Постулаты Бора. Опыты Франка и Герца
Дискретные значения момента импульса в стационарном состоянии атома. Расчет спектра атома водорода и водородоподобных ионов, состоящих из ядра и одного электрона по Бору. Подтверждение идеи де Бройля об универсальности корпускулярно-волнового дуализма.
Рубрика | Физика и энергетика |
Вид | лекция |
Язык | русский |
Дата добавления | 01.10.2014 |
Размер файла | 54,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Постулаты Бора. Опыты Франка и Герца
Первая попытка создать новую - квантовую - теорию ядра была осуществлена Н. Бором. Он поставил цель связать в единое целое эмпирические закономерности линейчатых спектров, ядерную модель атома Резерфорда и квантовый характер излучения и поглощения света. В основу новой теории Бор положил два постулата.
Первый постулат Бора (постулат стационарных состояний). В атоме существуют стационарные (не изменяющиеся со временем) состояния, в которых он не излучает энергии. Стационарным состояниям атома соответствуют стационарные круговые орбиты, по которым движутся электроны. Движение электронов по стационарным орбитам не сопровождается излучением электромагнитных волн.
В стационарном состоянии атома электрон имеет дискретные значения момента импульса, удовлетворяющие условию
, (1)
где - масса электрона, v - его скорость по n-й орбите радиуса .
Второй постулат Бора (правило частот). При переходе электрона с одной стационарной орбиты на другую излучается (поглощается) один фотон с энергией
, (2)
где и - соответственно энергии стационарных состояний атома до и после излучения (поглощения). Набор возможных дискретных частот квантовых переходов и определяет линейчатый спектр атома.
Существование дискретных энергетических уровней атома подтверждается опытами Франка и Герца. Схема их установки приведена на рис. В трубке, заполненной парами ртути под небольшим давлением (~1 мм рт. ст.), имелись три электрода: катод К, сетка С и анод А. Термоэлектроны, вылетевшие из катода, ускорялись разностью потенциалов U, приложенной между катодом и сеткой. Между сеткой и анодом создавалось слабое электрическое поле (разность потенциалов порядка 0,5 В), тормозившее движение электронов к аноду. В опыте исследовалась зависимость силы тока I в цепи анода от напряжения U между катодом и сеткой. Характерная для таких опытов вольтамперная характеристика приведена на рис.
Ход кривой можно объяснить следующим образом. При столкновении электрона с атомами ртути возможно взаимодействие двух типов: 1) упругое столкновение, в результате которого энергия электронов практически не изменяется, изменяется только направление движения; 2) неупругое столкновение электрона с атомом ртути. При этом энергия электронов уменьшается, за счет передачи ее атому ртути.
В соответствии с постулатами Бора атом ртути может поглотить энергию в виде порции и перейти в возбужденное состояние на выше расположенный энергетический уровень. Первому возбужденному состоянию атома ртути соответствует энергия 4,9 эВ. При U < 4,9 В электроны испытывают только упругое взаимодействие с атомами ртути и, поэтому, с увеличением напряжения анодный ток возрастает.
При достижении U 4,9 В энергия электронов сравнивается с энергией первого возбужденного уровня атома ртути. Происходят неупругие столкновения электронов с атомами ртути, которые получают порцию энергии 4,9 эВ и переходят в возбужденное состояние. Электрон, потерявший энергию, не может преодолеть задерживающий потенциал. Поэтому при U 4,9 В происходит уменьшение анодного тока. Аналогичное явление наблюдается при U 2?4,9 В, U 3?4,9 В?и т.д., когда электроны могут испытывать два, три и т.д. неупругих столкновений с атомами ртути. Потеряв всю (или почти всю) энергию, электрон не сможет достичь анода, задерживающее поле отбросит его к сетке. В результате наблюдается падение тока при этих напряжениях и общий пилообразный ход вольтамперной характеристики.
Атомы паров ртути, получив энергию от электронов, переходят в возбужденное состояние, из которого спустя 10-8 с самопроизвольно возвращаются в основное состояние. При этом должен излучается фотон с длинной волны 255 нм. В опыте действительно обнаруживается одна ультрафиолетовая линия с такой длиной волны. Таким образом, опыты Франка и Герца экспериментально подтверждают постулаты Бора.
