Дифракция и дифракционная решетка
Периоды дифракционной решетки, формула для многолучевой интерференции, понятие угловой дисперсии и дисперсии Фраунгофера. Характеристика и разрешающая сила спектрального прибора, критерий Рэлея при изображении близлежащих одинаковых точечных источников.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 01.10.2014 |
Размер файла | 44,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Дифракция Фраунгофера на дифракционной решетке. Дифракционная решетка представляет собой систему одинаковых щелей, разделенных равными по ширине непрозрачными промежутками. Дифракционную картину от решетки можно рассматривать как результат взаимной интерференции волн, идущих от всех щелей, т.е. в дифракционной решетке осуществляется многолучевая интерференция.
Рассмотрим дифракционную решетку. Если ширина каждой щели равна a, а ширина непрозрачных участков между щелями b, то величина называется периодом дифракционной решетки.
Согласно формуле для многолучевой интерференции (Л3-3-5) освещенность в условиях интерференции световых лучей от N щелей равна
. (1)
Из рис. видно, что разность хода от соседних щелей равна . Следовательно разность фаз
, (2)
где - длина волны в данной среде. Подставив в формулу (1) выражение для (освещенность от одной щели) и (2) для , получим
(3)
дифракционная решетка дисперсия рэлей
( - освещенность, создаваемая одной щелью на оси линзы).
Первый множитель обращается в нуль в точках, для которых
. (4)
В этих точках освещенность, создаваемая каждой из щелей в отдельности, равна нулю. Будут наблюдаться главные минимумы освещенности.
Второй множитель в правой части (3) принимает экстремальное, а все выражение близкое к экстремальному, значение (локальный максимум) в точках, удовлетворяющих условию
. (5)
Для направлений, определяемых этим условием, колебания от отдельных щелей взаимно усиливают друг друга. Условие (5) с достаточной точностью определяет положения главных максимумов. Число m дает порядок главного максимума.
Кроме главных минимумов в промежутке между соседними главными максимумами имеется дополнительный минимум. Эти минимумы соответствуют направлениям, при которых второй множитель обращается в нуль. В данных направлениях колебания от отдельных щелей взаимно погашают друг друга. В соответствии с (3) направления дополнительных минимумов определяются условием
. (6)
В формуле (6) m принимает все целочисленные значения кроме , т.е. кроме тех, при которых условие (6) переходит в (5).
Между дополнительными минимумами располагаются слабых вторичных максимумов. Интенсивность вторичных максимумов не превышает интенсивности ближайшего главного максимума (см. Л3-3). На рис. качественно представлена дифракционная картина от четырех щелей.
Так как , то из (4) следует, что наибольший порядок главного максимума
,
т.е. определяется отношением периода решетки к длине волны. Положение главных максимумов зависит от длины волны . Поэтому при пропускании через решетку белого света все максимумы, кроме центрального (), разложатся в спектр, фиолетовая область которого будет обращена к центру дифракционной картины, красная - наружу. Это свойство дифракционной решетки используется для исследования спектрального состава света (определения длин волн и интенсивностей всех монохроматических компонентов), т.е. дифракционная решетка может быть использована как спектральный прибор.
Основными характеристиками всякого спектрального прибора является его дисперсия и разрешающая сила. Дисперсия определяет угловое или линейной расстояние между двумя спектральными линиями, отличающимися по длине волны на единицу (например, на 1 Е). Разрешающая сила определяет минимальную разность длин волн , при которой две линии воспринимаются в спектре раздельно.
Угловой дисперсией называется величина
,
где - угловое расстояние между спектральными линиями, отличающимися по длине волны на . С помощью (4), опуская знаки, получим
.
Отсюда, в пределах небольших углов (),
. (7)
Разрешающей силой спектрального прибора называют безразмерную величину
,
где - минимальная разность длин волн двух спектральных линий, при которой эти линии воспринимаются раздельно.
Согласно критерию Рэлея, изображения двух близлежащих одинаковых точечных источников или двух близлежащих спектральных линий с равными интенсивностями разрешимы (разделены для восприятия), если центральный максимум от одного источника (линии) совпадает с первым минимумом дифракционной картины от другого (рис.). При выполнении критерия Рэлея интенсивность “провала” между максимумами составляет 80 % интенсивности в максимуме, что является достаточным для разрешения источников (линий).
Положение m-го максимума для длины волны и минимума, следующего за m-м максимумом для длины волны , определяется соответственно условиями
.
Согласно критерию Рэлея две эти линии разрешаются спектральным прибором, если правые части этих соотношений равны между собой или
.
Отсюда, для разрешающей силы получим выражение
. (8)
Современные дифракционные решетки обладают довольно высокой разрешающей способностью (до ).
