Енергетичний спектр та кінетичні властивості низьковимірних електронних систем над рідким гелієм

Встановлення виду гамільтоніану взаємодії поверхневих електронів з неоднорідностями дна плівки гелію на твердій підкладці. Кінетичні властивості квазідво- і квазіодновимірної електронних систем, створених з використанням властивостей поверхні гелію.

Рубрика Физика и энергетика
Вид автореферат
Язык украинский
Дата добавления 10.08.2014
Размер файла 233,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Енергетичний спектр та кінетичні властивості низьковимірних електронних систем над рідким гелієм

Автореферат

дисертації на здобуття наукового ступеня доктора фізико-математичних наук

Загальна характеристика роботи

Актуальність теми. Електрони, локалізовані на поверхні рідкого гелію, утворюють квазідвовимірні (Q2D) і квазіодновимірні (Q1D) системи, вивчення властивостей яких в останні десятиліття стало, по суті справи, окремим напрямком у фізиці низьких температур [1,2]. Інтерес до проведення теоретичних і експериментальних досліджень в області поверхневих електронів (ПЕ) у гелії є обумовлений декількома обставинами. Ці системи вільні від домішок. Завдяки близькості діелектричної сталої гелію до одиниці () середня відстань електронів від поверхні рідини складає см, їхню взаємодію з гелієвою підкладкою в більшості випадків можна розглядати як мале збурювання. Енергетична щілина між основними і першим збудженими рівнями для руху в напрямку, перпендикулярному поверхні рідини, помітно перевищує характерні температури рідкого гелію. Це дозволяє розглядати систему ПЕ як дворівневу систему, що робить її кандидатом на роль кубіта у проблемі квантового комп'ютера. Концентрація електронів може змінюватися в широких границях, при цьому співвідношення між кінетичною енергією і потенційною енергією взаємодії зарядів змінюється настільки сильно, що в розглянутих системах виявляється можливим існування не тільки неупорядкованого (газового), але і кристалічного станів [2,3].

Специфіка дослідження кінетичних властивостей ПЕ над рідким гелієм обумовлена тим, що при температурах нижче 1 К для поверхневих електронів основними виявляються їхні взаємодії з капілярними хвилями на поверхні гелію (риплонами) і неоднорідностями дна плівки гелію. Крім того, у випадку плівки гелію істотним виявляється екранування кулонівської взаємодії електронів, що є незначним над масивною рідиною. Це дозволяє за допомогою поверхневих електронів досліджувати плазмові ефекти в низьковимірних заряджених системах в умовах як практично неекранованої, так і сильно екранованої кулонівської взаємодії [3]. При цьому, при вивченні Q1D систем ПЕ над скривленою поверхнею на їх кінетичних і плазмових властивостях визначальним образом позначається те, що рух не тільки перпендикулярно поверхні рідини, але і поперек провідного каналу виявляється квантованим. Особливості, що їх перелічено, істотно збагачують відомості щодо кінетичних явищ в системах ПЕ, але обчислювальні труднощі тривалий час не дозволяли виконати систематичні теоретичні дослідження цих явищ і провести докладне порівняння з експериментальними даними, що існують.

Наявність великої кількості невирішених цікавих проблем і ідей робить важливим й актуальним систематичне теоретичне дослідження кінетичних явищ у низьковимірних системах зарядів над рідким гелієм, що складає зміст даної роботи.

Зв'язок роботи з науковими програмами, напрямами, темами

Робота підготовлена і виконана у відділі квантових рідин і кристалів Фізико-технічного інституту низьких температур ім. Б. І. Вєркіна НАН України.

Дослідження, що становлять основу даної дисертації, проведені згідно з такими темами:

? «Дослідження квантових об'ємних і поверхневих явищ у рідкому і твердому гелію», № держ. реєстрації 0195U009877;

? «Кінетичні і релаксаційні процеси в квантових рідинах і кристалах при наднизьких температурах», № держ. реєстрації 0196U002949;

? «Дослідження нових квантових систем у рідкому і твердому гелію при наднизьких температурах», № держ. реєстрації 0100U004483;

? «Неоднорідні та низьковимірні системи в рідкому та твердому гелії», № держ. реєстрації 0103U000331.

Мета і задачі дослідження

Кінцева мета проведених досліджень складалася в одержанні нових даних про явища, що відбуваються в системах поверхневих електронів над рідким гелієм. Для досягнення мети необхідно було вирішити такі проблеми:

одержати загальні вирази для енергій поверхневих станів електронів;

установити вид гамільтоніану взаємодії поверхневих електронів з неоднорідностями дна плівки гелію на твердій підкладці;

дослідити кінетичні властивості квазідвовимірної і квазіодновимірної електронних систем, створених з використанням властивостей поверхні гелію;

обчислити функції відгуку і вивчити колективні властивості низьковимірних багаторівневих заряджених систем;

установити закон дисперсії поверхневих коливань розчину ізотопів гелію з мікророзшаруванням і визначити рухливість поверхневих електронів, обумовлену взаємодією з цими коливаннями;

знайти параметри локалізації і дослідити транспортні властивості асиметричних поляронних станів у квазіодновимірних провідних каналах над рідким гелієм;

вирішити проблему поширення електромагнітних хвиль в експериментальній комірці, що містить шар поверхневих електронів, і з'ясувати залежність перемінного струму, що випливає з комірки, від провідності електронного шару.

Об'єкт дослідження - низьковимірні системи зарядів, що взаємодіють з надплинним гелієм.

Предмет дослідження - транспортні і плазмові явища в низьковимірних електронних системах над рідким гелієм.

Методи дослідження

У роботі застосовувались: варіаційний метод визначення енергії поверхневих електронних станів; метод рішення кінетичного рівняння для визначення рухливості електронів; метод функцій відгуку для визначення законів дисперсії плазмових мод квазідвовимірних і квазіодновимірних електронних систем; гідродинамічний метод обчислення частоти зв'язаних коливань поверхні розчину 3Не - 4Не; гідродинамічне наближення для визначення параметрів локалізації, енергії і рухливості асиметричного низьковимірного полярону на поверхні рідкого гелію; метод рішення рівнянь Максвелла для перемінного електромагнітного поля з відповідними граничними умовами з метою визначення внеску токових характеристик поверхневих електронів у хвильові процеси в експериментальній комірці.

Наукова новизна отриманих результатів

У ході виконання роботи була отримана низка нових наукових результатів, що мають принципово важливе й істотне значення для розуміння кінетичних і колективних явищ, що відбуваються в низьковимірних системах електронів, локалізованих над рідким гелієм. Серед пріоритетних наукових результатів слід зазначити такі:

1. Теоретично знайдено енергії основного та першого збудженого рівней, які відповідають квантованому рухові електронів перпендикулярно поверхні рідкого гелію. Встановлена залежність енергій рівней від притискуючого електричного поля і товщини шару гелія.

