Характеристика Ленинградской АЭС

Общее описание, история становления и развития Ленинградской атомной электростанции. Ее внутреннее устройство и основные компоненты, функциональные особенности и оценка производственной мощности. Генеральный план и принципиальная схема данной станции.

Рубрика Физика и энергетика
Вид отчет по практике
Язык русский
Дата добавления 27.07.2014
Размер файла 880,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Введение

Все большее количество стран - и развитых, и развивающихся, - сегодня приходят к необходимости начала освоения мирного атома. Сегодня в мире обозначилась тенденция, получившая название «ядерный ренессанс». Самые сдержанные прогнозы говорят о том, что в перспективе 2030 года на планете будет эксплуатироваться до 500 энергоблоков (для сравнения, сейчас их насчитывается 435).

Ежегодно атомные станции в Европе позволяют избежать эмиссии 700 миллионов тонн СО2, а в Японии - 270 миллионов тонн СO2. Действующие АЭС России ежегодно предотвращают выброс в атмосферу 210 млн тонн углекислого газа. По этому показателю наша страна находится лишь на четвертом месте в мире.

Больше всего АЭС (63 АЭС, 104 энергоблока) эксплуатируется в США. На втором месте идет Франция (58 энергоблоков), на третьем - Япония (50 блоков). Для сравнения: в России эксплуатируется 10 АЭС (33 энергоблока).

Крупнейшая в мире АЭС - это Kashiwazaki Kariva (Япония) мощностью 8200 МВт (7 реакторов типа BWR установленной мощностью 110-1356 МВт). Cамая крупная в Европе - это Запорожская АЭС (Украина) мощностью 6000 МВт (6 реакторов ВВЭР-1000). В России наибольшую мощность имеют Балаковская, Ленинградская, Калининская и Курская АЭС (по 4 реактора мощностью 1000 МВт каждый).

1. Общая характеристика Ленинградской АЭС

Ленинградская АЭС расположена в 80 км западнее Санкт-Петербурга на южном берегу Финского залива Балтийского моря. Станция (генеральный план) включает в себя 4 энергоблока электрической мощностью 1000 МВт каждый, 1-й и 2-й энергоблоки (первая очередь) расположены в 5 км к юго-западу от города Сосновый Бор, 3-й и 4-й энергоблоки (вторая очередь) находятся на два километра западнее.

Рисунок 1

Энергоблоки 1 и 2 - в составе первой очереди ЛАЭС, а энергоблоки 3 и 4 - в составе второй очереди представляют собой единые сооружения с выделяющимися реакторными отделениями и общими машинными залами.

2. Генеральный план станции

1. Здание вспомогательных систем

2. Общий машинный зал

3. БЩУ эл. помещения деаэраторн. отделения

4. Главный циркуляционный насос

5. Турбогенератор

6. Питательный насос

7. Аварийный питательный насос

8. Блочный трансформатор

9. Трансформатор питания собственных нужд

10. Пуско-резервный трансформатор

11. Насос системы технической (морской) воды

12. Кабели к дизельной 2-го блока

13. Кабели к дизельной l-го блока

14. Береговая насосная

123/1. Реакторный цех 1-го блока

123/2. Реакторный цех 2-го блока

392/1. БЩУ 1-го блока

392/2. БЩУ 2-го блока

392/3. Электропомещения (СУЗ КИПиА РЦ)

390/1,2. Электропомещения (ЭВМ «Скала»)

397. ЦЩУ (связь с энергосистемой пожарная сигнализация)