Разрешающая сила объектива. Используя даже идеальную оптическую систему невозможно получить стигматическое изображение точечного источника, что объясняется волновой природой света. Если на объектив падает свет от удаленного точечного источника, то вследствие дифракции световых волн, в фокальной плоскости объектива вместо точки наблюдается дифракционная картина. В результате точечный источник отображается в виде светлого пятна, окруженного чередующимися темными и светлыми кольцами. Соответствующий расчет (дифракции Фраунгофера на круглом отверстии) дает, что первый минимум отстоит от центра дифракционной картины на угловое расстояние
,
где D - диаметр объектива (или диафрагмы). Полезно сравнить этот результат с подобным результатом для дифракции на щели. В последнем случае , где a - ширина щели. Если , можно положить
.
Если на объектив падает свет от двух удаленных точечных источников и с некоторым угловым расстоянием , то имеет место наложение их дифракционных картин (рис.). Согласно критерию Рэлея, который в данном случае гласит что, две близкие точки будут еще разрешены, если середина центрального максимума для одной точки совпадает с первым минимумом для второй точки. Таким образом, наименьшее угловое расстояние между двумя точками, при котором они еще разрешаются объективом
. (9)
Величина, обратная , называется разрешающей силой объектива
. (10)
Диаметр зрачка глаза при нормальном освещении равен примерно 2 мм. Подставив это значение в формулу (9) и взяв , получим
.
Примечательно, что расстояние между соседними светочувствительными элементами сетчатки глаза соответствует этому угловому расстоянию.
Дифракция рентгеновских лучей. Дифракция наблюдается не только на одномерной дифракционной решетке, но также трехмерных периодичных структурах. Подобными структурами являются все кристаллические тела. Однако их период () слишком мал для того, чтобы можно было наблюдать дифракцию в видимом свете. В случае кристаллов соотношение выполняется только для рентгеновских лучей.
В случае света лучи сводятся при помощи линзы. Для рентгеновских лучей осуществить линзу невозможно, так как показатель преломления этих лучей во всех веществах практически равен единице. Поэтому интерференция вторичных волн достигается путем использования весьма узких пучков лучей, которые и без линзы дают на экране (или фотопластинке) пятна очень малых размеров.
Рассматриваем кристалл как совокупность параллельных кристаллографических плоскостей (плоскостей, в которых лежат узлы кристаллической решетки), отстоящих друг от друга на расстояние d. Полагаем, что при падении рентгеновского излучения на кристалл происходит частичное отражение излучения от этих плоскостей. Вторичные волны, отразившиеся от разных плоскостей, когерентны и будут интерферировать между собой. Из рис. видно, что разность хода двух волн, отразившихся от соседних плоскостей, равна , где - угол, называемый углом скольжения падающих лучей. Максимумы интенсивности (дифракционные максимумы) наблюдаются в тех направлениях, в которых все отраженные атомными плоскостями волны будут находиться в одинаковой фазе. Эти направления определяются условием
. (11)
Это соотношение называется Вульфа-Брегга.
Кристаллографические плоскости можно провести в кристалле множеством способов (рис.). Каждая система плоскостей может дать дифракционный максимум, если для нее окажется выполненным условие (11). Однако заметную интенсивность имеет лишь те максимумы, которые дают плоскости с густо расположенными узлами.
Дифракция рентгеновских лучей от кристаллов находит два основных применения. Она используется для исследования спектрального состава рентгеновского излучения (рентгеновская спектроскопия) и для изучения структуры кристаллов (рентгеноструктурный анализ). Определяя направления максимумов, получающихся при дифракции исследуемого рентгеновского излучения от кристаллов с известной структурой, можно вычислить длины волн. Наблюдая дифракцию рентгеновских лучей известной длины волны на кристалле неизвестного строения можно найти межплоскостные расстояния и расшифровать структуру кристалла.
Голография. Голография есть особый способ записи и последующего восстановления изображения предмета, основанный на регистрации интерференционной картины. При освещении фотопластинки (голограммы) пучком света изображение предмета восстанавливается в почти первоначальном виде, так что создается ощущение его реальности.
Для записи предмета на светочувствительной пластинке кроме волны, отраженной от предмета (так называемой предметной волны), используется когерентная с ней волна от источника света (так называемая опорная волна). На фотопластинке фиксируется распределение интенсивности в интерференционной картине, возникающей при наложении предметной и опорной волн. При освещении проявленной фотопластинки происходит дифракция света в фотослое. В результате дифракции восстанавливается изображения предмета.