Теория водородоподобного атома по Бору. Постулаты Бора позволяют рассчитать спектр атома водорода и водородоподобных ионов, состоящих из ядра Ze и одного электрона, и теоретически вычислить постоянную Ридберга.
Рассмотрим движение электрона в поле атомного ядра. Уравнение движения электрона имеет вид
. (3)
Исключив v из уравнений (1) и (3), получим выражение для радиусов допустимых орбит
. (4)
Для атома водорода (Z1) радиус первой орбиты называется боровским радиусом. Его значение равно
. (5)
Полная энергия электрона в водородоподобном атоме складывается из его кинетической энергии и потенциальной энергии взаимодействия с ядром
(при ее получении использована формула (3)). Учитывая квантование радиусов (4), получим, что энергия электрона принимает дискретные значения
.(6)
Согласно второму постулату Бора при переходе атома водорода из состояния n в состояние m излучается фотон
,
откуда частота излучения
.
Таким образом, теория Бора приводит к обобщенной формуле Бальмера, причем для постоянной Ридберга получилось значение . При подстановке в это выражение значений универсальных постоянных получается величина, превосходно согласующаяся с экспериментальным значением постоянной Ридберга.
Теория Бора была крупным шагом в развитии теории атома. Она отчетливо показала, что процессы в микромире описываются не классическими, а иными, квантовыми законами.
Элементы квантовой механики
Волновые свойства вещества. В результате развития представлений о природе света выяснился его двойственный характер (дуализм). Одни явления могут быть объяснены в предположении, согласно которому свет представляет собой поток частиц - фотонов (фотоэффект, эффект Комптона). Другие - в предположении, согласно которому свет является волной (интерференция, дифракция).
В 1924 г. Луи де Бройль, предполагая наличие в природе симметрии, выдвинул гипотезу, что дуализм не является особенностью одного света, что он свойственен всей материи (электронам и любым другим частицам). Согласно де Бройлю, с каждой микрочастицей связывается, с одной стороны, корпускулярные характеристики - энергия E и импульс p, а с другой стороны - волновые характеристики - частота и волновой вектор k (). Количественные соотношения, связывающие корпускулярные и волновые характеристики, принимаются для частиц такими же, как для фотонов
, . (7)
Гипотеза де Бройля вскоре была подтверждена экспериментально. Дэвиссон и Джермер исследовали в 1927 г. отражение электронов от монокристалла никеля, принадлежащего к кубической системе (рис). Рассеяние электронов проявляет отчетливый дифракционный характер. Положение дифракционных максимумов соответствовало формуле Вульфа-Брегга, если длину волны электрона вычислить согласно (7).
В дальнейшем идея де Бройля была подтверждена опытами Г. Томсона и П.С. Тартаковского. В опытах пучок электронов, ускоренный электрическим полем, проходил через тонкую металлическую фольгу и попадал на фотопластинку. Полученная таким образом картина сопоставлялась с полученной в аналогичных условиях рентгенограммой. В результате было установлено полное сходство двух картин.
Так как дифракционная картина исследовалась для потока электронов, необходимо было доказать, что волновые свойства связаны с электроном, а не являются коллективным эффектом. Это экспериментально установил В.А. Фабрикант. Он показал, что и в случае слабого электрического пучка, когда каждый электрон проходит прибор поодиночке, дифракционная картина при достаточной экспозиции ничем не отличается от картины, какая наблюдается при обычной интенсивности пучка.
Гипотеза де Бройля и ее экспериментальное подтверждение требует качественно нового взгляда на природу микрочастиц - микрочастицу нельзя считать ни частицей, ни волной в классическом понимании. Необычные свойства микрочастиц можно понять, если предположить, что вакуум является особым состоянием материи, а микрочастицы ее относительно неустойчивыми локальными состояниями. Неустойчивым в том смысле, что микрочастица регулярно растворяется в вакууме и через мгновенье вновь возникает где-то рядом. Аналогией вакууму может служить насыщенный раствор какого-либо вещества, а микрочастице имеющиеся в растворе кристаллики этого вещества. В состоянии динамического равновесия кристаллики в растворе хаотично растворяются и возникают. На характер растворения-возникновения микрочастицы влияет ее окружение. Несмотря на сложность и элемент случайности всего происходящего, поведение микрочастицы, как выяснится позже, можно успешно описать с помощью так называемой волновой функции.