1. 1-ый и 2-ой энергоблоки

2. 3-ий и 4-ый энергоблоки

3. Насосная морводы 1-ой очереди

4. Насосная морводы 2-ой очереди

5. Сбросной канал 1-ой очереди

6. Подводящий канал 1-ой очереди

7. Подводящий канал 2-ой очереди

8. Сбросной канал 2-ой очереди

9. Дизельная 2-го энергоблока

10. Хранилище ОЯТ

11. Финансовые службы

12. Учебно-тренировочный центр

13. Административный корпус

14. Конденсатоочистка

15. Дизельная 1-го энергоблока

16. Ремонтно-строительный цех

17. Цех азота и кислорода

18. Складское хозяйство

19. Цех централизованного ремонта

20. Административный корпус

21. Дизельная второй очереди

22. Центр информации

23. Пожарная часть

24. Типография

25. Бойлерная

3. Принципиальная схема АЭС

электростанция атомный производственный

Тепловая схема каждого энергоблока АЭС - одноконтурная. Канальный реактор РБМК с кипящим теплоносителем, в качестве которого применена обычная вода, обеспечивает паром две турбины К-500-65/3000.

Циркуляция теплоносителя через реактор осуществляется по двум независимым циркуляционным петлям контура многократной принудительной циркуляции (МПЦ). К каждой петле подключена половина топливных каналов реактора (около 840 каналов). Циркуляционная петля имеет 4 главных циркуляционных насоса (три постоянно находятся в работе, один стоит в резерве), которые через систему коллекторов и трубопроводов подают воду в каждый топливный канал. Вода в каналах нагревается до кипения и частично испаряется. Пароводяная смесь из топливных каналов реактора по трубам пароводяных коммуникаций направляется в барабан-сепараторы, где разделяется на пар и воду. Всего на энергоблоке имеется 4 горизонтальных гравитационных барабан-сепаратора.

Из каждого барабан-сепаратора насыщенный пар поступает в 2 паросборных коллектора и далее по 8 паропроводам направляется к турбинам конденсационного типа.

После стопорно-регулирующих клапанов пар поступает в цилиндр высокого давления турбины. После цилиндра высокого давления пар сепарируется и перегревается свежим паром в промежуточных сепараторах-перегревателях и далее поступает в 4 цилиндра низкого давления, откуда сбрасывается в конденсаторы, охлаждаемые морской водой.

Конденсат отработанного в турбине пара из конденсаторов каждой турбины подается конденсатными насосами первой ступени на установку конденсатоочистки, где весь поток конденсата проходит химическую очистку для обеспечения требуемого качества питательной воды.

Конденсатные насосы второй ступени обеспечивают подачу конденсата в деаэраторы через установку регенерации. Это пять подогревателей низкого давления, которые осуществляют подогрев конденсата паром из промежуточных отборов турбины. Конденсат греющего пара смешивается с потоком основного конденсата по каскадной схеме.

В схеме энергоблока предусмотрено 4 деаэратора, где происходит удаление коррозионно-активных газов из конденсата и создается рабочий запас питательной воды. Питательная вода из деаэратора питательными насосами подается в барабан-сепараторы каждой циркуляционной петли через свой питательный узел. В питательном узле, имеющем 3 параллельных нитки (2 - в работе, 1 - в резерве), установлены механические фильтры и автоматические клапаны, регулирующие подачу питательной воды в барабан-сепараторы путем поддержания в них номинального уровня воды.

В целях обеспечения сброса пара из барабан-сепараторов в режимах с отключением турбин, предусмотрены паросбросные и пароприемные устройства.

Для поддержания требуемого водно-химического режима в контуре МПЦ предусмотрена байпасная очистка производительностью 200 т/час. Контурная вода отбирается из напорных коллекторов главных циркуляционных насосов каждой петли. Предварительно перед поступлением на фильтры байпасной очистки вода охлаждается до 50 С в регенераторах и доохладителях. После очистки возвращаемая в контур МПЦ вода предварительно подогревается в регенераторах контурной водой, поступающей на очистку.