Практически идея голографии осуществляется с помощью схемы, изображенной на рис. Лазерный пучок делится на две части, причем одна его часть отражается зеркалом на фотопластинку (опорная волна), а вторая попадает на фотопластинку, отразившись от предмета (предметная волна). Опорная и предметная волны, являясь когерентными, при наложении интерферируют. Интерференционная картина фиксируется на фотопластинке, после ее проявления получается голограмма - изображение интерференции.
Для восстановления изображения голограмма помещается в то же самое положение, где она находилась до регистрации. Ее освещают опорным пучком того же лазера (вторая часть лазерного пучка перекрывается диафрагмой). В результате дифракции опорной волны возникает несколько волн. Одна волна дает мнимое изображение, которое точно воспроизводит предмет. Другая волна образует действительное изображение предмета. Действительное изображение псевдоскопично - оно имеет рельеф, обратный рельефу предмета (выпуклые места заменены вогнутыми и наоборот). Третья волна является продолжением падающей с меньшей интенсивностью.
Рассмотрим принцип голографии на простом примере. Пусть на фотопластинку падают две когерентные волны, идущих под углом друг к другу. Волна 1 является опорной, волна 2 - предметной (предмет в данном случае представляет бесконечно удаленную точку). Для простоты, предположим, что волна 1 падает на пластинку нормально.
Вследствие интерференции волн на пластинке образуется (и фиксируется) система прямолинейных полос - максимумов и минимумов интенсивности. Пусть точки a и b соответствуют серединам соседних максимумов. Тогда разность хода соответствующих лучей предметной волны до этих точек равна . Из рис. видно, что разность хода и, следовательно,
. (12)
Направим свет опорной волны на проявленную фотопластинку. Пластинка является дифракционной решеткой, период которой определяется формулой (12). Особенность этой решетки состоит в том, что ее прозрачность изменяется плавно (у обычных решеток она изменялась скачком). Эта особенность приводит к тому, что интенсивность дифракционных максимумов выше 1-го практически равна нулю и результирующая дифракционная картина определяется условием
. (13)
Максимум m 0 лежит на продолжении опорного пучка. Максимум m +1 имеет такое же направление, какое имела предметная волна. Кроме того, возникает максимум m 1.
Сходная ситуация возникает и при освещении голограммы, полученной от реального предмета. При этом будет восстановлена световая волна, отраженная предметом (ей отвечает m +1). Кроме нее, возникают еще две волны (отвечающие m 0 и m 1). Последние распространяются в других направлениях и не мешают восприятию мнимого изображения предмета (которое и представляет главный интерес).
Рассмотренный способ дает одноцветные изображения (цвета лазера). Цветное зрение связано с тремя типами светочувствительных элементов сетчатки глаза, реагирующих на красное, зеленое и синее. Зрительное восприятие, поэтому, складывается из трех одноцветных изображений, соответственно красного, зеленого и синего. Это свойство зрения используется в цветной голографии.
Цветная голография основана на записи объемной интерференционной картины. Восстановление изображения происходит при отражении света от голограммы. Схема записи и восстановления цветного изображения приведена на рис. При записи предмет (последовательно или одновременно) освещается излучением трех цветов: красным, зеленым и синим. В толще фотоэмульсии образуется (и фиксируются) три пространственные интерференционные картины. При освещении белым цветом каждая из систем формирует свое одноцветное изображение предмета. В результате, при наложении трех одноцветных, получаются цветное изображение предмета.
Размещено на Allbest.ru
...Подобные документы
Понятие дифракции световых волн. Распределение интенсивности света в дифракционной картине при освещении щели параллельным пучком монохроматического света. Дифракционная решетка, принцип Гюйгенса - Френеля, метод зон. Дифракция Фраунгофера одной щели.
реферат [43,7 K], добавлен 07.09.2010Волновые и квантовые аспекты теории света. Теоретические вопросы интерференции и дифракции. Оценка технических возможностей спектральных приборов, дифракционной решетки. Методика определения длины волны света по спектру от дифракционной решетки.
методичка [211,1 K], добавлен 30.04.2014Дифракция в сходящихся лучах (дифракция Френеля). Схема дифракции Фраунгофера в параллельных лучах. Интерференция волн, идущих от щелей решетки. Формулы условий, определяющих дифракционную картину. Спектральное разложение. Разрешающая способность решетки.
презентация [135,3 K], добавлен 18.04.2013Определение дифракции в волновой и геометрической оптике. Сущность принципа Гюйгенса-Френеля. Виды дифракции и определение дифракционной решетки. Дифракция Фраунгофера на одной щели. Распределение интенсивности в дифракционной картине от двух щелей.
презентация [82,6 K], добавлен 17.01.2014Принцип Гюйгенса-Френеля. Метод зон Френеля. Дифракция Френеля на круглом отверстии, на краю экрана, Фраунгофера от щели. Дифракционная решетка как спектральный прибор, принцип ее действия и сферы применения. Понятие и содержание голографии, ее значение.
