Интерференция света
Значение закона независимости световых пучков геометрической оптики. Временной и спектральный подход к анализу интерференции, его понятие и сущность, характеристика и отличительные черты. Пространственная когерентность, принцип Гюйгенса, метод Юнга.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 01.10.2014 |
Размер файла | 67,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Интерференция света
Закон независимости световых пучков геометрической оптики означает, что световые пучки встречаясь, не воздействуют друг на друга. В явлениях, в которых проявляется волновая природа света, этот закон утрачивает силу. При наложении световые волн в общем случае выполняется принцип суперпозиции: результирующий световой вектор является суммой световых векторов отдельных волн. При этом может получиться волна, интенсивность которой не будет равна сумме интенсивностей складывающихся волн.
Интерференция свойственна не только световым волнам, являющимися по своей природе электромагнитными волнами, но и волнам любого другого типа. Поскольку волны любого вида удовлетворяют одним и тем же волновым уравнениям, то при описании интерференции любых видов волн применяется один и тот же математический аппарат. Поэтому, сущность интерференции рассмотрим на примере сложения двух одномерных гармонических волн (волн вида ) одинаковой частоты. Накладываясь друг на друга, они возбуждают в некоторой точке пространства гармонические колебания
,
.
Интенсивность волны пропорциональна квадрату амплитуды . Поэтому, наблюдаемая при наложении волн интенсивность
.(1)
Результат сложения зависит от разности фаз (меняющейся при переходе к другой пространственной точке). В тех точках пространства, для которых , ; в точках, для которых , .
Таким образом, при наложении гармонических (в общем случае когерентных) световых волн происходит перераспределение светового потока в пространстве, в результате чего в одних местах возникают максимумы, а в других - минимумы интенсивности. Это явление называется интерференцией волн.
Рассмотрим точечный источник света S, который излучает монохроматический свет (свет фиксированной частоты) (рис.). До точки P первый луч проходит в среде с показателем преломления путь , второй луч проходит в среде с показателем преломления путь . Если в точке S фаза колебаний равна , то первый луч возбудит в точке P колебание , а второй луч - колебание ( и - фазовые скорости волн). Следовательно, разность фаз колебаний, возбуждаемых лучами в точке P, будет равна
.
Множитель равен ( - длина волны в вакууме) и выражению для разности фаз можно придать вид
,(2)
(3)
есть величина, называемая оптической разностью хода.
Из формулы (2) видно, что если оптическая разность хода равна целому числу длин волн в вакууме
,(4)
то разность фаз и колебания будут происходить с одинаковой фазой. Следовательно, условие (4) есть условие интерференционного максимума.
Если равна полуцелому числу длин волн в вакууме,
, (5)
то , так что колебания в точке P находятся в противофазе. Условие (5) есть условие интерференционного минимума.
Когерентность. В реальности монохроматических волн (неограниченных во времени волн фиксированной частоты) не существует. Для реальных световых волн необходимым условием интерференции является их когерентность. Так называется согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов.
Некогерентность естественных источников света обусловлена тем, что излучение светящегося тела складывается из волн, испускаемых многими атомами. Отдельные атомы излучают цуги волн длительностью ~108 с и протяженностью около 3 м независимо друг от друга. Начальные фазы этих волновых цугов никак не связаны между собой. Помимо этого, даже для одного и того же атома начальные фазы цугов при следующих актах излучения меняются случайным образом.
Временной подход к анализу интерференции. Рассмотрим следующую простую модель излучения: точечный источник испускает последовательность гармонических цугов с равными длительностями , равными амплитудами A и независимыми друг от друга случайными начальными фазами. При сложении двух таких волн интенсивность колебаний в некоторой точке будет равна
, (6)
где разность фаз претерпевает скачкообразные изменения. Если оптическая разность хода больше длины цуга, то складываются колебания заведомо разных цугов, поэтому имеет случайные значения. Всякий прибор, с помощью которого можно наблюдать интерференционную картину (глаз, фотопластинка и т.п.), обладает некоторой инерционностью. В связи с этим он регистрирует картину, усредненную по некоторому промежутку . На практике и поэтому, множитель принимает случайным образом все значения от -1 до +1 и имеет среднее значение равное нулю. Таким образом, средняя интенсивность и интерференция отсутствует. Если же меньше длины цуга, то в точке наблюдения частично перекрываются разные участки одного и того же цуга и поэтому некоторую часть времени имеет вполне определенное значение (случайное в остальное время). В силу этого и в меру перекрытия будет наблюдаться более или менее контрастная интерференционная картина.
Продолжительность одного цуга естественно отождествить со временем когерентности . За это время волна распространится в вакууме на расстояние , называемое длиной когерентности. По своему определению длина когерентности есть расстояние, при прохождении которого волна утрачивает когерентность. Это значит, что наблюдение интерференции света возможно лишь при оптических разностях хода, меньших длины когерентности для данного источника.