4. Принципиальная схема АЭС

1. Реактор РБМК-1000

17. Малый питательный насос

2. Турбина К-500-65

18. Фильтр

3. Генератор

19. Кольцо высокого давления

4. Барабан-сепаратор

20. Редукционная установка

5. Главный циркуляционный насос

21. Сепаратор-пароперегреватель

6. Напорный коллектор

22. Барбатёр

7. Раздаточно-групповой коллектор

23. Технологический конденсатор

8. Запорно-регулирующий клапан

24. Конденсатный насос

9. Расходомер «ШТОРМ»

25. Главный предохранительный клапан

10. Конденсатор

26. Циркуляционный насос

11. Конденсатный насос 1 подъема

27. Сифонный сливной колодец

12. Конденсатоочистка

28. Насос расхолаживания

13. Конденсатный насос II подъема

29. Регенератор (СПИР)

14. Подогреватель низкого давления

30. Доохладитель (СПИР)

15. Деаэратор

31. Байпасная очистка КМПЦ

16. Питательный насос

Днем рождения АЭС принято считать 23 декабря 1973 года, когда члены Государственной приемной комиссии после 72-часового экзамена, который держали все технологические системы первого в нашей стране атомного энергоблока единичной мощностью в 1000000 киловатт, поставили свои подписи в его «зачетке». Но сердце ядерного исполина начало биться на три месяца раньше - 12 сентября, и именно тогда всю мировую печать облетело сенсационное сообщение: «Первый из семьи атомных гигантов России обретает жизнь!» Именно этот день можно смело называть днем рождения большой ядерной энергетики нашей державы.

В качестве базового для Ленинградской АЭС был принят РБМК-1000 - реактор большой мощности, канальный (или кипящий), на тепловых нейтронах, в котором замедлителем служит графит, а теплоносителем - вода. Создатели ЛАЭС опирались на опыт реакторных установок такого конструкторского направления на первой в мире Обнинской АЭС, блоков Белоярской, Билибинской и Сибирской атомных станций. Устройство реактора показано на следующем рисунке. Применительно к разработанной концепции канальных реакторов были созданы технологии промышленного изготовления специальных радиационно-стойких конструктивных материалов, в том числе на основе циркония, для тепловыделяющих элементов и технологических каналов активной зоны РБМК.

Рисунок 2: РБМК-1000.

5. Устройство реактора

Реактор РБМК-1000 тепловой мощностью 3200 МВт представляет собой систему, в которой в качестве замедлителя используется графит, в качестве теплоносителя - легкая вода, в качестве топлива - двуокись урана. В целом реактор состоит из набора вертикальных каналов, вставленных в цилиндрические отверстия графитовых колонн, и верхней и нижней защитных плит. Легкий цилиндрический корпус (кожух) замыкает полость графитовой кладки. Кладка состоит из собранных в колонны графитовых блоков квадратного сечения с цилиндрическими отверстиями по оси. Кладка опирается на нижнюю плиту, которая передает вес реактора на бетонную шахту. Топливные каналы и каналы регулирующих стержней проходят через нижние и верхние металлоконструкции. Приводы регулирующих стержней расположены над активной зоной в районе верхней защитной конструкции реакторного зала.

Топливо в виде таблеток помещено в оболочку из сплава циркония и ниобия (Э-100). Твэлы длиной 3644 мм по восемнадцать штук собраны в виде цилиндрического пучка в тепловыделяющую сборку. Две сборки, расположенные одна над другой, собранные на одном центральном стержне, образуют тепловыделяющую кассету, которая устанавливается в каждый топливный канал. Перегрузка топлива осуществляется на мощности с помощью разгрузочно-загрузочной машины, расположенной в центральном зале. Один-два топливных канала могут быть перегружены каждый день.

Приблизительно 95% энергии, выделяющейся в результате реакции деления, прямо передается теплоносителю. Около 5% мощности реактора выделяется в графите от замедления нейтронов и поглощения гамма-квантов. Для снижения термического сопротивления и предотвращения окисления графита полость кладки заполнена циркулирующей смесью газов гелия и азота, которая служит одновременно и для контроля целостности каналов по изменению влажности и температуры газа. Под нижней и над верхней плитами имеются пространства для разводки труб водяных коммуникаций от раздаточных коллекторов к каждому каналу и труб пароводяных коммуникаций от каждого канала к барабан-сепараторам.

