Фотоны

Испускание электронов веществом под действием света. Изучение вольтамперных характеристик разнообразных материалов при различных частотах падающего на катод излучения. Распределение энергии в спектре равновесного теплового излучения. Эффект Комптона.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 01.10.2014
Размер файла 55,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Фотоны

Фотоэффект. Фотоэлектрическим эффектом или фотоэффектом называется испускание электронов веществом под действием света. Принципиальная схема для исследования фотоэффекта приведена на рис. Два электрода (катод К из исследуемого материала и анод А) в вакуумной трубке подключены к батарее так, что с помощью потенциометра R можно не только изменять значение, но и знак подаваемого на них напряжения. Ток, возникающий при освещении катода монохроматическим светом (через кварцевое окошко), измеряется включенным в цепь миллиамперметром.

При изучении вольтамперных характеристик разнообразных материалов при различных частотах падающего на катод излучения и различных энергетических освещенностях катода были установлены следующие три закона фотоэффекта.

Из вольтамперной кривой (рис.) видно, что при некотором напряжении фототок достигает насыщения - все электроны, испущенные катодом, попадают на анод. Таким образом,

I. При фиксированной частоте падающего света число фотоэлектронов, вырываемых из катода в единицу времени, пропорционально интенсивности света (сила фототока насыщения пропорциональна энергетической освещенности катода).

Пологий ход кривой указывает на то, что электроны вылетают из катода с различными скоростями. Для отсечки тока нужно приложить задерживающее напряжение . При таком напряжении ни одному из электронов, даже обладающему наибольшей при вылете скоростью , не удается преодолеть задерживающее поле и достигнуть анода. Измерив задерживающее напряжение , по формуле можно определить максимальное значение скорости фотоэлектронов. Было выяснено:

II. Максимальная начальная скорость (максимальная кинетическая энергия) фотоэлектронов не зависит от интенсивности падающего света, а определяется только его частотой .

III. Для каждого металла существует красная граница фотоэффекта, т.е. минимальная частота света (зависящая от химической природы вещества и состояния его поверхности), ниже которой фотоэффект невозможен.

В 1905 г. А. Эйнштейн показал, что все закономерности фотоэффекта легко объяснить, если предположить, что свет поглощается такими же порциями (квантами), какими он, по предположению Планка, испускается. Энергия кванта, по предположению Эйнштейна, усваивается электроном целиком. Часть этой энергии, равная работе выхода A, затрачивается на то, чтобы электрон мог покинуть тело. Остаток энергии переходит в кинетическую энергию электрона. По закону сохранения энергии

. (1)

Уравнение (1) называется уравнением Эйнштейна.

Уравнение Эйнштейна позволяет объяснить II и III законы фотоэффекта. Из (1) следует, что максимальная кинетическая энергия фотоэлектронов линейно возрастает с увеличением частоты падающего излучения и не зависит от интенсивности последнего. В случае, когда работа выхода A превышает энергию кванта , электроны не могут покинуть металл. Следовательно, для возникновения фотоэффекта необходимо выполнения условия или

. (2)

Частота называется красной границей фотоэффекта.

Число высвобождаемых фотоэлектронов должно быть пропорционально числу падающих на поверхность квантов света. Вместе с тем энергетическая освещенность определяется количеством квантов света, падающих на единицу поверхности в единицу времени. В соответствии с этим ток насыщения должен быть пропорционален освещенности поверхности

. (3)

Эта зависимость также подтверждается экспериментально. Отметим, что лишь малая часть квантов передает свою энергию фотоэлектронам. Энергия остальных кантов затрачивается на нагревание вещества.

Фотоны. Чтобы объяснить распределение энергии в спектре равновесного теплового излучения, достаточно допустить, что свет только испускается порциями . Для объяснения фотоэффекта достаточно предположить, что свет поглощается такими же порциями. Эйнштейн пошел значительно дальше. Он выдвинул гипотезу, что свет и распространяется в виде дискретных частиц. Впоследствии эти частицы получили название фотонов.