2. Вперше з'ясовано, що залежність рухливості електронів над плівкою рідкого гелію від товщини шару рідини та температури, що спостерігається експериментально, пояснюється розсіянням електронів на неоднорідностях дна плівки гелію. Уперше знайдено гамільтоніан розсіяння поверхневих електронів на малих неоднорідностях границі гелій - тверда підкладка та оцінено характерні параметри рельєфу дна плівки.

3. Отримано перший доказ, що в системі поверхневих електронів над рідким гелієм реалізується режим повного контролю, у якому зіткнення між електронами грають вирішальну роль у формуванні функції розподілу часток. З'ясовано, що електрон-електронна взаємодія, що ії взято до уваги в рамках наближення повного контролю, веде до зменшення рухливості в діапазоні температур, що відповідає електрон-риплонному розсіянню. Пояснено зменшення рухливості, що спостерігається в експерименті, у порівнянні з теоретичною залежністю, яку отримано в наближенні вільних електронів.

4. Вперше теоретично знайдена залежність рухливості поверхневих електронів у квазіодновимірному каналі над рідким гелієм від температури, притискуючого та ведучого електричних полів, а також від магнітного поля, нормального поверхні гелію. Уперше обчислені частоти зіткнень електронів з атомами гелієвого пару, риплонами та неоднорідностями дна плівки гелію.

5. Установлено закони дисперсії плазмових коливань у багаторівневих системах поверхневих електронів над об'ємним гелієм та його плівкою і знайдено залежність частоти поперечної моди коливань від частоти деполярізаційного зсуву. Знайдено закони дисперсії в умовах сильного екранування кулоновської взаємодії електронів у твердій підкладці під плівкою гелію.

6. Вперше теоретично знайдено закони дисперсії поверхневих коливань у розшарованому розчині ізотопів гелію з кінцевою товщиною рідких фаз та встановлена залежність рухливості електронів, що локалізовані над розчином, від розсіяння поверхневими коливаннями розчину.

7. Прогнозовано вид залежності параметрів локалізації, енергії та рухливості асиметричних електронних поляронів над викривленою поверхнею гелію від притискуючого електричного поля.

Рівень обгрунтування. Достовірність і обгрунтованість одержаних результатів підтверджується такими обставинами:

- результати, отримані в ході виконання дисертаційної роботи, досягнуті з використанням методів, надійність і обґрунтованість яких багаторазово підтверджені в різних галузях квантової механіки, фізичної кінетики і гідродинаміки;

- обґрунтованість отриманих рішень задач, що склали зміст роботи, підтверджується виконанням, при відповідних значеннях параметрів, граничних переходів до результатів, які раніше були отримані з використанням інших наближень;

- теоретичні результати, що їх одержано, взаємодоповнюють теоретичні результати інших авторів і підтверджуються експериментальними даними.

Практичне значення отриманих результатів полягає в тому, що одержані нові результати істотно розширюють наявні уявлення про властивості низьковимірних заряджених систем і про поверхневі явища в рідкому гелії. Отримані в роботі відомості про кінетичні властивості поверхневих електронів і реалізацію режиму повного контролю можуть бути використані при подальшому дослідженні транспорту електронів у різних середовищах в умовах істотного впливу електрон-електронної взаємодії. Схема одержання гамільтоніану взаємодії електрона з неоднорідностями дна плівки гелію і границь між рідкими фазами розшарованого розчину ізотопів гелію може бути використана при розгляді розсіювання зарядів довільним середовищем з нерівними границями розподілу фаз. Результати дослідження транспорту електронів у квазіодновимірних провідних каналах над рідким гелієм дають нові знання про кінетичні властивості електронної системи в умовах, коли лише один ступінь вільності відповідає поступальному рухові, а рух у двох просторових напрямках є квантованим. Дослідження плазмових властивостей багаторівневих квазідвовимірних і квазіодновимірних систем електронів розширює наявні уявлення щодо характеру колективних збуджень у низьковимірних системах зарядів із концентрацією часток, що змінюється в широких границях, перекриваючи як невироджений режим, так і режим квантового виродження. Вивчення поляронних станів електрона на поверхні гелію дало нові знання про можливості самоузгодженого квантовомеханічного і гідродинамічного опису поляронних заряджених квазічасток з різним ступенем асиметрії руху електронів. Визначення залежності вимірювального струму, що витікає з комірки, яка містить поверхневі електрони, дозволяє проводити дослідження кінетичних властивостей низьковимірних заряджених систем при різній геометрії і при довільних співвідношеннях між характерними розмірами експериментальної комірки.

Особистий внесок автора. У наукових працях по темі дисертації особистий внесок автора є визначальним. Роботи [1] і [24] виконані їм самостійно. У роботах [5-9,10-20,22,23] авторові належить постановка задачі і визначення методу її рішення. У роботах [2,3,21] автор брав участь у формулюванні проблеми і виробленню алгоритму її рішення нарівні з іншими співавторами. У роботах [4,13] автор сформулював задачу, що склала теоретичну частину роботи. Всі аналітичні обчислення в перерахованих роботах виконано автором. Він же брав безпосередню участь в аналізі й інтерпретації отриманих результатів.

Випробування результатів роботи

Основні результати роботи доповідалися: на Республіканському семінарі з фізики і техніки низьких температур (Червоний Лиман, 1989 р.), на 17-й Національній конференції з фізики конденсованого стану (Кашамбу, Бразилія, 1994 р.), на Міжнародній конференції з фізики низьких температур LT-22 (Прага, Чеська республіка, 1996 р.), на Міжнародній конференції з електронних властивостей двовимірних заряджених систем EP2DS-12 (Токіо, Японія, 1997 р.), на 20-й Національній конференції з фізики конденсованого стану (Кашамбу, Бразилія, 1997 р.), на Міжнародній конференції з фізики низьких температур LT-23 (Хельсінкі, Фінляндія, 1999 р.), на 22-й Національної конференції з фізики конденсованого стану (Сан-Лоренсу, Бразилія, 1999 р.), на Міжнародному семінарі з квантових рідин і кристалів QFS-2001 (Констанц, Німеччина, 2001 р.), на Міжнародній конференції з електронних властивостей двовимірних заряджених систем EP2DS-14 (Прага, Чеська республіка, 2001 р.), на 25-й Національній конференції з фізики конденсованого стану (Кашамбу, Бразилія, 2002 р.), на Міжнародній конференції з фізики низьких температур НТ-33 (Екатеринбург, Росія, 2003 р.), на Міжнародній конференції з фізики рідини (Київ, Україна, 2003 р.), на Міжнародному семінарі з квантових рідин і кристалів QFS-2004 (Тренто, Італія, 2004 р.), на Національній конференції NANSYS-2004 «Наносистеми: електронна, атомна будівля і властивості» (Київ, Україна, 2004 р.).

Публікації. Основні результати, що увійшли в дисертацію, опубліковано в 24 статтях у провідних наукових журналах України і зарубіжних виданнях, а також у 14 матеріалах конференцій.

Структура та обсяг дисертації. Дисертація складається з вступу, семи розділів, висновків, заключення та списку використаних джерел (188 найменувань). Зміст роботи викладено на 309 сторінках, у тому числі 54 малюнках та 4 таблицях.