Разгрузочно-загрузочная машина после удаления соответствующего участка настила и вывода на координаты канала, состыковывается с его головкой, выравнивает свое давление с давлением канала, разуплотняет канал, удаляет выгоревшую топливную кассету и ставит на ее место свежую, уплотняет канал, отстыковывается и транспортирует отработавшую кассету в бассейн выдержки. Пока машина соединена с полостью топливного канала, малый поток чистой воды поступает из нее через теплогидравлическое уплотнение в канал, создавая «барьер» для предотвращения проникновения в полость машины горячей радиоактивной воды из активной зоны.

Система управления и защиты реактора основана на перемещении 191 - 211 твердых стержней-поглотителей в специально выделенных каналах, охлаждаемых водой автономного контура. Система обеспечивает:

· автоматическое поддержание заданного уровня мощности;

· быстрое снижение мощности стержнями автоматических регуляторов и стержнями ручных регуляторов по сигналам отказа отдельных единиц оборудования;

· аварийное прекращение цепной реакции стержнями аварийной защиты по сигналам опасных отклонений параметров блока или в случае отказов основного оборудования;

· компенсацию изменений реактивности при разогреве и выходе на мощность;

· регулирование распределения энерговыделения по объему активной зоны.

Список литературы

1. Маргулова, Т.Х. Атомные электрические станции: учеб. для вузов / Т.Х. Маргулова. - Изд. 4-е, перераб. и доп. - М.: Высш. шк., 1984. - 304 с.

2. http://www.laes.ru/new_lnpp/mindex.shtml?../content/proizv/tehnology/htm/40.htm

3. http://dic.academic.ru/dic.nsf/enc_tech/1482/%D1% 8F % D0% B4% D0% B5% D1% 80% D0% BD % D0% B0% D1% 8F

4. http://ria.ru/spravka/20080522/108084040.html

Размещено на Allbest.ru

...

Подобные документы

  • Основные задачи и положения проекта плавучей атомной электростанции. Характеристика реакторной установки. Преимущества, недостатки и опасность станции. Объективные обстоятельства актуальности процесса развития атомной генерации малой и средней мощности.

    курсовая работа [26,4 K], добавлен 09.06.2014

  • История и необходимость строительства Чернобыльской атомной электростанции (ЧАЭС). Круг виновных в аварии лиц и её последствия (рак щитовидной железы, генетические нарушения). Схема работы атомной электростанции. Измерители мощности и дозы излучения.

    презентация [3,9 M], добавлен 07.10.2013

  • Технико-экономическое обоснование строительства атомной электростанции, расчет показателей эффективности инвестиционного проекта. Характеристика электрических нагрузок района. Параметры тепловой схемы станции. Автоматическое регулирование мощности блока.

    дипломная работа [924,9 K], добавлен 16.06.2013

  • Мировые лидеры в производстве ядерной электроэнергии. Схема работы атомной электростанции с двухконтурным водо-водяным энергетическим реактором. Главный недостаток АЭС. Реакторы на быстрых нейтронах. Проект первой в мире плавучей атомной электростанции.

    реферат [1,4 M], добавлен 22.09.2013

  • Выбор района проектирования электростанции и привязка к месту строительства. Расчёт среднегодовых технико-экономических показателей. График рабочей и ремонтной мощности. Оценка выработки электроэнергии. Экономическое обоснование строительства объекта.

    курсовая работа [1012,6 K], добавлен 13.12.2011

  • Описание и структурная схема компрессорной станции. Электрическая схема привода и способы пуска асинхронного двигателя, расчет механической характеристики и энергетических показателей. Противопожарная профилактика при эксплуатации электроустановок.

    дипломная работа [2,2 M], добавлен 19.11.2013

  • Основные характеристики и энергетические показатели внедрения дроссельного пуска в электропривод компрессорной станции животноводческих ферм АОЗТ "Детскосельский" Ленинградской области. Расчет и подбор электрооборудования, электроснабжение конструкции.