Принцип неопределенности. В классической механике состояние материальной точки определяется заданием значений координат, импульса, энергии и т.д. Перечисленные величины называются динамическими переменными. Так как микрочастица не является частицей в классическом понимании, то ей, строго говоря, не могут быть приписаны указанные динамические переменные.
Данное обстоятельство проявляется в том, что не для всех переменных получаются при измерениях определенные значения. Так, например, электрон не может иметь одновременно точных значений координаты x и компоненты импульса . Неопределенности значений x и удовлетворяют соотношению
. (8)
Соотношение, аналогичное (8), имеет место и для y и , для z и , а также для ряда других пар величин (называемых канонически сопряженными). Соотношение (8) и подобные ему называются соотношением неопределенностей Гейзенберга. Энергия и время являются канонически сопряженными величинами. Поэтому для них также справедливо соотношение неопределенностей
. (9)
Это соотношение означает, что если время перехода системы из одного состояния в другое характеризуется временем t, то неопределенность энергии системы равна . Процесс измерения энергии сопровождается изменением состояния. Поэтому, неопределенность результата измерения E связана с длительностью измерения t (т.е. временем перехода системы из одного состояния в другое) соотношением (9).
Соотношение неопределенностей вытекает из волновых свойств микрочастиц (строгий формальный расчет лежит вне рамок данного курса). Поясним его на следующем примере. Пусть поток электронов проходит через узкую щель шириной x, расположенную перпендикулярно к направлению их движения. При прохождении электронов за щелью наблюдается дифракционная картина, как в случае плоской световой волны. Основная доля электронов приходится на область центрального максимума.
До прохождения электроны двигались вдоль оси y, поэтому , а координата являлась совершенно неопределенной. Прохождение щели сопровождается изменением состояния электрона. В новом состоянии неопределенность положения по оси x задается шириной щели. Вследствие дифракции частица будет обладать импульсом, распределенным с близкими вероятностями в пределах угла 2, где - угол, соответствующий первому дифракционному минимуму. Таким образом, появляется неопределенность
.
Первому минимуму при дифракции от щели соответствуют угол , для которого
,
где длина волны де Бройля. Отсюда с учетом (7) получается соотношение
импульс атом бор электрон
согласующееся с (8).
Основные понятия квантовой механики. Экспериментальное подтверждение идеи де Бройля об универсальности корпускулярно-волнового дуализма стимулировали развитие квантовой теории, которое привело к созданию законченной теории.
Прежде всего, следует дать физическую интерпретацию волн де Бройля. С этой целью сравним дифракцию световых волн и микрочастиц. Дифракционная картина световых волн образуется в результате интерференции вторичных волн. В свете волновых представлений, интенсивность дифракционной картины пропорциональна квадрату амплитуды световой волны. По представлениям корпускулярной теории, интенсивность определяется числом фотонов, попадающих в данную точку дифракционной картины. Если принять, что число фотонов в данном месте (а для одного фотона вероятность обнаружения) пропорционально квадрату светового вектора, то два способа описания становятся согласованными и дополняющими друг друга.
Дифракционная картина для микрочастиц имеет сходный вид с дифракционной картиной световых волн. Наличие максимумов с точки зрения волновой теории соответствуют наибольшей интенсивности волн де Бройля. Интенсивность волн де Бройля коррелирует с числом частиц в данной точке пространства. Таким образом, напрашивается вероятностная, как для световых волн, трактовка волн де Бройля: вероятность обнаружения микрочастицы пропорциональна интенсивности волны де Бройля (квадрату модуля волновой функции).
Необходимость вероятностного подхода к описанию микрочастиц является принципиальным положением квантовой теории. Постулируется, что состояние квантовой системы может быть максимально полно описано с помощью волновой функции, в общем случае комплексной. В случае микрочастицы, не имеющей внутренних степеней свободы, эта функция имеет вид . Вероятность dP обнаружения микрочастицы в пределах объема dV
.
