Математичне моделювання теплових процесів у керамічних та надтвердих матеріалах з ідентифікацією їх теплофізичних властивостей

Дослідження теплових процесів у нових конструкційних і інструментальних матеріалах за допомогою математичного моделювання (вирішення задачі теплопровідності) та ідентифікації їх теплофізичних властивостей методом підстановки Кірхгофа та її апроксимацію.

Рубрика Физика и энергетика
Вид автореферат
Язык украинский
Дата добавления 27.09.2014
Размер файла 80,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

НАЦІОНАЛЬНА АКАДЕМІЯ НАУК УКРАЇНИ Інститут проблем машинобудування ім. А. М. Підгорного

УДК 536.24.08

МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ ТЕПЛОВИХ ПРОЦЕСІВ У КЕРАМІЧНИХ ТА НАДТВЕРДИХ МАТЕРІАЛАХ З ІДЕНТИФІКАЦІЄЮ ЇХ ТЕПЛОФІЗИЧНИХ ВЛАСТИВОСТЕЙ

05.14.06 - технічна теплофізика та промислова теплоенергетика

Автореферат дисертації на здобуття наукового ступеня доктора технічних наук

Лушпенко Сергій Федорович

Харків - 2007

Дисертація є рукописом.

Робота виконана в Інституті проблем машинобудування ім. А. М. Підгорного Національної академії наук України (ІПМаш НАН України).

Науковий консультант академік НАН України, доктор технічних наук, професор Мацевитий Юрій Михайлович, ІПМаш НАН України, директор

Офіційні опоненти: доктор технічних наук, професор Сімбірський Дмитро Федорович, Національний аерокосмічний університет ім. М. Є. Жуковського “ХАІ”, професор кафедри; доктор технічних наук, професор Круковський Павло Григорович, Інститут технічної теплофізики НАН України, завідувач відділу; доктор технічних наук, доцент Кошельник Вадим Михайлович, Національний технічний університет “ХПІ”, завідувач кафедри

Захист відбудеться 25 жовтня 2007 року о 14 годині на засіданні спеціалізованої вченої ради Д 64.180.02 в ІПМаш НАН України за адресою: 61046, м. Харків, вул. Пожарського, 2/10.

З дисертацією можна ознайомитись у бібліотеці ІПМаш НАН України за адресою: 61046, м. Харків, вул. Пожарського, 2/10.

Автореферат розісланий 24 вересня 2007 р.

Учений секретар

спеціалізованої вченої ради

кандидат технічних наук О. Е. Ковальський

АНОТАЦІЇ

Лушпенко С. Ф. Математичне моделювання теплових процесів у керамічних та надтвердих матеріалах з ідентифікацією їх теплофізичних властивостей. - Рукопис.

Дисертація на здобуття наукового ступеня доктора технічних наук за спеціальністю 05.14.06 - технічна теплофізика і промислова теплоенергетика. - Інститут проблем машинобудування ім. А. М. Підгорного НАН України, Харків, 2007. теплопровідність апроксимація моделювання

Дисертація присвячена дослідженню теплових процесів у нових конструкційних і інструментальних матеріалах за допомогою математичного моделювання (вирішення прямої задачі теплопровідності) та ідентифікації їх теплофізичних властивостей (оберненої задачі). Розв'язання прямої задачі спирається на перетворення математичної моделі підстановкою Кірхгофа та її скінченнорізницеву апроксимацію. При вирішенні оберненої задачі використовується метод автоматизованого підбору. Його стратегія спирається на пошук мінімуму різниці між температурами, отриманими з експерименту і моделюванням. Шукані теплофізичні характеристики задаються поліномами Чебишева, порядок та коефіцієнти яких є результатами пошуку. Ідентифіковані температурні залежності теплопровідності і теплоємності керамічних композитів, металевого скла і надтвердих матеріалів. Подальші математичні експерименти дозволили оцінити вплив теплових процесів на ефективність охолодження електронних плат і знайти раціональні режими заточення токарського інструменту.

Ключові слова: теплофізика, математичне моделювання, пряма задача, підстановка Кірхгофа, ідентифікація теплофізичних властивостей, обернена задача, метод автоматизованого підбору, поліноми Чебишева, кераміка, надтверді матеріали.

Lushpenko S. F. Simulation of heat processes in ceramic and superhard materials with identification of their thermal properties. - Manuscript.

Thesis for degree of Doctor of Sciences for specialty 05.14.06 - engineering thermal physics and industrial heat-and-power engineering. - A. M. Pidgorny's Institute for Mechanical Engineering Problems of the NAS of Ukraine, Kharkov, 2007.

The thesis is devoted to research of thermal processes in articles made of new design and tool materials by means of simulation (direct heat conduction problem) and identification of the thermal properties (inverse heat conduction problem). Solution of the direct heat conduction problem is based on the conversion of the mathematical model with Kirchhoff substitution and its finite difference approximation. For solving the inverse problem an automated fitting method is used. Its strategy is rested upon minimization of the difference between the experiment and simulation temperatures. The sought-for thermal characteristics are set with Tchebyshev polynomials, the order and coefficients of which are the search results. In this way, the temperature functions of heat conductivities and capacities of ceramic composites, metallic glasses and superhard materials were identified. Next mathematical experiments made the effect of heat processes to effectiveness of fluid cooling of electronic plate and to technology of tool grinding to be evaluated.

Keywords: thermal physics, simulation, direct heat conduction problem, Kirchhoff substitution, identification of thermal properties, inverse problem, automated fitting method, Tchebyshev polynomials, ceramics, superhard materials.

Лушпенко С. Ф. Математическое моделирование тепловых процессов в керамических и сверхтвердых материалах с идентификацией их теплофизических свойств. - Рукопись.

Диссертация на соискание ученой степени доктора технических наук по специальности 05.14.06 - техническая теплофизика и промышленная теплоэнергетика. - Институт проблем машиностроения им. А. H. Подгорного НАН Украины, Харьков, 2007.

Диссертационная работа посвящена исследованию тепловых процессов в изделиях из новых конструкционных и инструментальных материалов с помощью математического моделирования, которое в вычислительной теплофизике также называют решением прямой задачи теплопроводности. При этом используется комплексный подход. Кроме самих теплофизических результатов исследования, рассматривается во всех деталях процедура моделирования и, не менее подробно, получение исходной информации для ее выполнения. Причем специфика находящихся в центре внимания материалов, в первую очередь их недостаточно хорошая изученность, определила необходимость привлечения и доработки методов и средств идентификации теплофизических свойств этих материалов, что иначе называют решением внутренней обратной задачи теплопроводности.

Предлагаемая методика решения прямой задачи теплопроводности опирается на предварительное преобразование исходной нелинейной математической модели теплопроводности с помощью подстановки Кирхгофа и ее конечно-разностную аппроксимацию. На финальной стадии моделирования для получения реальных значений температур осуществляется обратное преобразование с помощью специально разработанной для этой цели процедуры, для которой неважно, функцией какого вида задана температурная зависимость теплофизических свойств этого материала. Более того, тело может быть составным, причем с большим контрастом теплопроводностей составляющих его материалов. Это не затруднит ни прямое, ни обратное преобразование и не приведет к потере сходимости решения. Но в тех случаях, когда данная методика используется для пробного моделирования в рамках решения обратной задачи, предпочтительным будет задавать температурные зависимости теплопроводности и теплоемкости полиномами Чебышева.