Основний зміст роботи

гамільтоніан електронний гелій

Вступ містить пояснення актуальності проблеми. У ньому приведені мета та задачі дослідження енергетичного спектра і кінетичних властивостей ПЕ, наукова новизна і практичне значення отриманих результатів. У Вступі є відзначений зв'язок роботи з науковими проблемами і темами.

У першому розділі описані дослідження енергетичного спектру поверхневих електронів. Приведено основні співвідношення і наближені результати, що їх було отримано до моменту початку виконання роботи. Ці результати засновані на аналітичному рішенні хвильового рівняння для ПЕ в зневазі тими або іншими внесками до потенційної енергії електрона. Більшість результатів було отримано в наближенні нескінченно високого потенційного бар'єра, що перешкоджає проникненню електрона у середину рідкого гелію. Найбільш складною є проблема одержання аналітичних виразів для енергетичного спектру і хвильових функцій у випадку ПЕ над плівкою гелію. Згідно роботі [4], хвильове рівняння для електрона при цьому має аналітичне рішення тільки для тонкої плівки на металевій підкладці, коли можна зневажити поляризаційною взаємодією електрона з гелієм. З метою одержання загальних аналітичних виразів для енергетичного спектра ПЕ в даній роботі застосовано варіаційний метод. Використано наступні вирази для спробних хвильових функцій ПЕ, що відповідають його рухові в напрямку z, нормальному до поверхні гелію:

; , (1)

де і - варіаційні параметри. Використання (1) приводить до виразів для енергій основного () і першого збудженого () станів ПЕ. Параметри й у загальному випадку визначаються чисельно з умови мінімізації енергій і . Це дозволяє визначити і як у випадку ПЕ над масивною рідиною (), так і плівкою гелію. Залеж-ність і від у випадку плівки гелію, що покриває метал, показана на рис. 1 (суцільні лінії). Для порівняння пунктирними лініями показані відповідні залежності, обчислені в [4] з використанням виразу

; . (2)

За допомогою аналогічної процедури обчислень визначено також енергії рівнів і енергетична щілина у випадку ПЕ над розчином ізотопів гелію, чия вільна поверхня містить тонку макроскопічну плівку, збагачену легким ізотопом 3Не.

При дослідженні енергетичного спектра ПЕ в Q1D провідному каналі на поверхні гелію використано теоретичну модель [5] Q1D систем ПЕ над скривленою поверхнею гелію, що експериментально реалізована [6-8]. У цьому випадку потенційна енергія електрона при його русі поперек каналу задається виразом , де для електронів над масивною рідиною ( і - заряд і маса електрона, - притискуюче електричне поле, - радіус кривизни рідини). У випадку Q1D провідного каналу над плівкою гелію частота потенціалу визначається відповідним розташуванням електродів у вимірювальній комірці [8]. В даній дисертаційній роботі досліджено вплив магнітного поля, нормального поверхні гелію, на енергетичний спектр електронів у Q1D провідному каналі і показано, що в цьому випадку енергетичний спектр має вигляд

, ; , (3)

де - циклотронна частота. Спектр має ту ж саму структуру, що й у нульовому магнітному полі (), зберігаючи залежність від одновимірного хвильового числа , що відповідає вільному поступальному рухові уздовж осі провідного каналу. Хвильові функції для руху уздовж осі є стандартними функціями Ерміта для осциляторного руху.

В другому розділі вивчаються кінетичні властивості Q2D системи ПЕ над нескривленою поверхнею гелію. Обчислення рухливості електронів, що мають імпульс у площині границі розподілу пар - рідкий гелій, при наявності ведучого електричного поля , спрямованого в тій же площині, проведено з використанням кінетичного рівняння:

, (4)

яке містить у своїй правій частині інтеграли зіткнень електронів з атомами газу в паровій фазі, риплонами і дефектами (неоднорідностями) дна плівки гелію. Потенціали взаємодії, що визначають імовірність акта розсіювання, для перших двох інтегралів зіткнень були встановлені до початку виконання даної роботи [3,9]. Визначення гамільтоніану взаємодії тим же методом, що в [9] за допомогою підсумовування індивідуальних взаємодій електрона з індукованими дипольними моментами часток середовища, утрачає сенс при розгляді взаємодії ПЕ з твердою підкладкою, що має діелектричну сталу . Для таких підкладок індивідуальні взаємодії сильно екрануються, чим можна зневажити у випадку взаємодії електрона й атомів гелію, розташованого над підкладкою. В даній роботі застосовано новий підхід до визначення , заснований на рішенні рівняння Пуассона для потенціалу електростатичного поля, яке створює в точці простору електрон, розташований у точці з координатами . Підхід є справедливим для підкладки з довільним значенням і дає можливість обчислити додаток до потенціалу поля, що виникає завдяки малим відхиленням міжфазних границь пар - рідина () і рідина - підкладка від рівноважних позицій ( і ). При цьому виникає додаткова сила зображення, що діє на електрон,

.

Визначаючи , знаходимо:

, (5)

де , - модифіковані функції Бесселя. З (5) видно, що тільки у випадку (це виконується, наприклад, якщо речовиною підкладки є отверділий інертний газ або водень) у виразі (5) можна зневажити другим доданком, і тоді цей вираз збігається з , що виходить при підсумовуванні індивідуальних взаємодій ПЕ з атомами твердої підкладки.

З аналізу законів збереження енергії й імпульсу випливає, що зіткнення електрона з атомами пару, довгохвильовими риплонами і неоднорідностями дна плівки близькі до пружного. Це дозволяє при рішенні рівняння (4) використовувати наближення часу релаксації. Функцію розподілу шукають як . Оскільки доступний інтервал концентрацій ПЕ над масивною рідиною є обмежений через проблему електрогідродинамічної нестійкості зарядженої поверхні гелію ( см-2), а відповідні температури Фермі є багато меншими за характерні температури проведення експерименту ( порядку або менше 1 К), розгляд проводиться для невиродженої системи зарядів. У цьому випадку рівноважна частина функції розподілу близька до больцмановської функції, а , де - обернений час релаксації, що представляє собою суму внесків від різних механізмів розсіювання. Остаточний вираз для рухливості має вигляд

; . (6)

Обчислення частот зіткнень і є досить стандартні. При обчисленні частоти , що обумовлена розсіюванням електрона на неоднорідностях дна плівки, використовується гамільтоніан (5). Імовірність процесу розсіювання пропорційна . При обчисленнях використано модель гаусових кореляцій [10], у якій , де параметри і відіграють роль характерних вертикального і горизонтального розмірів поверхневих дефектів.

