Преобразования Лоренца. Следствия из преобразований Лоренца

Рассмотрение инерциальных систем отсчета. Изучение симметричных уравнений Эйнштейна. Расчет длины тела в разных системах. Следствия из преобразований Лоренца. Релятивистский закон сложения скоростей. Определение дифференциалов переменных координат.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 06.06.2014
Размер файла 416,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Реферат

по дисциплине: Физика

на тему: Преобразования Лоренца. Следствия из преобразований Лоренца

Введение

Нам предстоит решить вопрос о формулах преобразования координат и времени (имеются в виду формулы, связывающие координаты и моменты времени одного и того же события в разных инерциальных системах отсчета).

Преобразования Галилея! Но эти преобразования основаны на предположениях, что длина тел не зависит от движения и время течет одинаково в различных инерциальных системах отсчета. Однако было доказано, что в действительности это не так: течение времени и длина тел зависят от системы отсчета - выводы, являющиеся неизбежным следствием постулатов Эйнштейна. Поэтому от преобразований Галилея отказались, т.к. они лишь частный случай каких-то более общих преобразований. Возникает задача отыскания таких формул преобразования, которые, во-первых, учитывали бы замедление времени и лоренцевое сокращение (т.е. были бы в конечном счете следствиями постулатов Эйнштейна), и, во-вторых, переходили бы в предельном случае малых скоростей в преобразования Галилея. Перейдем к решению этой задачи.

1. Преобразования Лоренца

лоренц преобразование инерциальный дифференциал

Для иллюстрации того, что преобразования Галилея несовместимы с сформулированными постулатами Эйнштейна рассмотрим две инерциальные системы отсчета: К ( с координатами x, y, z) и К' ( с координатами x' , y', z'), движущуюся относительно К в доль оси х со скоростью V=const (рис. 1)

Пусть в начальный момент времени t=t'=0 когда начала координат О и О' совпадают, излучается световой импульс. Согласно второму постулату Эйнштейна скорость света в обеих системах одна и та же, равна с. Поэтому если за время t в системе К сигнал дойдет до некоторой точки, пройдя расстояние x=ct, то в системе К' координата светового импульса в момент достижения той же самой точки x'=ct' (t'-время прохождения светового импульса от начала координат до точки в системе К') Путем вычитания получим

x'-x= c(t'-t)

так как х х', то t' t. Следовательно отсчет времени в системах К и К' различен - отсчет времени имеет относительный характер.

Эйнштейн показал что в теории относительности классические преобразования Галилея, описывающие переход от одной инерциальной системы отсчета к другой:

K K' K' K

x'= x - vt, x=x'+ vt,

y'=y y=y'

z'=z z=z'

t'=t. t=t'.

заменяются преобразованиями Лоренца, удовлетворяющими постулатам Эйнштейна.

Преобразования Лоренца имеют вид:

K' K K K'

Данные уравнения симметричны и отличаются лишь знаком при v. Это очевидно так как если скорость движения системы K' относительно системы K равна v, то скорость движения K относительно K' равна- v.

Так же понятно, что при малых скоростях, то есть когда v/c << 1, они переходят в классические преобразования Галилея, которые являются, следовательно, предельным случаем преобразований Лоренца.

Из преобразований Лоренца следует очень важный вывод о том, что и расстояние, и промежуток времени между двумя событиями меняются при переходе от одной инерциальной системы отсчета к другой.

2. Следствия из преобразований Лоренца

1. Лоренцево сокращение. Длина тел в разных системах.

Пусть в системе отсчета K' покоится стержень, параллельный оси у и имеющий длину Ду' = у2' - у1' , где у2' и у1' - координаты концов стержня. Система K' движется относительно системы K со скоростью V вдоль оси у. Длина стержня в системе K равна Ду = у2 - у1 (у2 и у1 - координаты концов стержня в момент времени t.) Найдем связь длин стержня в двух системах. Для этого используем преобразования Лоренца:

Вычитая у1' из у2', находим

Собственной длиной стержня называется его длина в той системе отсчета, в которой он покоится. Обозначив ее через L0 = Ду', а длину того же стержня в системе отсчета K - как L = Ду, получим

Следовательно, самую большую длину стержень имеет в той системе отсчета, в которой он покоится. Его длина в системе, в которой он движется со скоростью V, уменьшается в число раз, равное

Этот результат называется лоренцевым сокращением. В направлениях осей x, z размеры стержня не меняются.