При решении обратной задачи, когда надо по данным эксперимента идентифицировать теплофизические свойства материала, предлагается использовать метод автоматизированного подбора, относящийся к экстремальным методам решения обратных задач, поскольку его стратегия опирается на поиск минимума невязки между температурами, полученными из эксперимента и в результате пробного моделирования. При этом искомые теплофизические характеристики задаются полиномами Чебышева, сначала нулевого порядка, затем, если достигнутое при их варьировании значение минимальной невязки существенно превышает погрешность эксперимента, порядок аппроксимации увеличивается и поиск минимума повторяется до тех пор, пока невязка не приблизится по своей величине к погрешности эксперимента. Такая процедура обеспечивает получение регуляризированного решения как при обработке данных теплофизического эксперимента, так и при аппроксимации таблично заданных значений теплофизических свойств. Поэтому стало возможным создать единую базу данных о температурных зависимостях тепловых свойств, используя как данные термометрирования образцов новых материалов, так и готовую информацию об этих свойствах из других источников.

Теплофизические исследования ориентировались на керамические конструкционные и инструментальные материалы, в первую очередь оксиды, поскольку они отличаются ярко выраженной зависимостью своих теплофизических свойств от температуры. Это позволило убедиться в работоспособности предлагаемых математических методов в самых сложных случаях. Кроме того, данная группа материалов, обладая уникальными химическими и механическими свойствами, находит себе применение во всех отраслях промышленности и особенно широко - в теплотехнике и теплоэнергетике. В диссертации изложены результаты комплексных исследований, включающих в себя проведение теплофизического эксперимента и его обработку с получением уточненных или впервые изученных теплофизических характеристик, а также моделирование тепловых процессов в ответственных элементах теплонагруженного оборудования, изготовленных из технической керамики и сверхтвердых инструментальных материалов. В результате были идентифицированы температурные зависимости теплопроводности и теплоемкости керамических композитов на основе оксида алюминия и диоксида кремния, металлических стекол Fe40Ni40B20 (аморфного сплава, содержащего в своем составе по 40 % железа и никеля и 20 % бора) и Co77Fe4Cr7Si8B4 (77 % кобальта, 4 % железа, 7 % хрома, 8 % кремния и 4 % бора), а также наиболее перспективных для изготовления режущего инструмента сверхтвердых поликристаллических материалов на основе синтетического алмаза и нитрида бора. С использованием этих данных были осуществлены математические эксперименты, позволившие оценить и оптимизировать влияние тепловых процессов на эффективность жидкостного охлаждения керамических плат с электронными элементами и выбрать рациональный режим заточки шлифованием нескольких типов режущих вставок токарного инструмента.

Ключевые слова: теплофизика, математическое моделирование, прямая задача теплопроводности, подстановка Кирхгофа, идентификация теплофизических свойств, обратная задача, метод автоматизированного подбора, полиномы Чебышева, керамика, сверхтвердые материалы.

ЗАГАЛЬНА ХАРАКТЕРИСТИКА РОБОТИ

Робота присвячена дослідженню теплових процесів у виробах з нових конструкційних та інструментальних матеріалів за допомогою математичного моделювання, що у теплофізиці також називають розв'язанням прямої задачі теплопровідності (ПЗТ). При цьому використовується комплексний підхід. Крім самих теплофізичних результатів дослідження, розглядається у всіх деталях процедура моделювання та, не менш докладно, одержання вихідної інформації для її виконання. Причому специфіка матеріалів, що перебувають у центрі уваги, у першу чергу їх недостатньо глибока вивченість, визначила необхідність залучення та доробки методів і засобів ідентифікації теплофізичних властивостей цих матеріалів. Інакше таку ідентифікацію називають розв'язанням внутрішньої оберненої задачі теплопровідності (ОЗТ). Спільний розгляд цих двох центральних проблем технічної теплофізики в рамках комплексного дослідження теплофізичних характеристик (ТФХ) і полів температур нових матеріалів дозволив надати роботі необхідну цілісність і завершеність.

Актуальність теми. Останнім часом усе більше зростає значення математичного моделювання як ефективного методу дослідження фізичних процесів. Воно в ряді випадків може замінити трудомісткий фізичний експеримент, але частіше доповнює його або допомагає правильно інтерпретувати. Разом з тим у більшості випадків відчувається явний дефіцит у достовірних вихідних даних, що утруднює математичне моделювання теплових процесів. Маються на увазі дані про граничні умови (ГУ) та дуже часто, коли мова йде про дослідження, пов'язані з новими або маловивченими матеріалами, дані про ТФХ цих матеріалів. У зв'язку із цим дуже гостро стоїть питання про пошук надійних шляхів одержання зазначених даних. Неоціненну допомогу в вирішенні цього питання надає методологія розв'язання ОЗТ, яка за останні 30 років перетворилася в потужний інструмент ідентифікації теплових процесів та їх параметрів. При цьому саме моделювання (розв'язання ПЗТ), залишаючись головним і часто завершальним етапом будь-якого розрахункового вивчення теплового процесу, стає усе більш важливим фактором одержання не тільки достовірних результатів усього дослідження, але і надійних вихідних даних для нього. Це пов'язане з тим, що в сучасних чисельних методах розв'язання ОЗТ моделювання є основною обчислювальною процедурою. Тому очевидною є актуальність наукових досліджень, спрямованих на розвиток методів розв'язання як прямих, так і обернених задач. Ще краще, якщо обидві задачі розглядаються спільно, однаково ретельно і у контексті комплексного проведення теплофізичних досліджень - від одержання вихідних даних до аналізу та узагальнення результатів. А оскільки особливу актуальність у наші дні здобувають наукові і технологічні розробки, метою яких є енергозбереження та зниження матеріалоємності промислової продукції, у центрі уваги опиняються композиційні керамічні матеріали, які, маючи унікальні механічні та хімічні властивості, не мають собі рівних, як високотемпературні теплоізолятори. Через це пильна увага приділяється і полікристалічним композиціям на основі штучних надтвердих матеріалів. Їх відрізняє дуже широка і безупинно зростаюча сфера використання для виготовлення високоефективного різального інструменту.

Зв'язок роботи з науковими програмами, планами і темами. Тематика дисертаційної роботи тісно пов'язана з науковими темами, які виконувалися у відділі моделювання теплових і механічних процесів (із травня 2007 р. - відділ моделювання та ідентифікації теплових процесів) ІПМаш НАН України в рамках проведення таких бюджетних робіт:

- “Розробка методів і засобів оптимізації теплових процесів і конструктивних елементів, створення спеціалізованих обчислювальних пристроїв”, № ДР 01821040551;

- “Розробка методів і технічних засобів діагностики та ідентифікації теплових процесів в енергетичних і технологічних установках та устаткуванні”, № ДР 01860049703;

- “Розробка методів і засобів ідентифікації та діагностики технічних характеристик і теплотехнічних установок та устаткування”, № ДР 01880019600;

- “Розробка програмного забезпечення для визначення теплового стану мікрозбірок із системою рідинного охолодження”, № ДР 01900025857;

- “Теплообмін в енергетичних установках, технологічних процесах та об'єктах радіоелектроніки”, № ДР 01910019862;

- “Моделювання і ідентифікація процесів тепломасообміну в об'єктах енергетики та електроніки”, № ДР 0197U012287;

- “Моделювання і ідентифікація процесів тепломасообміну в об'єктах промислового призначення та енергетики з метою енергозбереження, підвищення надійності і продовження ресурсу”, № ДР 0100U004810;

- “Розробка науково-технічних основ енергозберігаючих технологій шліфування важкооброблюваних матеріалів” програми “Енергозбереження”, № ДР 0106U008604.