Для досить великих концентрацій зарядів міжелектронні зіткнення можуть уплинути на вид функції розподілу електронів. Для обліку такого впливу слід додати інтеграл міжелектронних зіткнень у праву частину рівняння (4). Якщо частота міжелектронних зіткнень помітно перевищує частоти зіткнень з розсіювачами (т. зв. наближення повного контролю [11]), то функція розподілу близька до і залежить від дрейфової швидкості електронної системи уздовж напрямку ведучого поля. Величина обчислюється з рівняння балансу імпульсу. Як результат, для рухливості отримано такий вираз:

; . (7)

Показані разом з експериментальними даними [12]. Як видно з рисунка, режим повного контролю реалізується в системі ПЕ при концентраціях електронів см-2, що відповідають притискуючому електричному полю В/см. При менших притискуючих полях експериментальні дані добре описуються з використанням наближення вільних електронів (вираз (6)). Таким чином, можна вважати доведеним, що режим повного контролю реалізується в експериментальних умовах у системі ПЕ над рідким гелієм.

Знайдені такі значення параметрів моделі неоднорідностей дна плівки: см і см у наближенні вільних електронів ( см і см у наближенні повного контролю).

При теоретичному дослідженні рухливості електронів, локалізованих над поверхнею твердого водню, виявилося, що використання виразу (5) не може пояснити рухливість, що є пропорційною температурі і яка спостерігалась експериментально в [14]. Результати [14] можна пояснити, якщо припустити, що має структуру, аналогічну структурі, що має гамільтоніан електрон-риплонної взаємодії з довгохвильовими риплонами [9], з відповідною заміною діелектричної сталої гелію на діелектричну сталу водню. Це означає, що електрон над твердим воднем підбудовується до неоднорідностей поверхні, що мають характерний подовжній розмір порядку або більше дебройлевської довжини хвилі електрона ( см при К) подібно тому, як електрон над вільною поверхнею гелію підбудовується до її довгохвильових зсувів . Хвильова функція електрона при цьому близька до . Згода теоретичної кривої і експериментальних даних [14] для К досягається для см і см.

У третьому розділі роботи приведено результати теоретичного вивчення рухливості ПЕ в квазіодновимірних каналах, створених над гелієм завдяки скривленню форми його поверхні, а також завдяки спеціально підібраній конфігурації електричних полів. Оскільки енергія Фермі при лінійних щільностях зарядів см-1 дуже мала в порівнянні з температурою К, розгляд було проведено для невиродженої системи електронів. Для обчислення рухливості електрона можна використовувати метод рішення кінетичного рівняння, що для частки, яка має енергію і функцію розподілу , записується як

(8)

і аналогічно рівнянню (4) для двовимірного руху ПЕ. Однак тепер кінетичне рівняння залежить від одновимірного хвильового числа , а ведуче електричне поле є спрямованим уздовж каналу (вісь ). Матричні елементи гамільтоніанів розсіювання, що входять в інтеграли зіткнень у правій частині (8), пропорційні , де см - масштаб локалізації хвильової функції електрона для руху поперек каналу (вісь ). Така залежність означає, що основний внесок у процес розсіювання дають , що відповідає см-1 (розглядається випадок нульового магнітного поля при цьому в (3) слід покласти ). З огляду на цей факт і аналізуючи закон збереження енергії при електрон-риплонних зіткненнях, дійдемо висновку, що в електрон-риплонному розсіюванні беруть участь довгохвильові риплони. Це дозволяє використовувати той же гамільтоніан розсіювання [9], що був використаний у Розділі 2 і вважати зіткнення електронів з риплонами (а також з атомами гелієвого пару і неоднорідностями дня плівки гелію) практично пружними. Тому рішення (8) шукається в наближенні часу релаксації. У випадку вільних електронів, коли , рішення (8) має вид

, . (9)

Якщо визначити , а , де - повне число часток, то знаходимо такий вираз для рухливості

, (10)

. Частоти , і є громіздкими функціями аргументу.

У наближенні повного контролю маємо

, . (11)

Значення дрейфової швидкості визначається з рівняння балансу імпульсу. Підсумкове вираження для рухливості має вигляд

.

Якісне поводження рухливостей і в залежності від температури й притискуючого електричного поля однакове, але значення в кілька разів менше, ніж значення . Рухливість представлена на рис. 4.

Слабкість електрон-риплонної взаємодії приводить до того, що вже при порівняно малих значеннях ведучого електричного поля виникає ефект розігріву електронної системи. У результаті ефективна електронна температура . Значення визначається з рівняння балансу енергії , де дисипативна функція зумовлена процесами випромінювання електроном двох короткохвильових збуджень у протилежних напрямках [15]. Обчисливши рухливість як функцію і визначаючи за допомогою рівняння балансу енергії, можна визначити залежність . Така залежність для двох значень показана на рис. 5. Видно, що при В/см рухливість починає швидко зростати в порівнянні зі своїм рівноважним значенням у границі ; .

У випадку Q1D руху ПЕ над плівкою гелію визначальну роль у рівнянні (8) можуть грати їхні зіткнення з неоднорідностями дна плівки, описувані . Обчислення рухливості з урахуванням цього доданку приводить до висновку, що для товщини плівки см і для рухливість, обумовлена електрон-риплонним розсіюванням, виявляється пропорційною , на відміну від рухливості над масивною рідиною, де вона в цій границі пропорційна . У той же час рухливість, обумовлена взаємодією з неоднорідностями дна плівки, виявляється пропорційною , здобуваючи значення на півтора-два порядку менше відповідних значень рухливості завдяки електрон-риплонному розсіюванню. Таке сильне розходження температурних залежностей рухливостей, зв'язаних з різними механізмами розсіювання ПЕ, може виявитися сприятливим при спробах експерименнтального виявлення впливу розсіювання на неоднорідностях дна плівки для ПЕ в Q1D каналі.

Той факт, що енергетичний спектр ПЕ (3) у Q1D каналі при наявності магнітного поля має ту ж структуру, що й у нульовому магнітному полі () дозволяє обчислювати рухливість у ненульовому магнітному полі методами, застосованими за умов відсутності магнітного поля. Розходження полягає в тому, що від магнітного поля залежать і ефективна маса електрона, і матричні елементи операторів розсіяння ПЕ, що сильно ускладнює чисельні розрахунки. Залежності Q1D рухливості ПЕ від магнітного поля і температури, отримані в наближенні повного контролю.

У четвертому розділі роботи теоретично вивчаються плазмові коливання в багаторівневих системах зарядів, прикладами яких є Q2D і Q1D системи поверхневих електронів над гелієм. При досить низьких температурах, коли щільність гелієвого пару стає мізерно малої, а взаємодією з риплонами можна зневажити, системи електронів над гелієм перетворюються в однозарядові системи, що практично не взаємодіють з розсіювачами. Метою розділу є послідовний розгляд як подовжніх, так і поперечних плазмових коливань у Q2D і Q1D електронних системах і встановлення закону дисперсії мод з використанням формалізму діелектричних функцій, що залежать від хвильового числа і частоти [16,17]. Дисперсійне рівняння має вигляд

, (12)

с діелектричною функцією . Рівняння (12) залежить від двовимірного або одновимірного хвильового чисел, а матричні елементи кулонівської парної взаємодії обчислюються як

(13)

у Q2D (індекси нумерують дискретні рівні для руху в напрямку, нормальному поверхні гелію) і як

(14)

у Q1D, коли дискретна система рівнів відповідає рухові електронів поперек провідного каналу.