В квантовой механике принимается, что волновые функции, отличающиеся только множителем, описывают одно и то же состояние. Это обстоятельство позволяет ввести условие нормировки на пси-функцию
.
Для нормированной пси-функции квадрат ее модуля дает плотность вероятности нахождения частицы в соответствующем месте пространства
.
По своему смыслу, волновая функция должна удовлетворять ряду так называемых стандартных условий. Она должна быть однозначной, непрерывной (вероятность не может изменяться скачком), конечной (требование условия нормировки). Подобные условия накладываются и на производные волновой функции.
Одним из основных положений квантовой механики является принцип суперпозиции состояний. Если система может находиться в состояниях, описываемых волновыми функциями , , …, , то она также может находиться в состоянии
, (10)
где - произвольные комплексные числа.
Волновая функция содержит в себе полную информацию о микрообъекте. Поэтому, зная , можно вычислить вероятности значений, которые получаются при измерении какой-либо физической величины (а значит и их средние) в этом состоянии. Например, среднее значение координаты x вычисляется по формуле
. (11)
В квантовой механике принимается, что измерение физической величины q даст некоторое значение . Совокупность или спектр возможных значений называются собственными значениями величины q. Обозначим волновую функцию системы в состоянии, в котором величина q всегда имеет определенное значение , через . Волновые функции называются собственными функциями данной величины q. Каждая из этих функций предполагается нормированной
.
Если система находится в некотором произвольном состоянии с волновой функцией , то в соответствии с принципом суперпозиции, она должна представлять собой комбинацию собственных функций в виде (10). Утверждается, что квадраты модулей дают вероятности того, что при измерении будет получено соответствующее значение величины . Последовательно рассуждая, можно установить, что собственные функции взаимно ортогональны
.
Зная вероятности различных значений величины q, ее среднее значение в состоянии вычисляется по формуле
.
В квантовой механике вводится понятие оператора. Так называется математическая операция, с помощью которой одной функции ставится в соответствие другая
,
где - символическое обозначение операции (оператора). Оператор физической величины определяется посредством соотношений
(для всех n),
где - обственное значение q. Свойство ортогональности собственных функций позволяет записать
.
Формула (11) является выражением такого типа. Можно доказать, что оператор является эрмитовым
.
Размещено на Allbest.ru
...Подобные документы
Представление об атомах как неделимых мельчайших частицах. Опыт Резерфорда по рассеянию альфа частиц. Рассмотрение линейчатого спектра атома водорода. Идея Бора о существовании в атомах стационарных состояний. Описание основных опытов Франка и Герца.
презентация [433,4 K], добавлен 30.07.2015Строение атома. Атом как целое. Структура атома: опыты Резерфорда, планетарная модель атома Резерфорда, квантовые постулаты Бора. Лазеры: история создания, устройство, свойства, применение лазера в ювелирной отрасли, в медицине.
реферат [481,9 K], добавлен 13.04.2003Квантовая теория комптоновского рассеяния. Направление движения электрона отдачи. Давление света. Сериальные закономерности в спектрах атома водорода. Модель Томсона, Резерфорда. Постулаты Бора. Гипотеза де-Бройля. Элементы квантовомеханической теории.
презентация [195,5 K], добавлен 17.01.2014Нильс Бор ученый и человек. Успехи и недостатки теории Бора. Теория Бора позволила объяснить целый ряд сложных вопросов строения атома и фактов, чего была не в состоянии сделать классическая физика.
реферат [41,2 K], добавлен 25.12.2002Кинетическая энергия электрона. Дейбролевская и комптоновская длина волны. Масса покоя электрона. Расстояние электрона от ядра в невозбужденном атоме водорода. Видимая область линий спектра атома водорода. Дефект массы и удельная энергия связи дейтерия.
контрольная работа [114,0 K], добавлен 12.06.2013Модели строения атома. Формы атомных орбиталей. Энергетические уровни атома. Атомная орбиталь как область вокруг ядра атома, в которой наиболее вероятно нахождение электрона. Понятие протона, нейтрона и электрона. Суть планетарной модели строения атома.