Рассмотренная модель излучения является идеализированной, так как в ней принималось, что свет состоит из последовательности цугов, имеющих одинаковую частоту , длительность и случайные начальные фазы. В более правдоподобных моделях излучения света атомами, включая реальное излучение, при рассмотрении интерференции также возникает временной параметр . Если временная разность хода двух лучей меньше , то наблюдается более или менее контрастная интерференционная картина, в противном случае интерференция практически не наблюдается.
Рассмотренный подход к анализу интерференции использует временные характеристики световых волн (время когерентности). Анализ можно провести и иным (спектральным) способом, в котором немонохроматический свет представляется в виде суперпозиции монохроматических пучков с различными частотами. Спектральный и временной подходы к анализу интерференции являются разными способами рассуждений о степени когерентности колебаний. Они приводят к идентичным выводам относительно интерференционной картины.
Спектральный подход к анализу интерференции. Пусть интервал длин волн ограничен и заключен между и . Интерференция не будет наблюдаться, если максимум m-го порядка для совпадет с максимумом (m1)-го порядка для . В этих условиях весь провал между соседними максимумами для будет заполнен максимумами неразличимых длин волн нашего интервала (рис.). Условие неразличимости интерференционной картины: , т.е. , где m - целое число.
Порядок интерференции m определяется разностью хода световых пучков и длиной волны соотношением .
.(7)
Она определяется свойствами источника света (либо применяемого монохроматора - устройства, пропускающего свет узкого диапазона длин волн). Пространственная когерентность и время когерентности связаны между собой соотношением . Используя соотношения и , где - частота, - интервал частот немонохроматического пучка, находим связь между временем когерентности и интервалом частот
.(8)
Эта связь имеет общий характер.
Расчет интерференционной картины от двух источников. Рассмотрим две цилиндрические когерентные световые волны, исходящие из источников и , имеющих вид параллельных, тонких светящихся нитей либо узких щелей. Если в области, в которой волны перекрываются, внести экран, то на нем будет видна интерференционная картина, которая имеет вид чередующихся светлых и темных полос. Рассчитаем положение полос и их ширину. Экран поместим параллельно обеим щелям на одинаковом расстоянии l. Начало отсчета выберем в точке O, относительно которой и расположены симметрично. Источники будем считать испускающими свет в одинаковой фазе. Из рисунка видно, что
, .
Следовательно
и оптическая разность хода равна
.
Разность хода составляет несколько длин волн и всегда значительно меньше и (). Поэтому можно положить и
.(9)
В большинстве случаев , поэтому , т.е.
(10)
Подстановка значения в условие (4) дает, что максимумы интенсивности будут наблюдаться при значениях
. (11)
Здесь - длина волны в среде.
Подставив (10) в условие (5), получим координаты минимумов интенсивности
.(12)
Расстояние между двумя соседними максимумами называется расстоянием между интерференционными полосами, а расстояние между соседними минимумами -шириной интерференционной полосы. Из (11) и (12) следует, что эти расстояния имеют одинаковое значение
.(13)
Интерференция двух плоских волн. Пусть происходит наложение двух плоских волн, амплитуды которых одинаковы, а направления их распространения образуют угол 2 (рис.). Направления колебаний светового вектора будем считать перпендикулярными к плоскости рисунка. Волновые векторы и лежат в плоскости рисунка и имеют одинаковый модуль, равный . Уравнения волн имеют вид
,
,
а результирующие колебания -
.
Из последнего выражения следует, что в точках, где (), амплитуда колебаний равна 2A; в точках, где , амплитуда колебаний равна нулю. Где бы ни располагался экран, перпендикулярный к оси y, на нем будет наблюдаться система чередующихся светлых и темных полос, параллельных оси z. Координаты максимумов интенсивности
.(14)
Пространственная когерентность. Во всех практических интерференционных схемах большое значение имеют размеры источника света. Если размеры источника значительно меньше длины световой волны то, конечно, всегда получается резкая интерференционная картина (при выполнении условия временной когерентности), ибо оптическая разность пути до какой-либо точки интерференционного поля для всего источника будет одна и та же. Однако на практике размеры источников света обычно значительно превосходят длину световой волны. Каждая точка источника создает свою интерференционную картину. Результирующая картина получается наложением картин всех элементов протяженного источника, излучение которых считаем некогерентными между собой. Эти картины не совпадают друг с другом так, что результирующая картина окажется более или менее размытой и при значительной ширине источника перестанет наблюдаться.