Рівняння (12) в умовах або (заселеністю збуджених рівнів можна зневажити) розщеплюється на два рівняння

; . (15)

Перше з них відповідає подовжнім плазмовим коливанням у площині границі розподілу рідина - пар (уздовж осі провідного каналу), друге - поперечним, що супроводжуються переходами електронів між основним і першим збудженим рівнями.

Вирази (13) і (14) залежать від двовимірного й одновимірного фур'є-образів потенційної енергії парної взаємодії електронів, що мають, відповідно, координати й у (13) і й у (14). Для того, щоб знайти цю енергію , необхідно вирішити рівняння Пуассона для потенціалу електричного поля , створюваного в точці простору електроном, розташованим у точці . При цьому слід використовувати відповідні граничні умови. Дана процедура дозволяє установити вид у випадку електронів, розташованих як над об'ємним рідким гелієм, так і над плівкою гелію при довільному значенні діелектричної постійної речовини підкладки під плівкою. Це дозволяє розглянути випадки як слабкого (), так і сильного () екранування кулонівської взаємодії.

У Q2D випадку для ПЕ над плівкою гелію

, (16)

що для масивної рідини дає

. (17)

Остання рівність у (17), можлива завдяки , означає слабість ефектів екранування кулонівської взаємодії для електронів над об'ємним гелієм.

Для обчислення необхідно провести обернене фур'є-перетворення в рівняннях (16) і (17), покласти , що відповідає розташуванню зарядів в одній площині, а потім провести одновимірне перетворення Фур'є. У найбільш цікавому випадку сильного екранування кулоновської взаємодії над плівкою гелію, що покриває метал (), маємо

. (18)

Функції відгуку в (12) для невиродженої системи електронів обчислюються точно. Для довгохвильової границі вони можуть бути записані єдиним образом як для невиродженої, так і виродженої систем, реалізація яких можлива для ПЕ над плівкою гелію.

Роблячи обчислення з використанням хвильових функцій перших двох дискретних рівнів у (13) і (14) (у Q2D використовуємо вираження (1)) і підставляючи результат обчислень у (15), одержуємо наступні закони дисперсії подовжніх і поперечних плазмових коливань для довгохвильової границі малих хвильових чисел.

Q2D. Закон дисперсії подовжньої гілки коливань має вигляд для неекранованої кулонівської взаємодії і для екранованої взаємодії; . Швидкість звуку складає см/с для товщини плівки гелію см і = 1011 см-2. Дані вирази були також раніше отримані іншими авторами з використанням різних наближень. Закон дисперсії поперечної моди, обчислений з використанням другого з рівнянь (15), відрізняється від частоти електронних переходів між рівнями 1 і 2. Відмінність визначається частотою деполярізаційного зрушення , де - параметр локалізації хвильової функції електрона в напрямку у випадку нульового притискуючого електричного поля; , - чисельний множник порядку 10-1. Якщо 10-6 см, см-2, Гц для плівки гелію на поверхні металу.

Q1D. Для , коли можна зневажити другим доданком у (18),

; (19)

- лінійна концентрація електронів, . Для плівки гелію товщиною , що покриває метал, для маємо , де швидкість звуку при і , якщо . В обох граничних випадках см/с ( см-1).

Закон дисперсії поперечної моди має вигляд:

; ; (20)

Гц ( см-1), якщо електрони розташовані над масивною рідиною. Для електронів над плівкою гелію як і раніше частота поперечної моди описується виразом (20), але частота деполярізаційного зсуву стає рівною якщо і при . По оцінках Гц ( Гц), якщо см-1 і В/см.

Закон дисперсії плазмових коливань Q1D системи зарядів у даній роботі визначався також з використанням квазікристалічного наближення [18], у якому вважається, що електрони утворюють лінійний ланцюжок, у якому розташовані на середній відстані друг від друга, взаємодіють за законом Кулона і випробують малі зсуви і щодо рівноважних положень. У цьому випадку в потенційній енергії ланцюжка з'являється внесок

. (21)

Закон дисперсії плазмових мод знаходиться за допомогою рівнянь руху для електрона, який займає позицію . При цьому закони дисперсії для збігаються з (19) і (20) з тією відмінністю, що аргумент логарифма в (19) тепер залежить від , а частоту деполярізаційного зсуву в (20) слід покласти рівною нулеві. Зручність квазікристалічного наближення полягає в тому, що з його допомогою можна одержати закон дисперсії плазмових коливань у присутності магнітного поля, спрямованого уздовж осі . Закони дисперсії двох гілок спектру плазмових коливань при цьому мають вигляд:

. (22)

У п'ятому розділі дисертації розглядаються властивости поверхневих електронів, що розташовані над поверхнею розшарованого розчину 3Не в 4Не. Як відомо, розшарування розчинів 3Не - 4Не починається поблизу вільної поверхні завдяки наявності поверхневих домішкових андріївських рівнів для квазічасток 3Не. При цьому за певних умов на поверхні можливе утворення тонкої, але макроскопічної плівки, збагаченої легким ізотопом (мікророзшарування) [19]. Розшарування розчинів спостерігалося й у рідкій плівці (див. рис. 7). Воно можливе й у вузьких капілярах. При наявності ПЕ над розчином з мікророзшаруванням їхні кінетичні властивості залежать від взаємодії з поверхневими модами розчину. Це викликає необхідність обчислення закону дисперсії поверхневих коливань з обліком в'язкісного загасання. Для цього використовано систему лінеарізо-ваних рівнянь Навьє-Стокса

;

; . (23)

Тут і - швидкість рідини у верхній фазі 1, що вважається нормальною, і нормальна швидкість у нижній фазі 2, - нормальна густина цієї фази; надплинна швидкість , - гідродинамічний потенціал; ; - надплинна густина, . Систему рівнянь (23) слід доповнити відповідними граничними умовами, у яких необхідно врахувати сили Ван дер Ваальса, що діють як між рідкими фазами і твердою підкладкою, так і між фазами 1 і 2 [20,21]. У результаті рішення системи (23) одержуємо дисперсійне рівняння, що описує зв'язані коливання міжфазних границь, розташованих при і при :

, (24)

- функції хвильового числа і частоти. Приклад чисельного рішення (24) для розчину з мікророзшаруванням () показаний на рис. 8. Видно, що в відмінність від ідеальних рідин (пунктирні лінії), урахування в'язкості рідких фаз приводить до того, що тільки одна гілка спектра має мале загасання. Закон дисперсії цієї гілки є аналогічним капілярним хвилям в однорідній рідині. Однак частота залежить від ефективного коефіцієнта поверхневого натягу , що представляє собою суму коефіцієнтів поверхневого натягу об'ємної фази 1 і границі розшарування масивних фаз 1 і 2.

