Плоское напряженное состояние
Характеристика и случаи плоского напряженного состояния. Позиция главных напряжений. Экстремальность касательных напряжений. Тензор деформации и его особенности. Плоская и угловая деформация тензора. Инварианты тензора деформаций и их определения.
Рубрика | Физика и энергетика |
Вид | лекция |
Язык | русский |
Дата добавления | 22.10.2014 |
Размер файла | 88,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Лекция № 7. Плоское напряженное состояние
Рассмотрим важный для приложений случай плоского напряженного состояния, реализуемого, например, в плоскости Oyz. Тензор напряжений в этом случае имеет вид напряженный касательный тензор деформация
Геометрическая иллюстрация представлена на рис.1. При этом площадки х=const являются главными с соответствующими нулевыми главными напряжениями. Инварианты тензора напряжений равны , а характеристическое уравнение принимает вид
Корни этого уравнения равны
(1)
Нумерация корней произведена для случая
Рис.1. Исходное плоское напряженное состояние.
Рис.2. Позиция главных напряжений
Произвольная площадка характеризуется углом на рис. 1, при этом вектор п имеет компоненты: , , nх=0. Нормальное и касательное напряжения на наклонной площадке выражаются через угол следующим образом:
(2)
(3)
Так как на главных площадках касательное напряжение отсутствует, то, приравнивая нулю выражение (3), получим уравнение для определения угла между нормалью п и осью Оу
(4)
Наименьший положительный корень уравнения (4) обозначим через . Так как tg(х)--периодическая функция с периодом , то имеем два взаимно ортогональных направления, составляющие углы и с осью Оу. Эти направления соответствуют взаимно перпендикулярным главным площадкам (рис. 2).
Если продифференцировать соотношение (2) по и приравнять производную нулю, то придем к уравнению (4), что доказывает экстремальность главных напряжений.
Для нахождения ориентации площадок с экстремальными касательными напряжениями приравняем нулю производную от выражения
,
откуда получим
(5)
Сравнивая соотношения (4) и (5), находим, что
Это равенство возможно, если углы и отличаются на угол . Следовательно, направления площадок с экстремальными касательными напряжениями отличаются от направлений главных площадок на угол (рис. 3).
Рис.3. Экстремальность касательных напряжений
Величины экстремальных касательных напряжений получим после подстановки (5) в соотношение (3) с использованием формул
.
После некоторых преобразований получим
Сравнивая это выражение с полученными ранее значениями главных напряжений (2.21), выразим экстремальные касательные напряжения через главные напряжения
Аналогичная подстановка в (2) приводит к выражению для нормальных напряжений на площадках с
Полученные соотношения позволяют проводить направленно-ориентированный расчет конструкций на прочность в случае плоского напряженного состояния.
Тензор деформации
Рассмотрим вначале случай плоской деформации (рис. 4). Пусть плоский элемент MNPQ перемещается в пределах плоскости и деформируется (изменяет форму и размеры). Координаты точек элемента до и после деформации отмечены на рисунке.
Рис.4. Плоская деформация.
По определению относительная линейная деформация в точке М в направлении оси Ох равна
Из рис. 4 следует
Учитывая, что MN=dx, получим
В случае малых деформаций, когда , , можно пренебречь квадратичными слагаемыми. С учетом приближенного соотношения
справедливого при x<<1, окончательно для малой деформации получим
Угловая деформация определяется как сумма углов и (4). В случае малых деформаций
Для угловой деформации имеем
Проводя аналогичные выкладки в общем случае трехмерной деформации, имеем девять соотношений
(6)
связывающих линейные и угловые деформации с перемещениями. Эти соотношения носят название соотношений Коши.
Три линейных и шесть угловых деформаций (6) образуют тензор малых деформаций
(7)
Этот тензор полностью определяет деформированное состояние твердого тела. Он обладает теми же свойствами, что и тензор напряжений. Свойство симметрии непосредственно следует из определения угловых деформаций. Главные значения и главные направления, а также экстремальные значения угловых деформаций и соответствующие им направления находятся теми же методами, что и для тензора напряжений.
Инварианты тензора деформаций определяются аналогичными формулами, причем первый инвариант тензора малых деформаций имеет ясный физический смысл. До деформации его объем равен dV0 =dxdydz. Если пренебречь деформациями сдвига, которые изменяют форму, а не объем, то после деформации ребра будут иметь размеры
(рис. 4), а его объем будет равен
.
Относительное изменение объема
в пределах малых деформаций составит
что совпадает с определением первого инварианта. Очевидно, что изменение объема есть физическая величина, не зависящая от выбора системы координат.
Так же, как и тензор напряжений, тензор деформаций можно разложить на шаровой тензор и девиатор. При этом первый инвариант девиатора равен нулю, т. е. девиатор характеризует деформацию тела без изменения его объема.
Размещено на Allbest.ru
...Подобные документы
Определение: инвариантов напряженного состояния; главных напряжений; положения главных осей тензора напряжений. Проверка правильности вычисления. Вычисление максимальных касательных напряжений (полного, нормального и касательного) по заданной площадке.
курсовая работа [111,3 K], добавлен 28.11.2009Плоское напряженное состояние главных площадок стального кубика. Определение величины нормальных и касательных напряжений по граням; расчет сил, создающих относительные линейные деформации, изменение объема; анализ удельной потенциальной энергии.