Мета і задачі дослідження. Метою роботи є дослідження ТФХ нових матеріалів і закономірностей протікання теплових процесів в елементах теплонавантаженого устаткування, виконаних із цих матеріалів. Для цього потрібно розробити розрахунковий метод визначення як вихідних даних теплофізичного розрахунку, так і самого поля температур, що ґрунтується на математичному моделюванні. Метод повинен орієнтуватися на широкий спектр обчислювальної техніки та на всі теплові параметри, але, у першу чергу, на теплофізичні властивості, що найбільш важко підлягають експериментальному визначенню. Ознакою досягнення цієї мети обране успішне виконання всього комплексу таких досліджень з промисловими виробами, виготовленими із сучасних конструкційних і інструментальних матеріалів з унікальними теплофізичними та механічними властивостями.

В процесі досягнення зазначеної мети вирішені такі задачі, як

- аргументований вибір основних показників оптимізаційного методу, покликаного виконувати керуючі функції при розв'язанні ОЗТ;

- розробка методу вирішення ПЗТ, що рівною мірою ефективно працює на обчислювальних засобах всіх типів як у процесі ідентифікації ТФХ, так і при автономному дослідницькому моделюванні теплових процесів;

- реалізація запропонованих способів ідентифікації та моделювання на цифрових, аналогових і гібридних обчислювальних засобах;

- детальне пророблення методу автоматизованого підбору та адаптація його до різних програмних і технічних засобів автоматизації розрахунків;

- тестування методу автоматизованого підбору, включаючи застосовуваний у ньому спосіб регуляризації, у процесі створення і наповнення бази даних про теплофізичні властивості матеріалів;

- проведення комплексу досліджень температурних залежностей теплопровідності та теплоємності таких важливих для сучасного виробництва груп матеріалів, як керамічні композиції та надтверді полікристали, що мають яскраво виражену залежність своїх теплофізичних властивостей від температури, що дозволяє, крім одержання інформації, необхідної для наступного моделювання, упевнитись в працездатності запропонованого методу розв'язання ОЗТ у найскладніших випадках;

- математичне моделювання температурного поля керамічної плати з електронними елементами з метою визначення ефективності вбудованої в неї системи рідинного охолодження при різних конфігураціях каналів і параметрах прокачування охолоджуючої рідини;

- пошук оптимальних режимів заточувального шліфування різальних вставок високоефективного токарського інструменту з використанням отриманих даних про ТФХ надтвердих полікристалів і розробленого методу вирішення ПЗТ.

Об'єктом дослідження є сталі та перехідні теплові процеси у твердому тілі, їхній вплив на експлуатаційні якості теплонавантажених виробів, а також - ТФХ матеріалів, з яких ці вироби виготовлені.

Предметом дослідження обрані математичне моделювання та ідентифікація (розв'язання прямих і обернених задач теплопровідності) у їхньому взаємозв'язку, а також вирішення суміжних питань одержання, обробки, зберігання та використання теплофізичної інформації.

Методами вирішення сформульованої наукової проблеми є методи теорії теплопровідності, математичної фізики, технічної теплофізики, математичного моделювання, теорії подібності, оптимізації, математичного програмування, лінійної алгебри, розв'язання некоректно поставлених задач та обернених задач теплопровідності, чисельні методи і методи комп'ютерного програмування та тестування.

Наукова новизна одержаних результатів. У результаті проведених досліджень вирішена актуальна наукова проблема комплексного визначення теплофізичних властивостей і температурних полів в об'єктах, виготовлених з нових і малодосліджених матеріалів. На основі цього були отримані такі нові наукові результати:

- метод автоматизованого підбору, орієнтований на розв'язання ОЗТ за допомогою всього спектра сучасних обчислювальних засобів (цифрових, аналогових і гібридних, універсальних і спеціалізованих, автономних та вбудованих, однопроцесорних і багатопроцесорних);

- удосконалена схема вирішення нелінійної ПЗТ, яка дозволила на основі широкого використання інтегральних перетворень Кірхгофа та Гудмена істотно спростити і прискорити моделювання як на завершальній стадії вивчення теплового процесу, так і при розв'язанні ОЗТ, коли ця схема дає ще більший позитивний ефект, особливо у випадках складених тіл;

- регуляризуючий метод комп'ютерного розрахунку температурних залежностей теплофізичних властивостей матеріалів, рівною мірою придатний як для обробки неявних даних про ТФХ, отриманих з теплофізичного експерименту, тобто з розв'язання ОЗТ, так і для аналітичного наближення дискретно заданої явної інформації про ці залежності;

- раніше недосліджені температурні залежності теплопровідності нових композиційних матеріалів на основі оксиду алюмінію (Al2O3) і діоксиду кремнію (SiO2), отримані шляхом обробки даних багатоваріантного стаціонарного теплофізичного експерименту;

- ніким раніше невивчені ТФХ аморфних металевих сплавів Co77Fe4Cr7Si8B4 (77 % кобальту, 4 % заліза, 7 % хрому, 8 % кремнію і 4 % бору) та Fe40Ni40B20 (по 40 % заліза і нікелю та 20 % бору), ідентифіковані з високою точністю на підставі даних про нестаціонарний тепловий процес у циліндричних зразках, звитих з тонких шарів цих унікальних за своїми тепловими, механічними і хімічними властивостями матеріалів;

- температурні залежності теплопровідності та теплоємності надтвердих полікристалічних матеріалів на основі синтетичних алмазів і нітриду бору, уточнені і розраховані для більш широкого, ніж в опублікованих раніше джерелах, діапазону температур;

- отримані в порядку продовження комплексного теплофізичного дослідження кераміки та виробів з неї дані про зміну температурного поля охолоджуваної керамічної плати залежно від інтенсивності охолодження, які дозволили здійснити оптимізацію конструкції такої системи;

- розраховані на завершальній стадії теплофізичного вивчення полікристалів надтвердих матеріалів температурні поля в різальних елементах, що дозволило знайти раціональні режими заточувального шліфування цих елементів.

