Механические колебания
Обзор процесса распространения колебаний в пространстве. Образование волн в различных средах, продольные и поперечные волны. Сущность понятий энергии волны и потока энергии, вектор Умова. Анализ явления интерференции и условие возникновения стоячих волн.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 07.09.2014 |
Размер файла | 466,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
РЕФЕРАТ
МЕХАНИЧЕСКИЕ ВОЛНЫ
Образование волн. Продольные и поперечные волны
Если в каком-либо месте упругой среды (твердой, жидкой или газообразной) возбудить колебания ее частиц, то вследствие взаимодействия между частицами это колебание будет распространяться в среде от частицы к частице с некоторой скоростью. Процесс распространения колебаний в пространстве называется волной. Геометрическое место точек, до которых доходят колебания к моменту времени t называется фронтом волны (волновым фронтом). В зависимости от формы фронта волна может быть сферической, плоской и др.
Волна называется продольной, если направление смещения частиц среды совпадает с направлением распространения волны.
Продольная волна распространяется в твердых, жидких и газообразных средах.
Волна называется поперечной, если смещение частиц среды перпендикулярно направлению распространения волны. Поперечная механическая волна распространяется только в твердых телах (в средах обладающих сопротивлением сдвигу, поэтому в жидкостях и газах такая волна распространиться не может).
Уравнение волны
Уравнение, позволяющее определить смещение любой точки среды с координатой х в любой момент времени t называется уравнением волны.
Например, уравнение плоской волны, т.е. волны, распространяющейся в одном направлении, например в направлении оси х, имеет вид:
где - смещение точек через время t, за которое волна распространяется на расстояние ( - скорость распространения волны).
Расстояние , на которое распространяется волна за время, равное периоду колебаний частиц среды, называется длиной волны.
Энергия волны. Поток энергии
При распространении волны в пространстве от какого-либо источника происходит и распространение энергии; частицы среды, вовлекаемые в колебательное движение, получают энергию от волны. Проследим, как энергия от источника распространяется в пространстве.
Предположим, что наш источник - плоская металлическая мембрана, колеблющаяся с определённой частотой. Колебаться мембрану заставляет вынуждающая сила, в данном случае - переменное (синусоидальное) магнитное поле. Мембрана, в свою очередь, заставляет колебаться частицы воздуха, и в пространстве за мембраной распространяется плоская продольная упругая волна.
Энергия мембраны есть энергия её движения, то есть чисто кинетическая энергия. (Мы полагаем мембрану безынерционной и неупругой, её колебания в точности соответствуют колебаниям магнитного поля.) Среду, в которой распространяется волна (воздух) будем считать идеальной, не поглощающей волну.
Поскольку мембрана колеблется по синусоидальному закону, её энергия (кинетическая) также будет периодически меняться со временем, но с удвоенной частотой (энергия пропорциональна квадрату скорости и не зависит от её знака). Следовательно, энергия источника будет поступать в среду циклически, с частотой, в два раза большей частоты колебаний источника.
Вектор Умова
Вектор Умова - вектор плотности потока энергии электромагнитного поля. Вектор Умова S можно определить через векторное произведение двух векторов:
,
где E и H -- векторы напряжённости электрического и магнитного полей соответственно.
Интерференция волн
Интерференция волн - такое наложение волн, при котором происходит устойчивое во времени их взаимное усиление в одних точках пространства и ослабление в других, в зависимости от соотношения между фазами этих волн.
Необходимые условия для наблюдения интерференции:
1. волны должны иметь одинаковые (или близкие) частоты, чтобы картина, получающаяся в результате наложения волн, не менялась во времени (или менялась не очень быстро, что бы её можно было успеть зарегистрировать);
2. волны должны быть однонаправленными (или иметь близкое направление); две перпендикулярные волны никогда не дадут интерференции (попробуйте сложить две перпендикулярные синусоиды!). Иными словами, складываемые волны должны иметь одинаковые волновые векторы (или близконаправленные).
Стоячие волны
При наложении двух встречных плоских волн одинаковой частоты с одинаковой амплитудой возникает колебательный процесс, называемый стоячей волной.
Практически стоячие волны возникают при отражении волн от преград. Падающая на преграду волна и бегущая ей навстречу отраженная волна и бегущая ей навстречу отраженная волна, налагаясь, друг на друга, дают стоячую волну.
энергия волна интерференция умов
Размещено на Allbest.ru
...Подобные документы
Требования к уровню подготовки учащихся. Методика изучения раздела "Механические колебания и волны". Особенности превращения энергии при гармонических колебаниях. Природа возникновения механических волн и звука, составление компьютерных моделей.
курсовая работа [3,9 M], добавлен 08.10.2013Интерференция и дифракция волн на поверхности жидкости. Интерференция двух линейных волн, круговой волны в жидкости с её отражением от стенки. Отражение ударных волн. Электромагнитные и акустические волны. Дифракция круговой волны на узкой щели.
реферат [305,0 K], добавлен 17.02.2009Понятие волны и ее отличие от колебания. Значение открытия электромагнитных волн Дж. Максвеллом, подтверждающие опыты Г. Герца и эксперименты П. Лебедева. Процесс и скорость распространения электромагнитного поля. Свойства и шкала электромагнитных волн.