Существование фотонов подтверждено экспериментально в опыте Боте. Он показал, что энергия рентгеновских лучей распространяется в виде порций в ту или иную сторону (а не во все стороны одновременно как для электромагнитной волны). Опыт был выполнен при помощи двух счетчиков (рис.), достаточно чувствительных для того, чтобы зарегистрировать действие одного рентгеновского кванта, и достаточно быстро отмечающих его появление. Тоненькая металлическая пленка A, освещаемая сбоку рентгеновскими лучами R, сама становилась источником рентгеновских лучей (рентгеновская флуоресценция). Два счетчика C1 и C2 расположены симметрично. Попадание рентгеновского излучения в каждый из них вызывает немедленное срабатывание, что фиксируется на самописце. Опыт совершенно отчетливо обнаружил беспорядочность срабатываний счетчиков, т.е. доказал, что из A летят кванты то в одну, то в другую сторону.

Так как фотон движется со скоростью света в любой инерциальной системе отсчета, то он согласно принципам теории относительности не обладает массой покоя. Энергия фотона определяется его частотой

.

Для частиц, не обладающих массой покоя, импульс связан с энергией соотношением . Для фотона получаем

.

Поскольку фотоны обладают импульсом, то свет, падающий на тело, должен оказывать на него давление. Рассчитаем с точки зрения квантовой теории световое давление, оказываемое на поверхность тела потоком монохроматического излучения (частота ), падающего перпендикулярно поверхности. Если в единицу времени на единицу площади падает N фотонов, то при коэффициенте отражения света от поверхности N фотонов отразится, а (1)N - поглотится. Каждый поглощенный фотон передает поверхности импульс , а каждый отраженный - (при отражении импульс фотона меняет направление). Поэтому давление света

.

есть энергия всех фотонов, падающих на единицу поверхности в единицу времени, т.е. энергетической освещенности поверхности, а - объемная плотность энергии излучения. Поэтому

. (4)

Формула (4) совпадает с выражением, получаемым из электромагнитной (волновой) теории Максвелла.

Эффект Комптона. Особенно отчетливо проявляются корпускулярные свойства света в явлении, которое получило название эффекта Комптона. Исследуя рассеяние рентгеновских лучей различными веществами, он обнаружил, что в рассеянных лучах, наряду с излучением первоначальной длины содержатся также лучи большей длины волны . Разность оказалась зависящей только от угла между направлением первичного пучка и рассеянным излучением.

Схема опыта Комптона показана на рис. Узкий пучок монохроматического рентгеновского излучения направлялся на рассеивающее вещество РВ. Спектральный состав рассеянного излучения исследовался с помощью рентгеновского спектрографа, состоящего из кристалла Кр и фотопластинки (или ионизационной камеры) Ф.

Эффект Комптона обусловлен упругим рассеянием рентгеновского излучения на свободных (или слабосвязанных) электронах вещества, которое сопровождается увеличением длины волны. Этот эффект не укладывается в рамки волновой теории, согласно которой длина волны при рассеянии изменяться не должна: под действием периодического поля световой волны электрон колеблется с частотой поля и поэтому излучает рассеянные волны той же частоты. излучение свет катод комптон

Все особенности эффекта Комптона можно объяснить на основе квантовых представлений о природе света, рассматривая рассеяние как упругое столкновение рентгеновских фотонов со свободными электронами. При столкновении фотон передает электрону часть энергии и импульса в соответствии с законами сохранения.

Рассмотрим упругое столкновение двух частиц (рис.) - налетающего фотона, обладающего импульсом и энергией , с покоящимся свободным электроном (энергия покоя , - масса покоя электрона). Согласно закону сохранения энергии

. (5)

Согласно закону сохранения импульса

. (6)

В формулах (5), (6) p - импульс, а - энергия электрона после столкновения, - энергия, а - импульс рассеянного фотона. Преобразуем (6) к виду

(7)

Подставив в (5) и (7) значения величин и обозначив через угол рассеяния фотона (рис.), получим

, (8)

. (9)

Решая совместно уравнения (8) и (9), получим

.

Поскольку и , получим

, (10)

где называется комптоновской длиной волны рассматриваемой частицы, в данном случае электрона. Для электрона .