Практичне значення одержаних результатів. Запропонований комплексний підхід до теплофізичного дослідження керамічних і надтвердих матеріалів має чітку практичну спрямованість, що було закладено в програму виконання роботи та вилилося в методику, легко реалізовану за допомогою, у першу чергу, загальнодоступних персональних комп'ютерів. При цьому більшість методичних розробок автора реалізовано у вигляді готових до використання комп'ютерних програм з дружнім інтерфейсом для введення даних та аналізу результатів. Дані довідкового характеру, наприклад ТФХ нових матеріалів, були досить широко опубліковані у вигляді таблиць, графіків і аналітичних залежностей. Ці дані, а також велика кількість інформації з інших джерел були поміщені в спеціально розроблену дисертантом для цієї мети базу даних про ТФХ твердих, рідких і газоподібних тіл EXPODATA, зручну для перегляду, поповнення та практичного використання при розрахунках.

Розроблена автором дисертації програма для інформаційно-обчислювального супроводу теплофізичного експерименту MEASURES успішно експлуатується вже понад 10 років у декількох підрозділах ІПМаш і була передана в інші організації як корисний інструмент для візуалізації ходу проведення експерименту та здійснення метрологічних і суміжних обчислювальних робіт. Наприклад, на ДП завод “Електроважмаш” (Харків) вона справно служить уже близько десяти років для функціональної діагностики системи охолодження потужних електрогенераторів (акт про використання від 12.03.2007 р.).

Комплекс програм SBORKA, призначений для теплового проектування електронних плат з рідинним охолодженням, був переданий у проектні організації в порядку виконання укладених з ними господарських договорів. Отримано два акти про впровадження від 18.12.1989 р. та 14.12.1990 р.

Методики та програмні засоби (серед них - пакет програм POLISH, що підтримує моделювання теплових явищ у двовимірній постановці) для теплофізичного дослідження процесів шліфування твердих матеріалів і визначення їх теплофізичних властивостей використовуються в дослідницькій і навчальній практиці в Національному технічному університеті (НТУ) “Харківський політехнічний інститут” (“ХПІ”) та інших організаціях (акт впровадження від 23.06.1987 р. та акт використання від 25.11.2004 р.).

Особистий внесок здобувача. З десяти розділів книги [1] дисертантом були написані ті п'ять розділів, які присвячені цифровому моделюванню, огляду методів розв'язання внутрішніх ОЗТ, деталям методу автоматизованого підбору та прикладних питань ідентифікації теплофізичних властивостей. В [2] ним запропонована розрахункова методика. Для статті [3] дисертантом були самостійно отримані нові результати чисельного експерименту з оцінки точності вирішення внутрішньої оберненої задачі аналоговими обчислювальними засобами. В [4] ним запропоновано спосіб розрахункового визначення теплопровідності полікристала за динамічно вимірюваними даними з використанням підстановки Кірхгофа, а в [5, 6] показано, як краще користуватися цією процедурою для спрощення аналогових і гібридних розрахунків. У статті [7] особистий внесок автора полягав у розробці розрахункової методики, підготовці вихідних даних, програмуванні та одержанні результатів моделювання. В [8] ним особисто була розроблена і здійснена цифрова частина методики, в [9] - робота з літературою та підготовка більшої частини огляду, а в розрахунково-експериментальних дослідженнях [10 _ 13] - методичне, технічне і програмне забезпечення обробки даних експерименту. Математичні та обчислювальні питання курирувалися дисертантом у роботах [14 _ 17]. Стаття [18] була підготовлена самостійно. При опублікуванні нових результатів ідентифікації [19] та моделювання [20] ним особисто викладені всі розглянуті там аспекти, крім технологічних. Що стосується авторського посвідчення [21], то деталізацію блоків оберненого перетворення Кірхгофа та введення в пристрій більшості інших вузлів, що визначили відмітну сторону винаходу, було запропоновано дисертантом.

При підготовці доповідей на конференції автором дисертації особисто опрацьовувалися такі їхні частини, як одночасна ідентифікація теплофізичних параметрів методом автоматизованого підбору [22], обчислювальні питання моделювання теплового стану електронного модуля з мікроканальним охолодженням [23], адаптація програм моделювання до розв'язання внутрішніх обернених задач 24 _ 26, техніка та результати моделювання та ідентифікації 27 _ 31, а також обчислювальні аспекти визначення теплових властивостей кераміки 32, причому доповідь 29 була підготовлена самостійно.

Апробація результатів роботи. Найбільш повно результати були наведені на таких наукових зустрічах, як сьома всесоюзна конференція з тепломасообміну (Мінськ, 1984, [22]), симпозіум Міжнародної асоціації з використання математичних та обчислювальних методів у моделюванні IMACS (Відень, 1994, [23]), другий колоквіум з моделювання фізичних процесів (Фінляндія, 1995, [24]), четвертий тристоронній (Україна-Росія-Китай) симпозіум з космічної науки та техніки (Київ, 1996, [25]), друга міжнародна конференція з технічних застосувань обернених задач (Франція, 1996, [28]), четвертий міжнародний колоквіум з моделювання фізичних процесів (Фінляндія, 1997, [26]), 15_й всесвітній конгрес IMACS (Берлін, 1997, [27]), міжнародна конференція з обчислювального тепломасообміну (Кіпр, 1999, [29]), сьома міжнародна науково-технічна конференція “Інформаційні технології: наука, техніка, технологія, освіта, здоров'я” (Харків, 1999, [30]), другий міжнародний семінар з теплофізики американської спілки (ASME) і словенської асоціації (ZSIS) інженерів-механіків (Словенія, 2004, [31]), а також 13_й семінар з технічних застосувань обернених задач (США, 2004, [32]).

Публікації. Основний зміст дисертаційної роботи відбито в 32 публікаціях, включаючи монографію 1, статтю в книзі [2], 15 статей 3 _ 9, 13 _ 20 у журналах і збірниках, внесених до переліку спеціалізованих видань України, де можуть публікуватися результати дисертаційних робіт, три статті 10 _ 12 у закордонних спеціалізованих періодичних виданнях, авторське посвідчення 21 і 11 повних текстів доповідей 22 _ 32 у працях названих вище конференцій.

Структура та обсяг роботи. Дисертація складається зі вступу, основної частини з шістьма розділами, загальних висновків по роботі, списку з 338 використаних джерел, чотирьох додатків, 72 рисунків та шістьох таблиць. Загальний обсяг становить 400 сторінок, з них: 302 сторінки основного тексту, 10 сторінок з рисунками та таблицями, 35 сторінок списку використаних джерел та 53 сторінки додатків.

ОСНОВНИЙ ЗМІСТ РОБОТИ

Вступ. В ньому наведено загальну характеристику роботи. Зокрема, обґрунтована актуальність розглянутої проблеми, показано зв'язок роботи з бюджетними темами наукових досліджень, сформульовані мета і задачі дисертації, а також визначені наукова новизна та практична цінність одержаних результатів з зазначенням особистого внеску здобувача. Крім того, у вступі наведені дані про рівень апробації та оприлюднення результатів дисертації.

Розділ 1 присвячений оцінці і творчому осмислюванню отриманих у теплофізиці наукових результатів, які стали фундаментом даної дисертаційної роботи. Її відправною точкою в теоретичному плані служать автоматизовані методи вирішення ОЗТ і найбільш ефективні способи чисельного моделювання.