Проводячи обчислення потенційної енергії ПЕ, який розташований над розчином з мікророзшаруванням, аналогічно тому, як це було зроблено в Розділі 2, використовуємо вираз (5), у якому беремо рівним діелектричній сталій верхньої рідини, а - діелектричній сталій нижньої рідини. При цьому беремо до уваги, що . Взаємодія електрона з коливаннями вільної поверхні, що є пропорційною , аналогічна електрон-риплонному розсіянню в однорідній рідині. З огляду на той факт, що зсуви і для розглянутої гілки коливань збігаються [20], знаходимо гамільтоніан електрон-риплонної взаємодії у випадку розчину з мікророзшаруванням

;

; (25)

.

Оскільки вираз (25) є убутною функцією , частота зіткнень з риплонами пропорційна , а рухливість, як це видно з (6), пропорційна оберненій частоті зіткнень, дійдемо висновку, що рухливість ПЕ над розчином з мікророзшаруванням є зростаючою функцією . При рухливість прагне до рухливості над об'ємним нормальним 3Не. Цей випадок, однак, слід розглядати окремо, тому що закон дисперсії риплонів у 3Не повинний залежати від коефіцієнту його поверхневого натягу, а не від . У даній роботі розглянуте загасання капілярних хвиль на поверхні об'ємного 3Не. Закон дисперсії риплонів показаний на рис. 9. Як видно, риплони з хвильовими числами см-1 сильно загасають у нормальному 3Не. Проте було проведене обчислення рухливості ПЕ над 3Не в припущенні, що риплони загасають слабко, як у випадку 4Не. Результати розрахунку показані на рис. 10. Видно, що експериментальні дані [22] добре погоджуються з обчисленою теоретичною залежністю. Таким чином, незважаючи на сильне загасання вільних риплонів, їхній вплив на рухливість ПЕ над 3Не виявляється таким же, як у риплонів, що загасають слабко.

У Розділі 5 також досліджено загасання зв'язаних коливань міжфазних границь розшарованої плівки (рис. 7). Рішення рівняння (24) у цьому випадку приводить до закону дисперсії, що має «вікна» хвильових чисел, коли повинне спостерігатися слабке загасання капілярної гілки спектра, що можливо, якщо або . При малих маємо сильне загасання через ; при великих глибина проникнення в'язкої хвилі більше довжини хвилі, і знову маємо сильне загасання. Крім цього в Розділі 5 у наближенні ідеальних рідин розглянуті колективні коливання розшарованого розчину 3Не - 4Не в циліндричному капілярі радіуса . Легкий ізотоп концентрується поблизу осі циліндра, і його рідка фаза має радіус . Досліджено подовжні коливання, у яких змінюється перетин центрального рідкого шнура і поперечні коливання, у яких перетин центрального шнура залишається незмінним, але його центр випробує зсув щодо осі капіляра. Враховано вплив капілярних і вандерваальсових сил на закони дисперсії, що виявляються подібними для обох типів коливань. Закон дисперсії поперечних коливань для має вигляд

, (26)

де швидкість обумовлена внеском сил Ван дер Ваальса.

У шостому розділі дисертаційної роботи теоретично вивчаються властивості поляронних квазічасток, що можуть утворюватися на поверхні рідкого гелію завдяки локалізації електронів не тільки в напрямку, нормальному рідині, але й у площині границі розподілу рідина - пар. При цьому має місце своєрідний ефект самоузгодження: локалізація електрона супроводжується виникненням деформації поверхні гелію (лунки), чия форма задається функцією . Це, у свою чергу, сприяє локалізації електрона [23,24]. Слід зазначити, що не можна розглядати як збурювання, як це вважалося при вільному русі електрона уздовж поверхні гелію. У даній роботі вивчається вплив, що робить на властивості поляронних квазічасток скривлення поверхні гелію в квазіодновимірних каналах. Як показано в Розділі 1, таке скривлення можна врахувати, додавши енергію до потенційної енергії електрона. У результаті хвильове рівняння для електрона приймає вигляд

, (27)

де - оператор моменту імпульсу. При записі (27) ми зневажаємо ефектами поляризаційної взаємодії електрона і гелію. Повна енергія комплексу електрон + лунка має вигляд

; , (28)

де - прискорення гравітації. Варіюючи (28), одержуємо рівняння механічної рівноваги , що дозволяє знайти зв'язок між і хвильовою функцією . Для обчислення енергії поляронних станів використовуються спробні хвильові функції в основному стані й у збудженому стані. Підставляючи ці вирази до (28) і варіюючи знайдені значення енергії, визначаємо параметри локалізації. Для найбільш цікавого інтервалу притискуючих полів кВ/см виявляється, що см, а см. Таким чином, полярон виявляється сильно асиметричним. Енергія зв'язку полярону, визначена як енергія за винятком енергії вільного руху електрона, виявляється порядку К для цього інтервалу притискуючих полів, а енергетична щілина між електронними станами складає - К ( - Гц). У роботі також визначена асиметрична рухливість полярону уздовж і поперек провідного каналу шляхом рішення рівняння Навьє-Стокса для поля швидкостей, порушуваного в рідині при русі в ній лунки разом із захопленим електроном [23]. Характерні значення рухливостей виявляються порядку 104 - 103 см2/(Вc) у приведеному інтервалі притискуючих полів, що на два-три порядків менше значень рухливості ПЕ у вільному стані.

У заключному сьомому розділі роботи розглянуто питання зв'язку між вимірювальним сигналом, що знімається з експериментальної комірки, яка містить поверхневі електрони, і провідністю електронної системи. Дана проблема носить принциповий характер, оскільки традиційна методика часу проліту, яка широко використовується при дослідженні рухливості зарядів у конденсованих середовищах та газах, для виміру провідності електронного шару над рідким гелієм не може бути застосована. У роботі, на прикладі вимірювальної комірки циліндричної форми, проблему уперше вирішено в загальному виді шляхом рішення рівнянь Максвелла для електромагнітного поля в комірці з урахуванням токових процесів у шарі ПЕ. У результаті методом перетворення Фур'є-Бесселя отримано систему рівнянь щодо дійсної і уявної частин провідності електронів, значення цих частин можна установити, виходячи зі значень дійсної і уявної частин вимірювального струму , де - амплітуда зовнішнього збуджуючого потенціалу:

; (29)

; (30)

; , визначає вимірювальний струм з комірки у відсутності електронів, - геометричні фактори, а частота є плазмовою частотою, що є модифікована у порівнянні з частотою завдяки впливу граничних умов для електромагнітного поля на електронному шарі та на верхній і нижній обкладинцях електричної ємності.

Систему рівнянь, аналогічну рівняннім (29) та (30), можна отримати також для вимірювальної комірки прямокутної форми. Таким чином, виходячи з вимірюванних значень та і підставляючи їх до рівнянь (29) і (30), маємо систему двох рівнянь відносно та . Вирішуючи цю систему рівнянь, вдається однозначно, без підгінних параметрів, визначити провідність ПЕ в різних фазових станах, включаючи вігнеровський кристал [18-19].

