы, с которой это тело действует на опору или подвес, вследствие действия на него силы тяжести. Обозначение и направление веса тела. Характеристика принципа работы и видов динамометров – приборов для измерения силы (веса).

    презентация [465,2 K], добавлен 13.12.2010

  • Основы динамики вращений: движение центра масс твердого тела, свойства моментов импульса и силы, условия равновесия. Изучение момента инерции тел, суть теоремы Штейнера. Расчет кинетической энергии вращающегося тела. Устройство и принцип работы гироскопа.

    презентация [3,4 M], добавлен 23.10.2013

  • Принципы методов сопротивления материалов, строительной механики и теплотехники. Методы определения функций состояния систем. Статика твердого недеформируемого тела. Основные причины отказов (аварий и катастроф) систем в течение всего срока службы.

    курсовая работа [693,5 K], добавлен 01.12.2012

  • Виды систем: неизменяемая, с идеальными связями. Дифференциальные уравнения движения твердого тела. Принцип Даламбера для механической системы. Главный вектор и главный момент сил инерции системы. Динамические реакции, действующие на ось вращения тела.

    презентация [1,6 M], добавлен 26.09.2013

  • Решения задач динамики системы. Механическая система, находящаяся в равновесии под действием плоской произвольной системы сил. Реакции двух закрепленных точек твердого тела, возникающие при вращении твердого тела вокруг оси. Применение принципа Даламбера.

    методичка [1,8 M], добавлен 03.12.2011

  • Сущность механического, поступательного и вращательного движения твердого тела. Использование угловых величин для кинематического описания вращения. Определение моментов инерции и импульса, центра масс, кинематической энергии и динамики вращающегося тела.

    лабораторная работа [491,8 K], добавлен 31.03.2014

  • Момент инерции тела относительно неподвижной оси в случае непрерывного распределения масс однородных тел. Теорема Штейнера. Кинетическая энергия вращающегося твердого тела. Плоское движение твердого тела. Уравнение динамики вращательного движения.

    презентация [163,8 K], добавлен 28.07.2015

  • Использование теоремы об изменении кинетической энергии. Исследование качения цилиндра с проскальзыванием и без него, со сдвинутым центром тяжести. Составление уравнения движения. Вычисление начальных давлений на стену и пол при падении стержня.

    лекция [579,2 K], добавлен 30.07.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.