Першим етапом будь-якого розрахункового дослідження є підготовка вихідної інформації. У випадку вивчення теплових процесів у нових, маловивчених матеріалах самим трудомістким елементом цього етапу є одержання даних про їх теплофізичні властивості. Причому сучасні методи ідентифікації ТФХ тісно пов'язані з математичним описом явища теплопровідності і опираються на математичне моделювання температурних полів. Тому розгляд цих та інших, загальних для всієї роботи питань почато з викладу математичної постановки, термінології, класифікації і методології розв'язання задач теплопровідності в контексті внутрішньої ОЗТ.

Звертання до математичної моделі теплопровідності є характерним практично для всіх стадій комплексного теплофізичного дослідження матеріалів і виробів з них. До неї звертаються для математичного обґрунтування процесу ідентифікації теплофізичних властивостей матеріалів, вибору ступеня спрощення математичного опису спостережуваного в зразку явища теплопровідності, при розробці прийомів розв'язання ОЗТ, конкретизації алгоритму і здійснення самої процедури математичного моделювання, якщо вона передбачена обраним алгоритмом ідентифікації. На стадії проведення основного математичного експерименту, коли моделювання із процедури, що функціонує під керуванням алгоритму вирішення оберненої задачі, перетворюється в самостійний і основний інструмент розрахункового дослідження, опора на модель стає ще відчутніше. Таке масоване використання математичної моделі властиво, у першу чергу, чисельним методам теплофізичних досліджень. Ці методи, як правило, не орієнтовані на певну схему експерименту. Вони допускають відому довільність щодо характеру та числа вихідних даних, хоча організація дослідів з використанням методів планування експерименту, безумовно, підвищує рівень його інформативності, тобто дозволяє, прикладаючи ті ж або навіть менші зусилля, одержувати максимум можливих відомостей про досліджуване явище або про параметри, що його характеризують.

Сучасний стан проблеми теплофізичного дослідження нових конструкційних та інструментальних матеріалів розглянуто на тлі розв'язання внутрішньої ОЗТ. Як перший, найбільш трудомісткий і відповідальний етап комплексного дослідження нових матеріалів, вирішення оберненої задачі в екстремальній постановці, яка найбільш підходить для даного випадку, спирається на чисельне моделювання процесів теплопровідності, що у методичному плані збігається з процедурою математичного експерименту завершального етапу дослідження. Таким чином, ідентифікація ТФХ у даній роботі є тим методичним стрижнем, на який нанизані задачі теорії теплопровідності, методи їхнього розв'язання та питання, що залишилися невирішеними.

Оскільки об'єктом дослідження є теплові процеси у твердих тілах, як математичний опис цих процесів розглянуте рівняння теплопровідності. Наголос зроблено на нелінійну форму математичної моделі, коли теплофізичні властивості, що до неї входять, залежать від температури. Дано вирази для початкових і граничних теплових умов, що замикають систему рівнянь математичної моделі. Запропоновано класифікацію задач теплопровідності, відповідно до якої перший етап комплексного теплофізичного дослідження, що полягає в ідентифікації теплофізичних характеристик, названий розв'язанням внутрішньої ОЗТ.

Дотримуючись мети дослідження, що припускає можливість розрахунку ТФХ за даними широкого кола експериментів за допомогою всього набору обчислювальних засобів, обрана як найбільш гнучка екстремальна постановка внутрішньої оберненої задачі. Вона, на відміну від неекстремальної постановки, передбачає пошук розв'язку в процесі мінімізації відхилу температур, спостережуваних в експерименті, від їхніх значень, отриманих математичним моделюванням.

Велика увага приділена питанням коректності постановки оберненої задачі і способам регуляризації її розв'язання. Сформульовано основні вимоги до вихідної інформації для розрахунку ТФХ. Отриманих з експерименту даних про температурне поле зразка (опорних значень) і даних про шукані функції (реперних величин) у сумі повинно бути не менше числа параметрів аналітичного подання цих функцій, причому, якщо на границях задані тільки ГУ I роду, то хоча б одна реперна величина повинна бути задана обов'язково. Як спосіб регуляризації найбільш ефективними для досягнення цілей даного дослідження є методи А. М. Тихонова з неухильним урахуванням основного принципу одержання стійкого вирішення: мінімізований відхил повинен бути порівняний з похибкою вихідних даних.

Зроблено огляд методів розв'язання внутрішніх ОЗТ. Залежно від застосовуваних в них методичних прийомів всі методи розділені на вісім груп. За принципом узгодження виміряних величин з розрахунковими розрізняються неекстремальні (у яких передбачається еквівалентність цих величин) і екстремальні методи (що передбачають мінімізацію їх розузгодження). По переважаючій орієнтації обчислень (на моделювання поля температур або на керування моделюванням) неекстремальні методи діляться на методи обернення розв'язку прямої задачі і методи обернення моделі. За цією ж ознакою екстремальні методи розділяються на методи неавтоматизованого підбору та методи автоматизованого підбору. Кожну із цих чотирьох груп пропонується розбити на дві частини за ознакою використання в них математичної моделі без залучення перетворення, що спрощує математичну модель, або з ним. До останньої з цих підгруп (екстремальні методи з автоматизованим підбором і перетворенням математичної моделі) відноситься запропонований автором метод розв'язання внутрішньої оберненої задачі.

Неекстремальні методи обернення розв'язку прямої задачі, до яких, зокрема, належать аналітичні способи ідентифікації ТФХ (наприклад, квазістаціонарні і монотонного нагріву), знайшли своє відбиття в роботах таких вчених, як А. А. Алексашенко, В. А. Коверьянов, О. А. Краев, А. В. Лыков, И. Г. Меерович, Е. С. Платунов, Ю. И. Розенгарт, В. В. Саломатов, О. Ф. Шленский, W. L. V. Price. Методи цього типу, удосконалені завдяки перетворенню моделі, використовували Ю. И. Бабенко, Л. А. Бровкин, В. А. Осипова, М. И. Пак, Г. А. Сурков, С. А. Сысков, Ю. Е. Фрайман, Ф. Б. Юревич та ін.

Методи обернення моделі, які теж належать до неекстремальних методів розв'язання ОЗТ, опираються, як правило, на пряме інтегрування рівнянь моделі, поданих як у диференціальній, так і різницевій формах. Такі методи запропонували у своїх публікаціях В. Р. Евсеев, П. Г. Круковский, Р. Б. Сендерович, А. Е. Степанов, А. Г. Темкин, Д. Л. Тимрот, В. В. Фролов, S. Kim, M. N. Цzisik, R. Thaler, W. K. Yeung та ін. Часто виявляється ефективним доповнювати такі методи інтегральними перетвореннями, наприклад Лапласа і Фур'є, або підстановками, що спрощують модель (наприклад, підстановкою Больцмана при використанні автомодельних режимів), як це зробили И. Н. Акулинин, В. А. Вертоградский, В. В. Власов, П. Г. Данилаев, А. Д. Искендеров, М. В. Клибанов, Н. М. Осипова, Н. П. Пучков, Ю. С. Шаталов, А. А. Ярхо.