    дипломная работа [5,1 M], добавлен 18.11.2013

  • Технологическая схема электростанции. Показатели ее тепловой экономичности. Выбор начальных и конечных параметров пара. Регенеративный подогрев питательной воды. Системы технического водоснабжения. Тепловые схемы и генеральный план электростанции.

    реферат [387,0 K], добавлен 21.02.2011

  • Общая характеристика и особенности расположения Ленинградской АЭС. Исследование генерального плана и принципиальной схемы станции. Процесс циркуляции теплоносителя через реактор. Принцип действия конденсатных насосов второй ступени, устройство реактора.

    реферат [2,3 M], добавлен 09.12.2012

  • Общая характеристика и функциональные особенности ядерной энергодвигательной установки, ее назначение и сферы использования. Внутреннее устройство и принцип работы данной установки, главные компоненты и их функции: двигатель и холодильник-излучатель.

    реферат [226,6 K], добавлен 07.10.2016

  • Принцип работы атомной электростанции. Упрощённая принципиальная тепловая схема AЭС с реактором типа РБМК-1000. Необходимость конденсатора в тепловой схеме. Теплообмен в активной зоне реактора. Анализ контура многократной принудительной циркуляции.

    реферат [733,0 K], добавлен 01.02.2012

  • Основные технико-экономические показатели энергоблока атомной электростанции. Разработка типового оптимизированного и информатизированного проекта двухблочной электростанции с водо-водяным энергетическим реактором ВВЭР-1300. Управление тяжелыми авариями.

    реферат [20,6 K], добавлен 29.05.2015

  • Проблемы развития и существования энергетики. Типы альтернативных источников энергии и их развитие. Источники и способы использования геотермальной энергии. Принцип работы геотермальной электростанции. Общая принципиальная схема ГеоЭС и ее компоненты.

    курсовая работа [419,7 K], добавлен 06.05.2016

  • Прообраз ядерного реактора, построенный в США. Исследования в области ядерной энергетики, проводимые в СССР, строительство атомной электростанции. Принцип действия атомного реактора. Типы ядерных реакторов и их устройство. Работа атомной электростанции.

    презентация [810,8 K], добавлен 17.05.2015

  • Требования к площадке строительства. Структура генерального плана: здания основного производственного назначения, подсобные производственные и вспомогательные объекты, принципы их размещения. Оценка качества компоновки, ее порядок и основные показатели.

    презентация [8,7 M], добавлен 08.02.2014

  • Электрическая часть атомной электростанции мощностью 3000 МВт. Выбор генераторов. Обоснование двух вариантов схем проектируемой электростанции. Потери электрической энергии в трансформаторах. Расчет токов трехфазного короткого замыкания на шине 330 кВ.

    курсовая работа [1,4 M], добавлен 10.03.2013

  • Выбор площадки строительства и генеральный план КЭС. Выбор основного энергетического оборудования для электростанции. Плановая компоновка и крановое оборудование главного корпуса. Выбор оборудования газовоздушного тракта. Вспомогательные сооружения.

    курсовая работа [228,7 K], добавлен 13.05.2009

  • Мировой опыт развития атомной энергетики. Развитие атомной энергетики и строительство атомной электростанции в Беларуси. Общественное мнение о строительстве АЭС в республике Беларусь. Экономические и социальные эффекты развития атомной энергетики.

    реферат [33,8 K], добавлен 07.11.2011

  • Выбор и обоснование двух вариантов схем проектируемой атомной электростанции по технико-экономическим показателям. Выбор силовых трансформаторов, обоснование упрощенных схем РУ разных напряжений. Расчет токов короткого замыкания, релейной защиты.

    дипломная работа [3,6 M], добавлен 04.08.2012

  • История развития электростанции. Структура установленной электрической мощности на территории Республики Хакасия. Состав генерирующего оборудования станции. Основные технико-экономические показатели инвестиционного проекта "Новый блок Абаканской ТЭЦ".

    реферат [507,8 K], добавлен 10.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.