Как эффект Комптона, так и фотоэффект обусловлены взаимодействием фотонов с электронами. В первом случае фотон рассеивается, во втором - поглощается. Рассеяние происходит при взаимодействии фотона со свободным или связанным электроном, а фотоэффект - со связанным электроном. Можно показать, что при столкновении фотона со свободным электроном не может произойти поглощение фотона, так как этот процесс противоречит законам сохранения энергии и импульса. Поэтому при взаимодействии фотонов со свободными электронами может наблюдаться только их рассеяние, т.е. эффект Комптона.

Корпускулярно-волновой дуализм электромагнитного излучения. Рассмотренные явления - излучение черного тела, фотоэффект, эффект Комптона - свидетельствуют о квантовых (корпускулярных) свойствах света, т.е. свет представляет собой поток световых частиц - фотонов. С другой стороны, такие явления, как интерференция, дифракция и поляризация света, свидетельствуют о волновой природе света. Таким образом, электромагнитное излучение проявляет, казалось бы, взаимоисключающие свойства - свойства волны (непрерывность) и свойства частиц (дискретность).

Ранее были получены соотношения, связывающие корпускулярные свойства электромагнитного излучения (энергия и импульс фотона) с волновыми свойствами (частота и длина волны)

, .

Свет, обладая одновременно корпускулярными и волновыми свойствами, обнаруживает определенные закономерности в их проявлении. Так, волновые свойства света проявляются в процессах, связанных с его распространением: интерференции, дифракции, поляризации, а корпускулярные - в процессах взаимодействия света с веществом. Чем больше длина волны, тем меньше энергия и импульс фотона и в меньшей степени проявляются квантовые свойства света (с эти связано, например, существование красной границы фотоэффекта). Наоборот, чем меньше длина волны, тем больше энергия и импульс фотона и в меньшей степени проявляются волновые свойства света (например, дифракция рентгеновского излучения обнаружена лишь при использовании в качестве дифракционной решетки кристаллов).

С помощью вероятностной (статистической) интерпретации волновой функции можно устранить противоречие между двумя - корпускулярным и волновым - способами описания излучения. Рассмотрим с обеих точек зрения освещенность какой-либо поверхности. Согласно волновым представлениям освещенность в некоторой точке поверхности пропорциональна квадрату светового вектора. С корпускулярной точки зрения освещенность пропорциональна плотности потока фотонов. Следовательно, между квадратом светового вектора и плотностью потока фотонов имеется прямая пропорциональность. Примем, что квадрат светового вектора определяет вероятность попадания фотона в данную точку поверхности

.

Таким путем устанавливается взаимосвязь двух способов описания.

Последовательный подход требует отказа от точки зрения на микрочастицу как частицу, движущуюся по определенной траектории и имеющей определенные динамические характеристики. В то же время ее нельзя отождествить с волной или волновым пакетом. Микрочастица является новым - квантовым объектом: при распространении она как бы растворена в некоторой пространственной области, при взаимодействии она коллапсирует и проявляет себя целиком. В настоящее время принята точка зрения, согласно которой не существует какого-либо механизма, предопределяющего место и время проявления частицы. Иными словами вероятностный характер поведения является изначальным, внутренним свойством микрочастиц.

Теория атома водорода по Бору

Модели атома Томсона и Резерфорда. Первая попытка создания на основе накопленных экспериментальных данных модели атома принадлежит Дж. Дж. Томсону. Согласно этой модели, атом представляет собой равномерно заполненный положительным электричеством шар радиусом порядка 10-10 м, внутри которого находится электрон. Суммарный положительный заряд шара равен заряду электрона, так что атом в целом нейтрален. В дальнейшем выяснилась несостоятельность этой модели.

Резерфорд, исследуя прохождение -частиц через вещество (тонкие фольги толщиной примерно 1 мкм), установил, что основная их часть испытывает незначительные отклонения, но некоторые -частицы (примерно одна из 20000) значительно отклоняются от первоначального направления (углы отклонения достигали даже 180). Альфа-частицы возникают при ядерных превращениях и являются ядрами атомов гелия: зарядом 2e и массой примерно 7300me. Скорости -частиц при некоторых превращениях бывают порядка 107 м/с. Так как электроны не могут существенно изменить движение столь тяжелых и быстрых частиц, то столь сильное отклонение -частиц возможно только в том случае, если внутри атома имеется чрезвычайно сильное электрическое поле, которое создается зарядом, имеющим большую массу и сконцентрированном в очень малом объеме. Основываясь на этом выводе, Резерфорд предложил ядерную (планетарную) модель атома. Согласно этой модели в центре атома расположено тяжелое положительное ядро с зарядом Ze, вокруг которого по замкнутым орбитам движутся Z электронов. Ядро имеет размеры, не превышающие 10-14 м, и в котором сконцентрирована практически вся масса атома.