презентация [1,1 M], добавлен 12.09.2013Исторический путь научного исследования микрочастиц. Содержание планетарной модели атома с электронами Резерфорда и теории корпускулярно-волнового дуализма частиц веществ Луи де Бройля. Характеристика принципов неопределенности и дополнительности.
контрольная работа [22,5 K], добавлен 11.10.2010Сущность гипотезы де–Бройля о двойственной природе микрочастиц. Экспериментальное подтверждение корпускулярно-волнового дуализма материальных частиц. Метод Брэгга. Интерференция рентгеновских лучей в кристаллах методом Лауэ и методом Дебая—Шеррера.
курсовая работа [326,6 K], добавлен 10.05.2012Классическая модель строения атома. Понятие орбиты электрона. Набор возможных дискретных частот. Водородоподобные системы по Бору. Недостатки теории Бора. Значение квантовых чисел. Спектр излучения атомов. Ширина спектральных линий. Доплеровское уширение.
реферат [145,6 K], добавлен 14.01.2009История открытия радиоактивности, модель атома Томсона. Опыты Резерфорда по рассеянию альфа-частиц. Правило квантования Бора-Зоммерфельда. Боровская теория водородоподобного атома, схема его энергетических уровней. Оптические спектры испускания атомов.
презентация [3,7 M], добавлен 23.08.2013Этапы исследований строения атома учеными Томсоном, Резерфордом, Бором. Схемы их опытов и интерпретация результатов. Планетарная модель атома Резерфорда. Квантовые постулаты Бора. Схемы перехода из стационарного состояния в возбужденное и наоборот.
презентация [283,3 K], добавлен 26.02.2011Схема будови спектрографа. Види оптичних спектрів. Ядерна модель атома. Енергетичні рівні атома. Схема досліду Д. Франка і Г. Герца. Склад атомного ядра. Мезонна теорія ядерних сил. Енергетичний вихід ядерної реакції. Схема ядерної електростанції.
презентация [1,6 M], добавлен 12.05.2011Классификация элементарных частиц. Фундаментальные взаимодействия. Модель атома Резерфорда. Теория Бора для атома водорода. Атом водорода в квантовой механике. Квантово-механическое обоснование Периодического закона Д. Менделеева. Понятие радиоактивности.
реферат [110,6 K], добавлен 21.02.2010Экспериментальное наблюдение характеристического излучения атома натрия в возбуждённом состоянии - в процессе горения; определение длины волны и энергетического уровня перехода наружного электрона, которым обусловлен характеристический цвет излучения.
практическая работа [13,7 K], добавлен 07.12.2010История открытий в области строения атомного ядра. Модели атома до Бора. Открытие атомного ядра. Атом Бора. Расщепление ядра. Протонно-нейтронная модель ядра. Искусственная радиоактивность. Строение и важнейшие свойства атомных ядер.
реферат [24,6 K], добавлен 08.05.2003История зарождения и развития атомистической теории. Представления Платона и Аристотеля о непрерывности материи. Корпускулярно-кинетическая теория тепла, открытие радиоактивности. Ранняя планетарная модель атома Нагаоки. Определение заряда электрона.
презентация [1,8 M], добавлен 28.08.2013Дифракция света как явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий. Сущность и закономерности корпускулярно-волнового дуализма. Боровская модель атома. Понятие и свойства идеального газа.
контрольная работа [400,8 K], добавлен 24.05.2014Энергия отдачи ядер. Излучениеми релятивистские эффекты. Скорость движения электрона вдали от ядра. Кинетическая энергия образовавшегося иона. Длина волны гамма квантов, волны света. Скорость пиона до распада. Уровни энергии электрона в атоме водорода.
реферат [165,2 K], добавлен 22.11.2011Характеристика электрона в стационарных состояниях. Условие ортогональности сферических функций. Решения для радиальной функции. Схема энергетических состояний атома водорода и сериальные закономерности. Поправки, обусловленные спином электрона.
презентация [110,2 K], добавлен 19.02.2014История зарождения квантовой теории. Открытие эффекта Комптона. Содержание концепций Резерфорда и Бора относительно строения атома. Основные положения волновой теории Бройля и принципа неопределенности Гейзенберга. Корпускулярно-волновой дуализм.
реферат [37,0 K], добавлен 25.10.2010