Висновки

У дисертації узагальнено результати теоретичних досліджень властивостей низьковимірних систем електронів, що локалізовані над поверхнею рідкого гелію. Для виконання роботи використано варіаційний метод визначення енергії поверхневих станів електронів над діелектриком, метод кінетичного рівняння визначення рухливості електронів уздовж границі розподілу пар - рідкий гелій, наближення функцій відгуку для визначення закону дисперсії колективних плазмових мод, гідродинамічне наближення при розгляді властивостей поляронних станів електронів над гелієм. Використання перелічених методів дослідження дозволило систематично вивчити енергетичний спектр і кінетичні явища в квазідвовимірних та квазіодновимірних системах поверхневих електронів, пояснити ряд явищ, що спостерігалися експериментально, і прогнозувати нові, раніше не вивчені властивості низьковимірних систем електронів над рідким гелієм. Серед результатів, представлених у дисертаційній роботі, найбільш важливими є:

1. З'ясовано, що енергії поверхневих станів електронів над рідким гелієм можуть бути обчислені аналітично з використанням варіаційного методу. Процедура розрахунку, що включає аналітичні і чисельні розрахунки, дозволяє визначити як енергії станів, так і параметри локалізації електронів у залежності від притискуючого електричного поля при довільній товщині шару рідини і будь-яких значеннях діелектричної сталої підкладки.

2. Теоретично вивчено транспортні властивості електронів уздовж поверхні гелію за допомогою методів, заснованих на розв'язку кінетичного рівняння Больцмана. Вперше показано, що для великих значень притискуючих електричних полів наближення повного контролю, у якому міжелектронні зіткнення грають вирішальну роль у формуванні функції розподілу носіїв, приводить до значення рухливості, яке співпадає з експериментальними і є в два рази меншим, ніж у наближенні вільних електронів. Таким чином доведено, що режим повного контролю реалізується у системі поверхневих електронів.

3. Вперше отримано, за допомогою методу електростатичних зображень, потенціал розсіювання електрона на неоднорідностях границі плівки і твердої підкладки, поверхнева структура якої близька до атомно гладкої. Виявлено, що взаємодія з неоднорідностями дна плівки у визначених умовах сильно впливає на транспортні властивості поверхневих електронів. Порівняння результатів обчислень з експериментальними даними дозволяє установити характерні розміри неоднорідностей границі гелій - підкладка.

4. Встановлено, що рухливість електронів над твердим воднем пояснюється їх розсіюванням на дефектах вільної поверхні кристалу. Зіставлення теоретичного розрахунку з експериментально визначеними значеннями рухливості дозволяє укласти, що поверхня водню має терасову будівлю, причому довжина плоских ділянок складає десятки міжатомних відстаней, а їхня характерна висота на порядок менше.

5. Вперше обчислено рухливість електронів уздовж квазіодновимірного каналу, заповненого рідким гелієм, завдяки взаємодії електронів з риплонами й атомами гелієвого пару. Виявлено роль переходів між дискретними енергетичними рівнями, що відповідають рухові часток поперек каналу. З'ясовано, що розходження між результатами обчислення рухливості в одночастковому наближенні й у наближенні повного контролю у квазіодновимірному каналі існує як для електрон-риплонної взаємодії, так і взаємодії з атомами гелію в парі. Зі збільшенням ведучого електричного поля рухливість електронів уздовж провідного каналу зростає в умовах, коли ефективна температура електронної системи помітно перевищує температуру гелію.

6. Встановлено, що рухливість електронів уздовж провідного каналу над гелієм при наявності магнітного поля, нормального поверхні рідини, пояснюється залежністю як ефективної маси, так і імовірності процесів розсіювання від магнітного поля. Рухливість електронів зменьшується зі збільшенням магнітного поля. Температурна залежність рухливості для слабких магнітних полів якісно подібне тієї, що є в нульовому магнітному полі.

7. З'ясовано, що при досить низьких температурах, коли заселеністю збуджених енергетичних рівнів можна зневажити, спектр колективних мод квазідвовимірної і квазіодновимірної систем електронів на поверхні рідкого гелію містить дві гілки. Одна з них відповідає подовжнім коливанням у площині зарядів (уздовж провідного каналу), друга - поперечним коливанням, зв'язаним з переходом з основного на перший збуджений рівень для руху поперек шару електронів (поперек каналу). Знайдено точні вирази для функцій відгуку невироджених електронних систем і отримано асимптотичні вираження цих функцій у довгохвильовій границі для вироджених систем. Розглянуто вплив екранування кулонівської взаємодії електронів над плівкою гелію. Доведено, що закони дисперсії поперечних мод є оптичними. Значення граничної частоти визначається частотою одноелектронних спектроскопічних переходів з основного на перший збуджений рівень, зміненої на величину деполяризаційного зсуву, який є пропорційним концентрації зарядів.

8. Показано, що кінетичні властивості поверхневих електронів над розчином 3Не - 4Не з мікророзшаруванням визначаються їхньою взаємодією з поверхневими хвилями розчину. Обчислено дійсну і мниму частину частот цих хвиль з урахуванням процесів загасання завдяки в'язкості. Обчислення проведені з урахуванням внеску вандерваальсової взаємодії рідких фаз як між собою, так і з твердою підкладкою у випадку плівки гелію. Виявлено, що у розчині з мікророзшаруванням єдиної модою поверхневих коливань, що має слабке загасання, є мода, яка відповідає вигинним коливанням верхньої рідкої фази. Закон дисперсії цієї моди є аналогічним законові дисперсії капілярних хвиль в однорідній рідині, але залежить від модифікованого коефіцієнта поверхневого натягу.

9. Встановлено, що рухливість поверхневих електронів над розчином 3Не - 4Не з мікророзшаруванням відрізняється від рухливості над однорідною рідиною як через залежність закону дисперсії поверхневої капілярної моди від модифікованого коефіцієнта поверхневого натягу, так і завдяки додатковим членам у гамільтоніані розсіювання. Для граничного випадку нескінченної товщини плівки обчислена рухливість електронів над масивним легким ізотопом гелію. З'ясовано, що знайдені значення рухливості знаходяться у добрій згоді з експериментально обмірюваними значеннями рухливості електронів над 3Не.

10. Виявлено, що процеси розшарування рідкого розчину ізотопів гелію у вузькому капілярі супроводжуються появою подовжніх і поперечних мод коливань «шнура» рідкої фази, яка збагачена легким ізотопом і розташована в центрі капіляра. Установлено закони дисперсії мод і з їх допомогою знайдено критерії існування стійкого розшарування розчину в залежності від співвідношення товщин рідких фаз.

11. Вперше теоретично досліджено властивості асиметричного електронного полярону на поверхні гелію (електрон, локалізований у площині поверхні рідини разом із самоузгодженою деформацією поверхні гелію). Результати використані для визначення енергетичних і динамічних характеристик полярону в квазіодновимірному провідному каналі, у якому поверхня гелію скривлена завдяки капілярним силам. Обчислено параметри локалізації і енергії основного і збудженого поляронних станів. Визначено енергетичну щілину між основним і збудженим поляронними станами. Обчислено анізотропну рухливість полярону уздовж і поперек каналу завдяки в'язкісному опору рідини рухові масивного комплексу електрон + поверхнева деформація.