Однако с самого начала ядерная модель оказалась в противоречии с законами классической механики и электродинамики. Электрон в атоме движется с ускорением и согласно классической электродинамике он должен непрерывно излучать электромагнитные волны. Излучение уменьшает энергию электрона, так что он должен достаточно быстро упасть на ядро. Этот результат не соответствует действительности, так как атом является устойчивым образованием. Преодоление возникших трудностей привело к созданию качественно новой - квантовой - теории атома.

Спектр атома водорода. Исследования спектров излучения разреженных газов (т.е. спектров излучения отдельных атомов) показали, что каждому газу соответствует определенный линейчатый спектр, состоящий из отдельных спектральных линий или групп близко расположенных линий. Самым изученным является спектр наиболее простого атома - водорода.

Швейцарский ученый И. Бальмер подобрал эмпирическую формулу, описывающую все известные в то время спектральные линии атома водорода в видимой области спектра

, (11)

где R1,10107 м-1 - постоянная Ридберга. Так как , то формулу (11) можно записать в виде

, (12)

где R2cR2,071016 рад/с - называется также постоянной Ридберга.

Спектральные линии, отличающиеся значениями n, образуют группу линий, называемой серией Бальмера. С увеличением n линии серии сближаются; значение n определяют границу серии, к которой со стороны больших частот примыкает сплошной спектр. В дальнейшем в спектре атома водорода было обнаружено еще несколько серий. В ультрафиолетовой области спектра находится серия Лаймана

.

В инфракрасной области были также обнаружены серия Пашена

,

серия Брэкета и др. Все приведенные выше серии в спектре водорода могут быть описаны одной формулой, называемой обобщенной формулой Бальмера

, (13)

где определяет серию, определяет отдельные линии серии.

Функциональный вид сериальных формул, которые сводятся к одной обобщенной формуле (13), свидетельствует о наличии закономерности, объяснить которую в рамках классической физики оказалось невозможным.

Размещено на Allbest.ru

...

Подобные документы

  • Волновые свойства света: дисперсия, интерференция, дифракция, поляризация. Опыт Юнга. Квантовые свойства света: фотоэффект, эффект Комптона. Закономерности теплового излучения тел, фотоэлектрического эффекта.

    реферат [132,9 K], добавлен 30.10.2006

  • Фотон как основная частица электромагнитного излучения, его свойства и схема движения. Характеристика спектров испускания. Взаимодействие фотонов электромагнитного излучения с веществом, поглощение света. Особенности человеческого цветовосприятия.

    контрольная работа [740,3 K], добавлен 25.01.2011

  • Порядок и главные правила измерения величин I0 и Iфон с заданной статистической погрешностью. Определение излучения исследуемого радиоактивного изотопа. Направления и перспективы устранения различных систематических погрешностей в данном эксперименте.

    лабораторная работа [149,1 K], добавлен 01.12.2014

  • Зависимость показателя преломления от частоты падающего света. Разложение сложного излучения в спектр. Уравнение движения электронов атомов вещества под действием поля световой волны. Скорости ее распространения. Суммарный дипольный момент атомов.

    презентация [229,6 K], добавлен 17.01.2014

  • Законы внешнего фотоэффекта. Фотонная теория света. Масса, энергия и импульс фотона. Эффект Комптона. Тормозное рентгеновское излучение. Двойственная природа и давление света. Изучение основного постулата корпускулярной теории электромагнитного излучения.

    презентация [2,3 M], добавлен 07.03.2016

  • Особенности механизма излучения. Электролюминесценция, катодолюминесценция, хемилюминесценция и фотолюминесценция. Распределение энергии в спектре. Спектральная плотность интенсивности излучения. Количественный анализ состава вещества по его спектру.