Влияние размеров источника на резкость интерференционной картины можно выразить количественно, исходя из общей интерференционной схемы (рис.). Пусть AB - протяженный источник ширины b. Рассмотрим результирующую интерференционную картину в окрестности некоторой точки экрана. Максимумы, получаемые от разных точек источника, будут смещены относительно друг друга. Если максимумы от точки B совпадают с максимумами от точки A так, что их порядок интерференции отличается на единицу то, результирующая интерференционная картина будет смазанной и интерференция не наблюдается. Для того чтобы интерференция была возможна, размер источника света не должен превышать некоторой величины. Эту величину определим из условия совпадения максимума (m1)-го порядка, получаемого от точки A, с максимумом m-го порядка, получаемым от точки B. Отличие оптических разностей хода точек A и B составляет, очевидно, . Используя (10), получаем соотношение
,
где l - расстояние между источником света и щелями. Определяя угловой размер источника и используя связь длин волн в вакууме и среде , получаем условие
.(15)
Формула (15) определяет угловые размеры источника, при которых наблюдается интерференция. Пусть теперь зафиксированы угловые размеры источника света. Тогда расстояние между щелями, при котором можно еще наблюдать интерференцию от источника с угловым размером должно удовлетворять, согласно (15), условию
.(16)
В соответствии с принципом Гюйгенса, реальный источник света в данной схеме можно заменить псевдоисточниками, расположенными на месте щелей. Отсутствие интерференционной картины означает, что волновые колебания этих источников некогерентны. Введем расстояние , при смещении на которое в направлении, поперечном распространению света, волновые колебания становятся некогерентными. Колебания в двух точках, отстоящих друг от друга на расстояние , будут частично когерентными. Расстояние называется радиусом когерентности. Из (16) следует
.
Угловой размер Солнца составляет около 0,01 рад, длина световых волн ~0,5 мкм. Следовательно, радиус когерентности приходящих от Солнца световых волн имеет значение мм. При использовании Солнца в качестве источника света щели следует располагать на расстоянии, меньшем 0,05 мм, а для наблюдения отчетливых интерференционных полос нужно брать d ~ 0,02 мм. Юнг получил интерференцию в 1802 г. от двух щелей, увеличив пространственную когерентность падающего на щели света. Такое увеличение Юнг осуществил, пропустив предварительно свет через небольшое отверстие в непрозрачном экране.
Излучение лазера, по сравнению с естественным светом, обладает огромной временной и пространственной когерентностью. Временная когерентность имеет значение порядка 10-5 с (гелий-неоновый лазер) а пространственная когерентность наблюдается во всем поперечном сечении светового пучка. световой оптика интерференция пространственный
Методы наблюдения интерференции света.
1. Метод Юнга. Источником сета служит ярко освещенная щель S (рис), от которой световая волна падает на две узкие равноудаленные щели и , параллельные щели S. Таким образом, щели играют роль когерентных источников. Интерференционная картина наблюдается на экране (Э), расположенном на некотором расстоянии от щелей и . В такой постановке Юнг осуществил первое наблюдение интерференции.
2. Зеркала Френеля. Два плоских зеркала (рис.), расположены относительно друг друга под небольшим углом (). На расстоянии r от линии пересечения зеркал параллельно ей находится прямолинейный источник света S. Световые пучки, отразившись от зеркал, являются мнимыми изображениями S в зеркалах. Мнимые источники и взаимно когерентны, и их световые пучки интерферируют в области взаимного перекрытия. От прямого попадания света на экран предохраняет заслонка.
Бипризма Френеля. Она состоит из двух одинаковых с общей гранью призм с малыми преломляющими углами (рис.). Свет от прямолинейного источника S преломляется в обеих призмах, в результате чего образуются две когерентные цилиндрические волны, исходящих из мнимых источников и . На поверхности экрана в некоторой его части происходит наложение этих волн и наблюдается интерференция.
Размещено на Allbest.ru
...Подобные документы
Волновая теория света и принцип Гюйгенса. Явление интерференции света как пространственного перераспределения энергии света при наложении световых волн. Когерентность и монохроматичных световых потоков. Волновые свойства света и понятие цуга волн.
презентация [9,4 M], добавлен 25.07.2015Дифракция механических волн. Связь явлений интерференции света на примере опыта Юнга. Принцип Гюйгенса-Френеля, который является основным постулатом волновой теории, позволившим объяснить дифракционные явления. Границы применимости геометрической оптики.
презентация [227,5 K], добавлен 18.11.2014Интерференция световых волн. Опыт Юнга. Методы наблюдения интерференции. Интерференция двух волн на поверхности жидкости, возбуждаемых вибрирующими стержнями. Время когерентности. Длина когерентности. Предельный наблюдаемый порядок интерференции.
презентация [8,5 M], добавлен 07.03.2016Основные достижения в области физики Томаса Юнга: разработка принципа суперпозиции и поперечности световых волн, объяснение явления дифракции, введение модуля упругости. Физическое сущность, причины появления и условия наблюдения интерференции света.