контрольная работа [475,5 K], добавлен 28.07.2011Определение напряжений при растяжении–сжатии. Деформации при растяжении-сжатии и закон Гука. Напряженное состояние и закон парности касательных напряжений. Допускаемые напряжения, коэффициент запаса и расчеты на прочность при растяжении-сжатии.
контрольная работа [364,5 K], добавлен 11.10.2013Определяющие соотношения модели нелинейно упругой среды, вычисление компонент тензора напряжений. Определение автомодельного движения. Сведение модельных соотношений к системе дифференциальных уравнений. Краевая задача разгрузки нелинейно упругой среды.
курсовая работа [384,1 K], добавлен 30.01.2013Определение напряжений на координатных площадках. Определение основных направляющих косинусов новых осей в старой системе координат. Вычисление нормальных и главных касательных напряжений. Построение треугольника напряжений. Построение диаграмм Мора.
контрольная работа [1,7 M], добавлен 11.08.2015Исследование напряжённого состояние в точке. Изучение главного касательного напряжения. Классификация напряжённых состояний. Определение напряжений по площадкам параллельным направлению одного из напряжений. Дифференциальные уравнения равновесия.
курсовая работа [450,2 K], добавлен 23.04.2009Вычисление напряжений, вызванных неточностью изготовления стержневой конструкции. Расчет температурных напряжений. Построение эпюр поперечной силы и изгибающего момента. Линейное напряженное состояние в точке тела по двум взаимоперпендикулярным площадкам.
курсовая работа [264,9 K], добавлен 01.11.2013Энергетическая теория прочности Гриффитса. Растяжение и сжатие как одноосные воздействия нагрузки. Деформированное состояние в стержне. Зависимость компонентов тензора напряжения от ориентации осей. Теория Ирвина и Орована для квазехрупкого разрушения.
курс лекций [949,8 K], добавлен 12.12.2011Расчет напряженно-деформированного состояния ортотропного покрытия на упругом основании. Распределение напряжений и перемещений в ортотропной полосе на жестком основании. Приближенный расчет напряженного состояния покрытия из композиционного материала.
курсовая работа [3,3 M], добавлен 13.12.2016Предпосылки возникновения теории пластической деформации, этапы развития представлений. Наблюдение линий максимальных касательных напряжений. Пластические сдвиги в монокристаллах. Теория решеточных дислокаций. Модель Френкеля-Конторовой. Сила Пайерлса.
реферат [1,1 M], добавлен 04.05.2010Физические величины и их измерения. Различие между терминами "контроль" и "измерение". Штриховая мера длины IА-0–200 ГОСТ 12069–90. Параметры для оценки шероховатости. Назначение, типы и параметры угольников поверочных. Измерение деформаций и напряжений.
контрольная работа [2,3 M], добавлен 28.05.2014Закон распределения компонент тензора истинных напряжений в эйлеровых координатах. Закон распределения массовых сил, при котором среда находится в равновесии. Расчет главного момента поверхностных и массовых сил. Поле ускорений в эйлеровых координатах.
контрольная работа [219,6 K], добавлен 24.06.2010Определение момента инерции и его физический смысл. Теорема Гюйгенса-Штейнера о параллельных и перпендикулярных осях. Некоторые свойства тензора инерции: симметричность, положительная определенность, неравенства. Пример использования симметрии тела.
презентация [766,1 K], добавлен 02.10.2013Особенности двухстоечного винтового пресса, рассмотрение и характеристика элементов: станина, поперечина. Способы проверки винта на устойчивость и определения нормальных, касательных и эквивалентных напряжений. Этапы расчета момента трения в резьбе.
курсовая работа [861,4 K], добавлен 25.01.2013Поведение полей напряжений в окрестности концентраторов дефектов и неоднородностей среды, полостей и включений. Теоретическое решение задачи Кирша. Концентрации напряжений. Экспериментальный метод исследования напряжённо-деформированного состояния.
контрольная работа [1,4 M], добавлен 24.03.2011Построение эпюры продольных сил, напряжений, перемещений. Проверка прочности стержня. Определение диаметра вала, построение эпюры крутящих моментов. Вычисление положения центра тяжести. Описание схемы деревянной балки круглого поперечного сечения.
контрольная работа [646,4 K], добавлен 02.05.2015Общая характеристика переменного тока, закон Ома и теорема Фурье. Сопротивление в цепи переменного тока. Резонанс напряжений, методы его определения. Векторная диаграмма напряжений при резонансе. Изменение разности фаз между током и электродвижущей силой.
презентация [691,1 K], добавлен 25.07.2015Исследование асинхронного трехфазного двигателя с фазным ротором. Схема последовательного и параллельного соединения элементов для исследования резонанса напряжений. Резонанс напряжений, токов. Зависимость тока от емкости при резонансе напряжений.
лабораторная работа [249,7 K], добавлен 19.05.2011Электрическая цепь при последовательном и параллельном соединении элементов с R, L и C, их сравнительные характеристики. Треугольник напряжений и сопротивлений. Понятие и свойства резонанса токов и напряжений, направления и особенности его регулирования.
реферат [344,8 K], добавлен 27.07.2013Применения МД для исследования пластической деформации кристаллов. Алгоритм интегрирования по времени. Начальное состояние для кристалла с дефектами. Уравнение для ширины ячейки моделирования. Моделирования пластической деформации ГПУ кристаллов.
дипломная работа [556,7 K], добавлен 07.12.2008