2. Длительность процессов в разных системах

Пусть в точке с координатой x' в системе отсчета K' протекает некоторый процесс длительностью в этой системе Дt0= t2'- t1' (собственное время процесса). Найдем продолжительность этого процесса равное Дt= t2 - t1 в системе K относительно которой система K' движется. Используя преобразования Лоренца для времени получаем:

Отсюда видно, что длительность одного и того же процесса в разных инерциальных системах различна. В системе K его длительность больше (Дt> Дt0), следовательно в этой системе отсчета он протекает медленнее чем в системе K'. Следовательно, часы, движущиеся относительно инерциальной системы отсчета, идут медленнее покоящихся часов, т.е. ход часов замедляется в системе отсчета, относительно которой часы движутся.

В связи с обнаружением релятивистского эффекта замедления хода часов в свое время возникла проблема «парадокса часов», вызвавшая многочисленные дискуссии.

Релятивистский эффект замедления хода часов является совершенно реальным и получил экспериментальное подтверждение при изучении не стабильных, самопроизвольно распадающихся элементарных частиц в опытах с П-мезонами. Среднее время жизни покоящихся П- мезонов (по часам которые движутся вместе с ними) Дt= 2,2* 10^-8 с. Следовательно, П-мезоны, которые образуются в верхних слоях атмосферы и движутся со скоростью, близкой к скорости света, должны были бы проходить расстояние сДt= 6,6 м , т.е. не могли бы достигать земной поверхности, что противоречит действительности. Объясняется это релятивистским эффектом замедления хода времени.

3. Одновременность в разных системах

Пусть в системе К в точках с координатами у1 и у2 происходят два события в один и тот же момент времени t = t1 = t2. В системе К' этим же событиям отвечают моменты времни:

Их разность равна

Из уравнения следует, что

В зависимости от направления движения системы Кґ ( знака скорости V) разность времен ( t2'-t1') может быть либо положительной, либо отрицательной. Поэтому событие 1 может либо предшествовать событию 2, либо следовать за ним.

4. Релятивистский закон сложения скоростей.

Получим формулу, связывающую скорости движущейся материальной точки в двух инерциальных системах отсчета.

Пусть как и раньше система K' движется относительно системы K с постоянной скоростью V в положительном направлении вдоль оси у. Используем преобразования Лоренца для координат и времени

Найдем дифференциалы переменных

Разделив дифференциалы координат dx, dy, dz на дифференциал времени dt, получим проекции скоростей частицы

Эти формулы осуществляют преобразование проекций скоростей частицы при переходе от системы К к системе К' - они выражают релятивистский закон сложения скоростей. Обратные преобразования получаются заменой штрихованных переменных на нештрихованные и V> -V.

Список используемой литературы

1. Трофимова Т.И. - Курс физики

2. Иродов - Основные законы механики

3. Ландау Л.Д., Лифшиц Е.М.- Краткий курс теоретической физики

4. Ташлыкава-Бушкевич И.И.- Физика, часть 1-я

5. Потехин А.Ф. - Сборник критических работ

Размещено на Allbest.ru

...

Подобные документы

  • Принцип относительности Галилея. Закон сложения скоростей. Постулаты Эйнштейна, их значение. Преобразования Лоренца и следствия из них. Интерферометр Майкельсона и принципы. Сложение скоростей в релятивистской механике. Взаимосвязь массы и энергии покоя.

    презентация [1,4 M], добавлен 31.10.2016

  • Виды отображений в физике. Относительные скорости инерциальных систем. Эффекты, связанные с постоянством скорости света в инерциальных системах. Закон "преломления" луча. Эффекты при вращательном движении. Применение модифицированного преобразования.

    реферат [181,9 K], добавлен 15.12.2009

  • Характеристика силы Лоренца - силы, с которой магнитное поле действует на заряженные частицы. Определение направления силы Лоренца по правилу левой руки. Пространственные траектории заряженных частиц в магнитном поле. Примеры применения силы Лоренца.

    презентация [169,3 K], добавлен 27.10.2015

  • Изменение формы движущегося объекта и другие явления в рамках преобразования Лоренца. Гносеологические ошибки Специальной теории относительности А. Эйнштейна. Проблема определения границ применимости альтернативной интерпретации преобразования Лоренца.

    доклад [3,1 M], добавлен 29.08.2009

  • История появления новой релятивистской физики, положения которой изложены в работах А. Эйнштейна. Преобразования Лоренца и их сравнение с преобразованиями Галилея. Некоторые эффекты теории относительности. Основной закон и формулы релятивистской динамики.