презентация [1,1 M], добавлен 13.11.2010Понятие оптического излучения и светового луча. Оптический диапазон длин волн. Расчет и конструирование оптических приборов. Основные законы геометрической оптики. Проявление прямолинейного распространения света. Закон независимости световых пучков.
презентация [12,0 M], добавлен 02.03.2016Схемы интерференции, отличающиеся методом создания когерентных пучков. Интерференция, получаемая делением волнового фронта, амплитуды волны. Интерференция при отражении от пластинок тонких и переменной толщины. Практическое применение интерференции.
презентация [199,6 K], добавлен 18.04.2013Особенность принципа Гюйгенса: каждая точка поверхности, достигнутая световой волной, является вторичным источником световых волн. Идеи Френеля о когерентности и интерференции элементарных волн. Закон отражения и закон преломления в изображении.
презентация [186,2 K], добавлен 27.04.2012Применение интерференции для проверки качества обработки поверхностей, "просветления" оптики, измерения показателя преломления веществ. Принцип действия интерферометра. Многолучевая интерференция света. Получение изображения объекта с помощью голографии.
реферат [165,6 K], добавлен 18.11.2013Сущность явления дифракции света, его виды. Принцип Гюйгенса-Френеля. Характеристика принципа интерференции. Метод зон Френеля, особенности его применения. Дифракционные картины при различном числе щелей. Интерференционный максимум - пятно Пуассона.
презентация [207,3 K], добавлен 01.05.2016Понятие интерференции в физике. Особенности этого явления при прохождении через кристалл поляризованного света. Описание законов интерференции поляризованных волн в случае параллельных и сходящихся пучков. Принципы явления хроматической поляризации.
контрольная работа [561,5 K], добавлен 18.11.2014Понятие интерференции света, ее история открытия, области применения. Схема когерентных волн. Использование специальных устройств для измерений интерференционным методом - интерферометров, их разновидности, методы получения когерентных пучков в них.
курсовая работа [816,6 K], добавлен 07.12.2015Объяснение явления интерференции. Развитие волновой теории света. Исследования Френеля по интерференции и дифракции света. Перераспределение световой энергии в пространстве. Интерференционный опыт Юнга с двумя щелями. Длина световой волны.
реферат [31,1 K], добавлен 09.10.2006Изучение явлений интерференции и дифракции. Экспериментальные факты, свидетельствующие о поперечности световых волн. Вывод о существовании электромагнитных волн, электромагнитная теория света. Пространственная структура эллиптически-поляризованной волны.
презентация [485,0 K], добавлен 11.12.2009Расчет длины волны из опыта Юнга и колец Ньютона. Интерференция света как результат наложения двух когерентных световых волн. Подробный расчет всех необходимых величин. Определение длины волны через угол наклона соответствующей прямой к оси абсцисс.
лабораторная работа [469,3 K], добавлен 11.06.2010Экспериментальное наблюдение интерференции света. Окрашивание мыльной плёнки в радужные цвета при освещении. Опыт Юнга. Когерентные волны. Условия максимумов и минимумов освещённости. Расчёт интерференционной картины в экспериментах с бипризмой Френеля.
презентация [757,6 K], добавлен 23.08.2013Принцип Гюйгенса-Френеля. Метод зон Френеля. Дифракция Френеля на круглом отверстии, на краю экрана, Фраунгофера от щели. Дифракционная решетка как спектральный прибор, принцип ее действия и сферы применения. Понятие и содержание голографии, ее значение.
презентация [1,3 M], добавлен 16.11.2012Сущность закона преломления света. Условие максимума и минимума интерференции. Соотношение для напряженностей падающей и отраженной волны. Определение скорости уменьшения толщины пленки. Сущность оптической длины пути и оптической разности хода.
контрольная работа [68,4 K], добавлен 24.10.2013Исторические факты и законы геометрической оптики. Представления о природе света. Действие вогнутых зеркал. Значение принципа Ферма для геометрической оптики. Развитие волновой теории света. Геометрическая оптика как предельный случай волновой оптики.
реферат [231,0 K], добавлен 19.05.2010Исследование распределения интенсивности света на экране с целью получения информации о свойствах световой волны. Основные виды дифракции. Объяснение проникновения световых волн в область геометрической тени с помощью принципа Гюйгенса. Метод фон Френеля.
презентация [146,9 K], добавлен 24.09.2013Понятие дифракции световых волн. Распределение интенсивности света в дифракционной картине при освещении щели параллельным пучком монохроматического света. Дифракционная решетка, принцип Гюйгенса - Френеля, метод зон. Дифракция Фраунгофера одной щели.
реферат [43,7 K], добавлен 07.09.2010