    контрольная работа [22,3 K], добавлен 11.07.2012

  • История открытия инфракрасного излучения, источники, основное применение. Влияние инфракрасного излучения на человека. Особенности применения ИК-излучения в пищевой промышленности, в приборах для проверки денег. Эффект теплового воздействия на организм.

    презентация [373,2 K], добавлен 21.05.2014

  • Законы квантовой механики, сущность и границы её применимости. Эффект Комптона и свойства света в период формирования новой физики. Волновая теория Бройля и ряд его крупнейших технических достижений. Теория теплового излучения и электромагнетизм.

    реферат [36,5 K], добавлен 26.02.2012

  • Природа и виды ионизирующих излучений. Взаимодействие электронов с веществом. Торможение атомных ядер. Зависимость линейного коэффициента ослабления гамма-излучения в свинце от энергии фотонов. Диффузия в структуре полупроводник-металл-диэлектрик.

    курсовая работа [1,2 M], добавлен 12.04.2012

  • Внутренняя энергия нагретого тела. Источники теплового излучения. Суммарное излучение с поверхности тела. Интегральный лучистый поток. Коэффициент излучения абсолютно черного тела. Степень черноты полного нормального излучения для различных материалов.

    реферат [14,7 K], добавлен 26.01.2012

  • Взаимодействие лазерного излучения с атомами. Пробой жидкостей под действием лазерного излучения. Туннельный эффект в лазерном поле. Модель процессов ионизации вещества под воздействием лазерного излучения. Методика расчета погрешностей измерений.

    дипломная работа [7,4 M], добавлен 10.09.2010

  • Взаимодействие света с веществом. Основные различия в дифракционном и призматическом спектрах. Квантовые свойства излучения. Поглощение и рассеяние света. Законы внешнего фотоэффекта и особенности его применения. Электронная теория дисперсии света.

    курсовая работа [537,4 K], добавлен 25.01.2012

  • Теоретические основы оптико-электронных приборов. Химическое действие света. Фотоэлектрический, магнитооптический, электрооптический эффекты света и их применение. Эффект Комптона. Эффект Рамана. Давление света. Химические действия света и его природа.

    реферат [1,0 M], добавлен 02.11.2008

  • Концепция фотонов, предложенная А. Эйнштейном. Демонстрация эффекта Комптона на модели экспериментальной установке. Монохроматическое рентгеновское излучение. Объекты микромира и эффект Комптона. Биологическое действие рентгеновского излучения.

    реферат [947,7 K], добавлен 16.03.2011

  • Определение оптики. Квантовые свойства света и связанные с ними дифракционные явления. Законы распространения световой энергии. Классические законы излучения, распространения и взаимодействия световых волн с веществом. Явления преломления и поглощения.

    презентация [1,3 M], добавлен 02.10.2014

  • Структура изучения квантовой оптики в школе. Особенности методики. Изучение вопроса о световых квантах. Внешний фотоэффект. Эффект Комптона. Фотоны. Двойственность свойств света. Применение фотоэффекта. Роль и значение раздела "Квантовая оптика".

    курсовая работа [61,0 K], добавлен 05.06.2008

  • Фотоэффект - испускание электронов телами под действием света. Первый, второй и третий закононы фотоэффекта. Фотоэффект широко используется в технике. На явлении фотоэффекта основано действие фотоэлементов.

    реферат [4,7 K], добавлен 10.05.2004

  • Три основных вида фотоэффектов. Фотоэффект - испускание электронов телами под действием света, который был открыт в 1887 году Герценом. Промышленное производство солнечных батарей на гетероструктурах. Практическое применение явления фотоэффекта.

    практическая работа [267,0 K], добавлен 15.05.2009

  • Закон Био-Савара-Лапласа и его применение. Магнитные моменты электронов. Затухающие и вынужденные колебания в контуре. Волновая и квантовая природа света. Характеристики теплового излучения. Методы оптической пирометрии. Строение атома водорода по Бору.

    методичка [1,6 M], добавлен 02.06.2011

  • Физические основы метода гамма-гамма каротаж. Его виды, преимущество и применение. Взаимодействия квантов с веществом. Измерение характеристик рассеянного гамма-излучения, возникающего при облучении горных пород внешним источником гамма-излучения.

    презентация [146,3 K], добавлен 23.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.