12. Вперше у загальному вигляді виявлено вплив токових процесів у шарі електронів, що локалізовані на поверхні гелію, на електромагнітне поле в експериментальній комірці. Встановлено, що комплексний кондактанс комірки залежить як від дійсної, так і уявної частин провідності електронів. Це дозволяє однозначно визначати провідність і рухливість поверхневих електронів при вимірі перемінного струму, що випливає з вимірювального осередку.

Публікації здобувача за темою дисертації

1. Соколов С.С. Энергетический спектр поверхностных электронов над микрорасслоившимся раствором 3Не - 4Не // ФНТ. - 1985. - Т.11, №8. - C. 875 - 878.

...

Подобные документы

  • Явище термоелектронної емісії – випромінювання електронів твердими та рідкими тілами при їх нагріванні. Робота виходу електронів. Особливості проходження та приклади електричного струму у вакуумі. Властивості електронних пучків та їх застосування.

    презентация [321,1 K], добавлен 28.11.2014

  • Найпростіша модель кристалічного тіла. Теорема Блоха. Рух електрона в кристалі. Енергетичний спектр енергії для вільних електронів у періодичному полі. Механізм електропровідності власного напівпровідника. Електронна структура й властивості твердих тіл.

    курсовая работа [184,8 K], добавлен 05.09.2011

  • Експериментальне дослідження й оцінка термо- і тензорезистивних властивостей двошарових плівкових систем на основі Co і Cu, Ag або Au та Fe і Cr та апробація теоретичних моделей. Феноменологічна модель проміжного шару твердого розчину біля інтерфейсу.

    научная работа [914,9 K], добавлен 19.04.2016

  • Основні властивості неупорядкованих систем (кристалічних бінарних напівпровідникових сполук). Характер взаємодії компонентів, її вплив на зонні параметри та кристалічну структуру сплавів. Електропровідність і ефект Холла. Аналіз механізмів розсіювання.

    реферат [558,1 K], добавлен 07.02.2014

  • Природа електронних процесів, що відбуваються при високоенергетичному збудженні і активації шаруватих кристалів CdI2. Дослідження спектрів збудження люмінесценції і світіння номінально чистих і легованих атомами металів свинцю кристалів йодистого кадмію.

    курсовая работа [666,8 K], добавлен 16.05.2012

  • Дослідження електричних властивостей діелектриків. Поляризація та діелектричні втрати. Показники електропровідності, фізико-хімічні та теплові властивості діелектриків. Оцінка експлуатаційних властивостей діелектриків та можливих областей їх застосування.

    контрольная работа [77,0 K], добавлен 11.03.2013

  • Загальна інформація про вуглецеві нанотрубки, їх основні властивості та класифікація. Розрахунок енергетичних характеристик поверхні металу. Модель нестабільного "желе". Визначення роботи виходу електронів за допомогою методу функціоналу густини.

    курсовая работа [693,8 K], добавлен 14.12.2012

  • Комбінаційне і мандельштам-бріллюенівське розсіювання світла. Властивості складних фосфорвмісних халькогенідів. Кристалічна будова, фазові діаграми, пружні властивості. Фазові переходи, пружні властивості, елементи акустики в діелектричних кристалах.

    курсовая работа [1,6 M], добавлен 25.10.2011

  • Обертання атомних електронів навколо ядра, що створює власне магнітне поле. Поняття магнітного моменту атома. Діамагнітні властивості речовини. Величини магнітних моментів атомів парамагнетиків. Квантово-механічна природа магнітоупорядкованих станів.

    курсовая работа [79,6 K], добавлен 03.05.2011

  • Термічний опір передачі теплоти. Режими плину плівки конденсату. Теплообмін при плівковій конденсації. Середній коефіцієнт тепловіддачі. Рівняння Нуссельта в безрозмірному виді. Турбулентний плин плівки по вертикальній поверхні. Ламінарний плин плівки.

    реферат [328,9 K], добавлен 25.03.2012

  • Загальний опис об’єкту - школа І-ІІІ ступенів №202 м. Києва. Обстеження поточного стану енергетичних систем об’єкту. Розрахунок заходів з енергозбереження. Впровадження енергоменеджменту, встановлення аераторів та реконструкція системи освітлення.

    курсовая работа [2,2 M], добавлен 07.04.2015

  • Електрофізичні властивості гранульованих плівкових сплавів в умовах дії магнітного поля. Дослідження електрофізичних властивостей двошарових систем на основі плівок Ag і Co, фазового складу та кристалічної структури. Контроль товщини отриманих зразків.

    дипломная работа [3,9 M], добавлен 08.07.2014

  • Природа твердих тіл, їх основні властивості і закономірності та роль у практичній діяльності людини. Класифікація твердих тіл на кристали і аморфні тіла. Залежність фізичних властивостей від напряму у середині кристалу. Властивості аморфних тіл.

    реферат [31,0 K], добавлен 21.10.2009

  • Розмірні і температурні ефекти та властивості острівцевих плівок сплаву Co-Ni різної концентрації в інтервалі товщин 5-35 нм та температур 150-700 К. Встановлення взаємозв’язку морфології, структури та електрофізичних властивостей надтонких плівок.

    дипломная работа [1,2 M], добавлен 12.12.2011

  • Феромагнітні речовини, їх загальна характеристика та властивості. Магнітна доменна структура, динаміка стінок. Аналіз впливу магнітного поля на електричні і магнітні властивості феромагнетиків. Магніторезистивні властивості багатошарових плівок.

    курсовая работа [4,7 M], добавлен 15.10.2013

  • Шляхи пароутворення як виду фазових переходів, процес перетворення речовини з рідкого стану в газоподібний. Особливості випаровування й кипіння. Властивості пари, критична температура. Пристрої для вимірювання вологості повітря (психрометри, гігрометри).

    реферат [28,6 K], добавлен 26.08.2013

  • Параметри природних газів з наведенням формул для їх знаходження: густина, питомий об’єм, масовий розхід, лінійна, масова швидкість, критичні параметри та ін. Термодинамічні властивості газів, процес дроселювання; токсичні і теплотворні властивості.

    реферат [7,8 M], добавлен 10.12.2010

  • Загальні відомості про розроблення положення про матеріальне стимулювання робітників енергопідприємства. Розроблення "Енергетичного паспорта підприємства". Модернізація систем газо-, тепло-, електро- та водопостачання. Бізнес-план енергопідприємства.

    контрольная работа [42,4 K], добавлен 26.06.2010

  • Основи теоретичного опису розрідженого бозе-газу сформульовані М.М. Боголюбовим. Квантово-механічні хвильові пакети. Вивчення спін-поляризованого водню. Посилення атомів та решітка вихорів в бозе-айнштайнівському конденсаті. Дворідинна модель гелію-II.

    курсовая работа [1,7 M], добавлен 15.12.2013

  • Поведінка частки при проходженні через потенційний бар'єр, суть тунельного ефекту, його роль в електронних приладах. Механізм проходження електронів крізь тонкі діелектричні шари, перенос струму в тонких плівках. Суть тунельного пробою і процеси в діоді.

    реферат [278,0 K], добавлен 26.09.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.