    контрольная работа [90,2 K], добавлен 01.11.2013

  • Различная запись преобразования Лоренца. Следствия преобразований. Парадоксы кинематики специальной теории относительности: одногодок (модифицированный парадокс близнецов), антиподов, "n близнецов", расстояний и пешеходов. Итоги теории относительности.

    реферат [230,7 K], добавлен 03.04.2012

  • Преобразования Лоренца и основные следствия из них. Четырехмерное пространство Эйнштейна. Расстояние между точками трехмерного пространства. Интервал между двумя событиями. Промежуток собственного времени. События, разделенные вещественным интервалом.

    лекция [212,8 K], добавлен 28.06.2013

  • Преобразования Галилея и Лоренца. Создание специальной теории относительности. Обоснование постулатов Эйнштейна и элементов релятивистской динамики. Принцип равенства гравитационной и инертной масс. Пространство-время ОТО и концепция эквивалентности.

    презентация [329,0 K], добавлен 27.02.2012

  • Принцип относительности Г. Галилея для механических явлений. Основные постулаты теории относительности А. Эйнштейна. Принципы относительности и инвариантности скорости света. Преобразования координат Лоренца. Основной закон релятивистской динамики.

    реферат [119,5 K], добавлен 01.11.2013

  • Сила Лоренца - сила, действующая на заряженную частицу, движущуюся в электромагнитном поле. Магнитные силовые линии; влияние индукции магнитного поля на силу Ампера. Применение силы Лоренца в электроприборах; Северное сияние как проявление ее действия.

    презентация [625,3 K], добавлен 14.05.2012

  • Анализ принципов относительности Галилея и Эйнштейна. Астрономический и лабораторный метод измерения скорости света. Преобразование Лоренца и его следствия. Релятивистская механика. Взаимосвязь массы и энергии покоя. Использование ядерных реакций.

    презентация [8,7 M], добавлен 13.02.2016

  • Уравнения Максвелла. Идея о существовании электромагнитного поля. Магнитные явления, закон электромагнитной индукции Фарадея. Следствия уравнения непрерывности. Закон сохранения энергии, сила Лоренца. Дипольное, квадрупольное, магнито-дипольное излучение.

    курс лекций [3,9 M], добавлен 07.08.2015

  • Введення в електродинаміку уявлення про дискретності електричних зарядів. Визначення напряму вектора сили Лоренца. Траєкторія руху зарядженої частинки. Дія магнітного поля на заряджені частки. Складові вектору швидкості: прямолінійний рух, рух по колу.

    презентация [107,8 K], добавлен 27.12.2012

  • Гравитационное поле и его свойства. Направленность гравитационных сил, силовая характеристика гравитационного поля. Действие магнитного поля на движущийся заряд. Понятие силы Лоренца, определение ее модуля и направления. Расчет обобщенной силы Лоренца.

    контрольная работа [1,7 M], добавлен 31.01.2013

  • Инерциальные системы отсчета. Классический принцип относительности и преобразования Галилея. Постулаты специальной теории относительности Эйнштейна. Релятивистский закон изменения длин промежутков времени. Основной закон релятивистской динамики.

    реферат [286,2 K], добавлен 27.03.2012

  • Доказательство ошибочности специальной теории относительности (СТО). Выяснение физического смысла преобразования Лоренца, подход к анализу "мысленных экспериментов" Эйнштейна и исправление ошибок в этих экспериментах. "Волновой вариант теории Ритца".

    статья [68,5 K], добавлен 07.01.2010

  • Сущность принципа относительности Эйнштейна, его роль в описании и изучении инерциальных систем отсчета. Понятие и трактовка теории относительности, постулаты и выводы из нее, практическое использование. Теория относительности для гравитационного поля.

    реферат [14,5 K], добавлен 24.02.2009

  • Понятие абсолютно черного тела. Максвелловская теория электромагнетизма. Релятивистский закон сохранения энергии – массы. Теория относительности А. Эйнштейна. Поглощательная способность тела. Закон теплового излучения Г. Кирхгофа, Стефана-Больцмана.

    реферат [748,6 K], добавлен 30.05.2012

  • Изучение понятия математической физики. Действительная и комплексная формы интеграла Фурье. Оригинал, изображение и операция над ними. Основные свойства преобразования Лапласа. Применение интегральных преобразований при интегрировании уравнений матфизики.

    курсовая работа [281,3 K], добавлен 05.04.2014

  • Анализ явлений аберрации света, эффекта Доплера и явления "деформации" наблюдаемых отрезков. Некорректное определение действительной скорости относительного движения инерциальных систем отсчета Эйнштейном. Анализ ошибок его "мысленных экспериментов".

    статья [157,4 K], добавлен 18.11.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.