реферат [578,5 K], добавлен 10.07.2011Распространение волн в упругой среде. Уравнение плоской и сферической волны. Принцип суперпозиции, разложение Фурье и эффект Доплера. Наложение встречных плоских волн с одинаковой амплитудой. Зависимость длины волны от относительной скорости движения.
презентация [2,5 M], добавлен 14.03.2016Интерференция световых волн. Опыт Юнга. Методы наблюдения интерференции. Интерференция двух волн на поверхности жидкости, возбуждаемых вибрирующими стержнями. Время когерентности. Длина когерентности. Предельный наблюдаемый порядок интерференции.
презентация [8,5 M], добавлен 07.03.2016Длины световых волн. Закон прямолинейного распространения света. Относительные показатели преломления. Явление полного внутреннего отражения для построения световодов. Вектор плотности потока энергии. Фазовая и групповая скорости монохроматической волны.
реферат [893,5 K], добавлен 20.03.2014Типы волн и их отличительные особенности. Понятие и исследование параметров упругих волн: уравнения плоской и сферической волн, эффект Доплера. Сущность и характеристика стоячих волн. Явление и условия наложения волн. Описание звуковых и стоячих волн.
презентация [362,6 K], добавлен 24.09.2013Понятие и обоснование явления интерференции как перераспределения энергии в пространстве при сложении двух или более волн. Оптическая разность хода и ее связь с разностью фаз. Методы получения когерентных волн. Интерференция в немонохроматическом свете.
презентация [145,1 K], добавлен 17.01.2014Преобразование исходной системы уравнений к расчётной форме. Зависимость длины волны от скорости распространения. Механизмы возникновения волн на свободной поверхности жидкости. Зависимость между групповой скоростью волн и скоростью их распространения.
курсовая работа [451,6 K], добавлен 23.01.2009Основные законы и правила распространения звуковых волн в различных средах, виды звуковых колебаний и их применение. Основные объективные и субъективные характеристики, скорость распространения, интенсивность. Эффект Доплера, ультразвук и инфразвук.
реферат [38,4 K], добавлен 24.06.2008Экспериментальное получение электромагнитных волн. Плоская электромагнитная волна. Волновое уравнение для электромагнитного поля. Получение модуля вектора плотности потока энергии. Вычисление давления электромагнитных волн и уяснение его происхождения.
реферат [28,2 K], добавлен 08.04.2013Метод последовательных приближений. Генерация второй гармоники. Параметрическая генерация и усиление волн. Коэффициент параметрического усиления. Нелинейная поляризация на собственной частоте. Воздействие одной волны на другую. Фазовая скорость волны.
контрольная работа [81,0 K], добавлен 20.08.2015Объяснение явления интерференции. Развитие волновой теории света. Исследования Френеля по интерференции и дифракции света. Перераспределение световой энергии в пространстве. Интерференционный опыт Юнга с двумя щелями. Длина световой волны.
реферат [31,1 K], добавлен 09.10.2006Величины, характеризующие волну, ее свойства и колебания. Условия возникновения механической ее разновидности. Специфика поперечной и продольной волны. Особенности колебания водной поверхности. Громкость звука, визуальное представление звуковой волны.
презентация [293,9 K], добавлен 27.02.2014Принцип суперпозиция температур. Глубина проникновения тепла в поверхностный слой, зависящая от периода колебаний температуры на поверхности. Схема лабораторной установки для изучения распространения и интерференции температурных волн, ее элементы.
контрольная работа [625,2 K], добавлен 07.10.2016Изучение уравнения электромагнитного поля в среде с дисперсией. Частотная дисперсия диэлектрической проницаемости. Соотношение Крамерса–Кронига. Особенности распространения волны в диэлектрике. Свойства энергии магнитного поля в диспергирующей среде.
реферат [111,5 K], добавлен 20.08.2015Колебания - один из самых распространенных процессов в природе и технике. Процесс распространения колебаний среди множества взаимосвязанных колебательных систем называют волновым движением. Свойства свободных колебаний. Понятие волнового движения.
презентация [5,0 M], добавлен 13.05.2010Изучение явления интерференции света с помощью интерференционной картины, ее получение по заданным параметрам (на экране не менее восьми светлых полос). Сравнение длины световой волны с длиной волны падающего света. Работа программы "Интерференция волн".
лабораторная работа [86,5 K], добавлен 22.03.2015Система уравнений Максвелла в дифференциальной и интегральной формах. Исследования Р. Герца. Скорость распространения электромагнитных волн. Открытие фотоэлектрического эффекта. Расчет давления света. Энергия, импульс и масса ЭМП. Вектор Умова-Пойнтинга.
презентация [2,7 M], добавлен 14.03.2016Интерференция двух наклонных плоских монохроматических волн. Построение 3D-изображения дифракционных решеток в плоскости y-z. Определение значения параметров решеток в средах с показателями преломления n2 и n1 для каждого угла падения сигнальных волн.
курсовая работа [1,0 M], добавлен 11.05.2022