Екстремальні методи ідентифікації ТФХ, у яких наголос робиться на автоматизацію процедури пробного моделювання (найчастіше, аналоговими засобами), ми відносимо до методів неавтоматизованого (ручного або спрощеного апаратного) підбору. По цьому напряму найбільший внесок у розвиток методів розв'язання внутрішніх ОЗТ зробили К. И. Богатыренко, Л. И. Гусева, В. П. Дущенко, В. А. Тарапон, Л. А. Коздоба, Ф. А. Кривошей, Ю. М. Мацевитый, Н. И. Никитенко, Л. Ф. Янкелев, В. Leden, M. H. Xamza. Засоби обчислень спрощуються, а сама ідентифікація стає ефективніше, якщо для оборотної лінеаризації моделі використати перетворення Кірхгофа та Гудмена. Це враховували при розробці своїх методів Ю. М. Дзибалов, И. Ф. Жеребятьев, А. Т. Лукьянов, В. Е. Подольский, М. Б. Тулепбаев, В. Н. Caussade, G. Renard.

Екстремальні методи з автоматизованим підбором здобули найбільшого поширення. Для організації розв'язання внутрішньої ОЗТ вони орієнтовані на розвинені процедури математичного програмування, у тому числі на пошук мінімуму методом спряжених градієнтів, методом Девідона - Флетчера - Пауелла, Левенберга - Макуарда, деформовного багатогранника (Нелдера - Міда), Ньютона - Рафсона, а також - на генетичні алгоритми та оптимальну динамічну фільтрацію. У розвитку таких методів найбільших успіхів досягли О. М. Алифанов, Е. А. Артюхин, В. Т. Борухов, С. А. Будник, Е. Н. Бут, А. Б. Гулей, А. Г. Иванов, С. В. Маврин, Ю. М. Мацевитый, В. В. Михайлов, А. В. Мултановский, А. В. Ненарокомов, Н. В. Нименский, П. В. Просунцов, С. В. Резник, М. Рекада, С. В. Румянцев, Д. Ф. Симбирский, В. М. Юдин, J. V. Beck, B. F. Blackwell, G. Carvalho, K. J. Dowding, G. S. Dulikravich, L. Elliott, A. Emery, C. H. Huang, D. B. Ingham, Y. Jarny, D. Lesnic, J. Lukoviиovб, R. A. Meric, K. Onishi, H. R. B. Orlande, F. A. Rodrigues, K. Shirota, A. J. Silva Neto, M. Tadi, P. Tervola, J. Y. Yan, J. Zбmeиnнk. Екстремальні методи краще піддаються автоматизації, якщо математична модель до початку ідентифікації зазнала перетворення для її спрощування, які в процесі розв'язання повністю враховуються і не впливають на якість одержуваних результатів. Цей факт успішно використовують закордонні дослідники S. Andrй, H. T. Chen, C. H. Huang, J. Y. Lin, B. Rйmy, F. R. Pereira, C. H. Wu та ін. З вітчизняних учених так організують розв'язання ОЗТ переважно ті, хто, як і автор дисертації, відносять себе до наукової школи, очолюваної академіком НАН України Ю. М. Мацевитим.

Розділ 2. Другий етап прийнятої в даній роботі схеми комплексного теплофізичного дослідження полягає в математичному моделюванні теплових процесів у виробах з матеріалів, ТФХ яких були ідентифіковані на першому етапі. Інакше кажучи, вирішуються ПЗТ, результати яких формують головний підсумок усього дослідження. У той же час екстремальні методи розв'язання внутрішніх ОЗТ, на які орієнтуються пропоновані алгоритми ідентифікації ТФХ першого етапу дослідження, теж припускають звертання, причому багаторазове, до процедури вирішення пробної ПЗТ. А оскільки частка математичного моделювання в обсязі всієї роботи велика, пошук шляхів побудови оптимальної стратегії обчислень починається з обговорення методичних прийомів чисельного розв'язання прямої задачі.

Розгляд вирішення ПЗТ як основної обчислювальної складової розв'язання оберненої задачі на першому етапі комплексного дослідження нових матеріалів і як процедури, що становить завершальний етап цього дослідження, починається із простого прикладу. Розглядається куб, кожна із шести граней якого підкоряється тепловій ГУ, що відрізняється своїм родом (I, II, III або IV) і видом (ідеальні чи ні теплова ізоляція або контакт у ГУ II та IV роду) від умов на інших гранях. Задано початкові умови (ПУ). У цьому випадку система диференціальних рівнянь із частинними похідними, що являє собою математичну модель процесу теплопровідності, виглядає в такий спосіб:

де x, y, z - просторові координати; - теплопровідність; T, Tп, Tс - температури, відповідно дана, початкова та навколишнього середовища; cV - питома об'ємна теплоємність; - час; l - довжина ребра куба; - коефіцієнт тепловіддачі; q - щільність теплового потоку; Rт - термічний опір.

Цей приклад ілюструє спектр постановок задач теплопровідності, розглянутих і реалізованих у дисертації. Форма запису математичної моделі температурного поля говорить про те, що у роботі розглядається загальний випадок тривимірної нестаціонарної нелінійної задачі з можливістю аргументованого переходу до більш простих постановок, якщо дозволяють конкретні геометричні і теплові параметри.

Одним з мало використовуваних у теплофізиці прийомів вирішення нелінійних задач теплопровідності є попереднє перетворення рівняння теплопровідності за допомогою підстановок Кірхгофа і Гудмена з метою спрощення математичної моделі та самого вирішення задачі. Так, рівняння (1) і його початкові та граничні умови після перетворення Кірхгофа = dT мають вигляд

( > 0, 0 < x < l, 0 < y < l, 0 < z < l);

На думку автора дисертації, низька затребуваність зазначених прийомів пояснюється труднощами оберненого перетворення, особливо у випадках подання ТФХ кусково-безперервними функціями або при розв'язанні задачі теплопровідності для багатошарових об'єктів з залежним від температури тепловим контактом між шарами. Показано, що позбутися проблем такого роду можна, якщо ввести загальний для всіх видів функціонального наближення ТФХ алгоритм оберненого перетворення та додати до функції прямого перетворення додаткові коефіцієнти для узгодження її значень на стику шарів. При цьому вдається з великою точністю вирішити нелінійні задачі для одношарової та багатошарової пластин. У багатошаровому випадку інтегральна підстановка загального вигляду дозволила, крім усього іншого, згладити негативний ефект від різкого контрасту властивостей сусідніх шарів. Ці прийоми та отримані з їхньою допомогою результати використовуються в дисертації при методичних дослідженнях і як процедури швидкого вирішення одновимірних нелінійних задач.

Оскільки основним інструментом проведення запланованих теплофізичних досліджень були обрані чисельні методи, питанням дискретизації математичної моделі в дисертації приділена найпильніша увага. Метод скінченних різниць є, як уявляється, методом, що найбільш повно задовольняє мету роботи, хоча і не виключається можливість використання інших методів дискретизації. Що стосується схем розрахунків, то вирішено опиратися тільки на неявну і явно-неявну (Кранка - Ніколсона) схеми і ті з них, які забезпечують другий порядок точності.