презентация [1,3 M], добавлен 16.11.2012Анализ теорий распространения электромагнитных волн. Характеристика дисперсии, интерференции и поляризации света. Методика постановки исследования дифракции Фраунгофера на двух щелях. Влияние дифракции на разрешающую способность оптических инструментов.
курсовая работа [2,0 M], добавлен 19.01.2015Понятие дисперсии света. Нормальная и аномальная дисперсии. Классическая теория дисперсии. Зависимость фазовой скорости световых волн от их частоты. Разложение белого света дифракционной решеткой. Различия в дифракционном и призматическом спектрах.
презентация [4,4 M], добавлен 02.03.2016Рассмотрение дифракции - отклонения световых лучей от прямолинейного распространения при прохождении сквозь узкие щели, малые отверстия или при огибании малых препятствий. Волновые свойства света. Принцип Гюйгенса–Френеля. Строение дифракционной решетки.
презентация [1,4 M], добавлен 04.08.2014Зависимость показателя преломления газов от их плотности. Устройство интерферометра, основанного на дифракции Фраунгофера на двух щелях. Измерение показателя преломления газов помощью интерферометра Рэлея, наблюдение интерференционных полос в белом свете.
лабораторная работа [594,8 K], добавлен 02.03.2011Обзор дифракции в сходящихся лучах (Френеля). Правила дифракции световых волн на круглом отверстии и диске. Схема дифракции Фраунгофера. Исследование распределения интенсивности света на экране. Определение характерных параметров дифракционной картины.
презентация [135,3 K], добавлен 24.09.2013Изучение дифракции света на одномерной решетке и определение ее периода. Образование вторичных лучей по принципу Гюйгенса-Френеля. Расположение главных максимумов относительно центрального. Измерение среднеарифметического значения длины световой волны.
лабораторная работа [67,1 K], добавлен 25.11.2010Компакт-диск как дифракционная решетка. Компакт-диск – зонная пластинка. Фокусирующее действие компакт-диска. Наблюдения в монохроматическом и белом свете. Дифракция света. Поляризация света. Проверка закона Малюса.
лабораторная работа [274,5 K], добавлен 19.07.2007Изучение особенностей распространения световой волны с помощью принципа Гюйгенса-Френеля. Характеристика разных видов дифракции Фраунгофера. Структура и методы изготовления дифракционных решеток. Конструкция дифракционных спектрографов и монохроматоров.
курсовая работа [3,0 M], добавлен 24.03.2013Исследование кристаллической структуры поверхности с помощью рентгеновских и электронных пучков. Дифракция электронов низких и медленных энергий (ДЭНЭ, ДМЭ), параметры. Тепловые колебания решетки, фактор Дебая-Валлера. Реализация ДЭНЭ, применение метода.
курсовая работа [3,2 M], добавлен 08.06.2012Основы теории дифракции света. Эксперименты по дифракции света, условия ее возникновения. Особенности дифракции плоских волн. Описание распространения электромагнитных волн с помощью принципа Гюйгенса-Френеля. Дифракция Фраунгофера на отверстии.
презентация [1,5 M], добавлен 23.08.2013Дифракция механических волн. Связь явлений интерференции света на примере опыта Юнга. Принцип Гюйгенса-Френеля, который является основным постулатом волновой теории, позволившим объяснить дифракционные явления. Границы применимости геометрической оптики.
презентация [227,5 K], добавлен 18.11.2014Принцип Гюйгенса-Френеля и направления его практического применения. Метод зон Френеля: содержание и значение. Специфические особенности и обоснование дифракции от простейших преград и в параллельных лучах (Фраунгофера), на пространственных решетках.
презентация [3,8 M], добавлен 07.03.2016Интегральная теорема Кирхгофа–Гельмгольца. Угловой спектр плоских волн. Сущность квазиоптического приближения. Интеграл Кирхгофа, метод стационарной фазы. Решение дифракционной задачи с помощью интеграла Кирхгофа и соответствующей функции Грина.
контрольная работа [56,2 K], добавлен 20.08.2015Сущность явления дифракции света, его виды. Принцип Гюйгенса-Френеля. Характеристика принципа интерференции. Метод зон Френеля, особенности его применения. Дифракционные картины при различном числе щелей. Интерференционный максимум - пятно Пуассона.
презентация [207,3 K], добавлен 01.05.2016Исследование понятия дисперсии, зависимости показателя преломления света от частоты колебаний. Изучение особенностей теплового излучения, фотолюминесценции и катодолюминесценции. Анализ принципа действия призменного спектрального аппарата спектрографа.
презентация [734,5 K], добавлен 17.04.2012