Крім широкого застосування підстановок Кірхгофа і Гудмена, у дисертації при звертанні до чисельних методів розв'язання задач теплопровідності використовуються такі методичні прийоми, що забезпечують збільшення точності та швидкості вирішення:

- метод ітерацій, що дає можливість одержати більш стійке розв'язання системи лінійних алгебраїчних рівнянь, ніж прямі (безітераційні) підходи, скористатися верхньою або нижньою релаксацією (прискоренням або заспокоєнням) і способами ітераційної регуляризації;

- керований підбор коефіцієнта релаксації за запропонованим дисертантом алгоритмом, що забезпечує близьку до оптимального швидкість збіжності вирішення за допомогою аналізу зміни температур на попередніх ітераціях;

- використання в розрахунках поля на кожній ітерації не тільки значень температур, отриманих на попередній ітерації, але і там, де це можливо, - температури поточної ітерації, тобто дотримування схеми Зейделя, що дає істотне прискорення збіжності ітераційного процесу;

- обхід вузлів від границь до центра області - інший важливий фактор збільшення швидкості ітерацій;

- ітераційне урахування нелінійностей з вирішенням уточненої лінійної системи скінченнорізницевих рівнянь на кожній ітерації, що дозволяє скоротити число ітерацій до мінімуму і тим самим зменшити витрати машинного часу, особливо істотно на обчислювальних засобах зі швидкою процедурою моделювання, наприклад, на гібридних сіткових обчислювальних комплексах;

- раціональний вибір параметра в критерії зупину ітерацій, що дозволяє виключити непотрібні обчислення, якщо процес ітераційних уточнень вже вичерпав апроксимаційні можливості даної скінченнорізницевої сітки;

- гнучкий підхід до вибору схеми дискретизації, мірності постановки і технічних засобів розрахунку, що забезпечує найбільш значний внесок у збільшення точності та швидкості розв'язання задачі;

- загущення сітки поблизу границі як ефективна альтернатива схемам другого порядку точності для приграничних вузлів, придатна не тільки для цифрових, але також для аналогових і гібридних сіткових процесорів.

Описані прийоми моделювання проілюстровані прикладом чисельного розв'язання двовимірної ПЗТ з урахуванням анізотропії теплопровідності, що являє собою частину комплексного дослідження процесів охолодження радіоелектронних елементів. Дано поле температур при підведенні теплового потоку W = 1 мВт через ділянку ребра пластини товщиною 1 мм і ступенем анізотропії x/y = 8. Теплопровідність уздовж довгої сторони пластини x = 0,3 Вт/(м К). Коефіцієнт тепловіддачі на поверхнях тій частини пластини, що перебуває усередині блоку радіоелектронної апаратури (РЕА), 1 = 1 Вт/(м2 К). Зовні блоку діє 2 = 50 Вт/(м2 К). Скрізь температура зовнішнього середовища Tс = 293 К.

Розділ 3. Оскільки до складу методів, обраних для розв'язання поставленої наукової проблеми, входять чисельні алгоритми та прийоми комп'ютерного програмування, не можна обійтися без розгляду набору технічних і програмних засобів автоматизації розрахунків при зборі, обробці, зберіганні та використанні теплофізичної інформації. На цих етапах форма подання даних звичайно міняється від аналогової на виходах датчиків температури та інших величин, що фіксуються у процесі експерименту, до цифрової при виконанні остаточних комп'ютерних розрахунків теплових процесів в елементах теплотехнічного устаткування. При цьому на проміжних етапах часто виникає необхідність перетворення з однієї форми подання інформаційного або керуючого сигналу в іншу. Тому в цілому набір технічних засобів комплексного теплофізичного дослідження нових матеріалів носить змішаний (гібридний) характер, що часто відноситься і до окремого складового цього набору устаткування. Наприклад, обчислювальний пристрій для моделювання температурних полів може бути як аналоговим, так і гібридним або повністю цифровим. Виникає цілий спектр наукових і технічних проблем, що стосуються елементів такого устаткування та узгодження обміну інформацією між ними, від вирішення яких багато в чому залежить успіх усього дослідження.

У даному розділі, дотримуючись комплексного підходу, автор розглядає його технічні аспекти теж комплексно, намагаючись охопити весь набір засобів на кожному з етапів теплофізичного дослідження. Не забуваючи про аналогові та гібридні способи збору, передачі і обробки теплофізичної інформації, основну увагу він сконцентрував на цифрових технологіях.

У цей час складні розрахункові та експериментальні дослідження теплопровідності неможливі без електронних засобів автоматизації і обчислювальної техніки. Електроніка багато в чому визначає ступінь вірогідності даних теплофізичного експерименту. Вона дозволяє з високою точністю передати і відобразити інформацію в зручній для дослідження формі та одержати шляхом наступної обробки даних додаткові відомості про процес. Можна з упевненістю сказати, що поява багатьох способів непрямих теплофізичних вимірів, у тому числі методів розв'язання ОЗТ, стала можливою лише на певному етапі розвитку обчислювальної техніки. У свою чергу, необхідність в усе більш детальному вивченні складних фізичних процесів стимулює розвиток засобів автоматизації експерименту та техніки обчислень.

У сучасній теплофізиці знаходять застосування як аналогові технічні засоби, дія яких припускає безперервне подання сигналу, так і цифрові, що оперують з дискретними величинами. Аналогові сигнали датчиків підсилюються і відображаються, як правило, без залучення елементів цифрової техніки. Переважно аналоговими виконуються електронні слідкувальні системи, що забезпечують заданий режим експерименту. Однак подальше вдосконалювання систем автоматизації експериментальних досліджень навряд чи можливо без включення до їх складу цифрових компонентів. Цифрова обчислювальна техніка, поступаючись аналоговій у швидкості обробки інформації, забезпечує меншу похибку обчислень, краще пристосована для виконання логічних операцій, дозволяє простіше організувати зберігання інформації та перетворення результатів. Ці якості визначають переважне застосування цифрових обчислювачів для здійснення керуючих функцій, що не вимагають оперативного втручання в хід швидкодіючого фізичного процесу, для зміни режимних параметрів експерименту при переході від одного варіанта до іншого, для обробки результатів експерименту після його завершення, для цифрової індикації та зберігання даних і т. п. Часто засоби вимірів, автоматизації та обчислень поєднуються в інформаційно-обчислювальний комплекс.

Що стосується структури апаратних засобів обробки даних теплофізичного експерименту, то і тут, очевидно, не може бути віддана перевага якомусь одному виду обчислювальної техніки. Так, розв'язання внутрішньої ОЗТ за допомогою неавтоматизованого аналогового обчислювального пристрою може виявитися більше ефективним, ніж на швидкодіючій цифровій обчислювальній машині (ЦОМ) загального призначення. Багато чого залежить від того, наскільки особливості того або іншого засобу обчислень відповідають структурі експерименту і його меті.

Загалом склад набору технічних засобів, призначених для комплексного теплофізичного дослідження, відповідає тематичному стрижню дисертації: “Від експериментального дослідження зразка матеріалу з досліджуваними теплофізичними властивостями через ідентифікацію цих властивостей приходимо до одержання даних про них, які, у свою чергу, на другому етапі дозволяють конкретизувати математичну модель, використовувану потім для моделювання явища теплопровідності, характерного для готового виробу із цього матеріалу”. Цей загальний план досліджень у випадку, коли як дані, одержувані на першому етапі, маються на увазі, у першу чергу, ТФХ нових матеріалів, опирається на такі технічні та програмні засоби:

- установку для проведення експерименту, споряджену засобами підтримки теплового режиму, датчиками, вимірювальними приладами та зразком;

- устаткування для первинної обробки даних експерименту, що включає до себе підсилювачі вихідних сигналів датчиків або інші узгоджувальні ланки, аналого-цифрові перетворювачі, комутатор вимірювальних сигналів та пристрій керування, який являє собою аналоговий або цифровий контролер або комп'ютер, що може виконувати функції реєстратора, здійснюючи перерахування результатів, наприклад, у випадку непрямих вимірів, та їхнє зберігання;

...

Подобные документы

  • Огляд особливостей процесів теплопровідності. Вивчення основ диференціальних рівнянь теплопровідності параболічного типу. Дослідження моделювання даних процесiв в неоднорiдних середовищах з м'якими межами методом оператора Лежандра-Бесселя-Фур'є.

    курсовая работа [1,6 M], добавлен 16.09.2014

  • Теплові процеси в елементах енергетичного обладнання. Задача моделювання теплових процесів в елементах енергетичного обладнання в спряженій постановці. Математична модель для розв’язання задач теплообміну стосовно елементів енергетичного обладнання.

    автореферат [60,0 K], добавлен 13.04.2009

  • Методи наближеного розв’язання крайових задач математичної фізики, що виникають при моделюванні фізичних процесів. Використання засобів теорії наближень атомарними функціями. Способи розв’язання крайових задач в інтересах математичного моделювання.

    презентация [8,0 M], добавлен 08.12.2014

  • Складання моделі технічних об’єктів в пакеті Simulink, виконання дослідження динаміки об’єктів. Моделювання динаміки змінення струму якісної обмотки та швидкості обертання якоря електричного двигуна постійного струму. Електрична рівновага моделі.

    лабораторная работа [592,7 K], добавлен 06.11.2014

  • Електропровідна рідина та її властивості в магнітному полі. Двовимірна динаміка магнітогідродинамічного потоку у кільцевому каналі І.В. Хальзев. Моделювання електровихрових полів у металургійних печах. Чисельне моделювання фізичних процесів у лабораторії.

    курсовая работа [2,6 M], добавлен 04.05.2014

  • Розрахунок поля електростатичних лінз методом кінцевих різниць; оптичної сили імерсійних лінзи і об'єктива та лінзи-діафрагми. Дослідження розподілу потенціалів у полях цих лінз та траєкторії руху електронів в аксиально-симетричному електричному полі.

    курсовая работа [3,7 M], добавлен 03.01.2014

  • Математичне та фізичне моделювання обтікання тіл біля екрану з використанням моделей ідеальної та в’язкої рідини. Чисельне розв`язання рівнянь Нав’є-Стокса для ламінарного та турбулентного режимів. Застосування моделей та методів механіки рідин та газів.

    автореферат [460,1 K], добавлен 16.06.2009

  • Визначення теплових потоків з усіх видів теплоспоживання. Побудова графіку зміни теплових потоків. Розрахунок водяних теплових мереж та конденсатопроводів. Побудова температурного графіка регулювання відпуску теплоти. Опис прийнятої теплової ізоляції.

    курсовая работа [91,9 K], добавлен 15.12.2011

  • Дослідження засобами комп’ютерного моделювання процесів в лінійних інерційних електричних колах. Залежність характеру і тривалості перехідних процесів від параметрів електричного кола. Методики вимірювання параметрів електричного кола за осцилограмами.

    лабораторная работа [1,0 M], добавлен 10.05.2013

  • Метод математичного моделювання фізичних властивостей діелектричних періодичних структур та їх електродинамічні характеристики за наявності електромагнітної хвилі великої амплітуди. Фізичні обмеження на управління електромагнітним випромінюванням.

    автореферат [797,6 K], добавлен 11.04.2009

  • Напівкласична теорія теплопровідності. Теоретичні аспекти ТЕ-наноматеріалів. Отримання зменшеної теплопровідності в сипких матеріалах. Квантово-розмірні ефекти: умови і прояви. Принципи впровадження наноструктур. Перспективи матеріалів на основі PbTe.

    дипломная работа [3,2 M], добавлен 11.11.2014

  • Теплофізичні методи дослідження полімерів: калориметрія, дилатометрія. Методи дослідження теплопровідності й температуропровідності полімерів. Дослідження електричних властивостей полімерів: електретно-термічний аналіз, статичні та динамічні методи.

    курсовая работа [91,3 K], добавлен 12.12.2010

  • Розрахунок теплових навантажень і витрат теплоносія. Оцінка ефективності теплоізоляційних конструкцій. Вибір опор трубопроводів і компенсаторів. Спосіб прокладання теплових мереж, їх автоматизація і контроль. Диспетчеризація систем теплопостачання.

    дипломная работа [816,9 K], добавлен 29.12.2016

  • Тепловий розрахунок тепличного господарства. Розрахунок систем вентиляції та досвічування теплиці. Розробка моделі теплиці та процесів тепло- і масообміну. Система опалення з оребреними трубами з тепловим насосом та вакуумними трубчастими колекторами.

    автореферат [2,1 M], добавлен 04.12.2013

  • Круговий термодинамічний процес роботи теплових машин. Прямий, зворотний та еквівалентний цикли Карно. Цикли двигунів внутрішнього згорання та газотурбінних установок з поступовим згоранням палива (підведенням теплоти) при постійних об’ємі та тиску.

    курсовая работа [1,1 M], добавлен 22.11.2014

  • Поняття, види та області застосування теплових насосів. Вибір приладу для обігріву приміщення у власному регіоні. Переваги використання ґрунтових зондів та насосів з горизонтальним теплообмінником. Сфери використання енергії, яку акумулює пристрій.

    реферат [1,5 M], добавлен 10.06.2014

  • Вивчення основних закономірностей тліючого розряду. Дослідження основних властивостей внутрішнього фотоефекту. Експериментальне вивчення ємнісних властивостей p–n переходів. Дослідження впливу електричного поля на електропровідність напівпровідників.

    методичка [389,4 K], добавлен 20.03.2009

  • Система електропривода ТП-Д. Введення структури моделі системи ТП-Д у програму MatLab. Перехідний процес розгону системи ТП-Д з нерухомого стану до сталого при подачі на систему східчастого впливу. Наростання вихідного сигналу. Напруга на вході системи.

    лабораторная работа [713,1 K], добавлен 19.09.2013

  • Вивчення закономірностей тліючого розряду, термоелектронної емісії. Дослідження основних властивостей внутрішнього фотоефекту, впливу електричного поля на електропровідність напівпровідників. Експериментальне вивчення ємнісних властивостей p–n переходів.

    учебное пособие [452,1 K], добавлен 30.03.2009

  • Характеристика загальних принципів моделювання. Визначення поняття моделі і співвідношення між моделлю та об'єктом. Вивчення основних функцій аналогових та математичних моделей. Аналіз методологічних основ формалізації функціонування складної системи.

    реферат [96,1 K], добавлен 09.04.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.