Учет собственного веса при растяжении и сжатии
Подбор сечений с учетом собственного веса (при растяжении и сжатии). Расчетная схема бруса равного сопротивления. Эквивалентный ступенчатый брус с приближением к модели бруса равного сопротивления. Деформации (удлинение) при действии собственного веса.
Рубрика | Физика и энергетика |
Вид | лекция |
Язык | русский |
Дата добавления | 22.10.2014 |
Размер файла | 61,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Лекция № 14. Учет собственного веса при растяжении и сжатии
Подбор сечений с учетом собственного веса (при растяжении и сжатии).
При установлении внешних сил, растягивающих или сжимающих элементы конструкций, мы до сих пор игнорировали собственный вес этих элементов. Возникает вопрос, не вносится ли этим упрощением расчета слишком большая погрешность? В связи с этим подсчитаем величины напряжений и деформаций при учете влияния собственного веса растянутых или сжатых стержней. растяжение брус сопротивление деформация
Пусть вертикальный стержень (Рис.1, а) закреплен своим верхним концом; к нижнему его концу подвешен груз Р. Длина стержня l, площадь поперечного сечения F, удельный вес материала и модуль упругости Е. Подсчитаем напряжения по сечению АВ, расположенному на расстоянии от свободного конца стержня.
а) б)
Рис.1. Исходная расчетная схема бруса а) и б) -- равновесие нижней отсеченной части.
Рассечем стержень сечением АВ и выделим нижнюю часть длиной с приложенными к ней внешними силами (Рис.1, б) -- грузом Р и ее собственным весом . Эти две силы уравновешиваются напряжениями, действующими на площадь АВ от отброшенной части. Эти напряжения будут нормальными, равномерно распределенными по сечению и направленными наружу от рассматриваемой части стержня, т. е. растягивающими. Величина их будет равна:
Таким образом, при учете собственного веса нормальные напряжения оказываются неодинаковыми во всех сечениях. Наиболее напряженным, опасным, будет верхнее сечение, для которого достигает наибольшего значения l; напряжение в нем равно:
Условие прочности должно быть выполнено именно для этого сечения:
Отсюда необходимая площадь стержня равна:
От формулы, определяющей площадь растянутого стержня без учета влияния собственного веса, эта формула отличается лишь тем, что из допускаемого напряжения вычитается величина .
Чтобы оценить значение этой поправки, подсчитаем ее для двух случаев. Возьмем стержень из мягкой стали длиной 10 м; для него , а величина . Таким образом, для стержня из мягкой стали поправка составит т. е. около 0,6%. Теперь возьмем кирпичный столб высотой тоже 10 м; для него , а величина Таким образом, для кирпичного столба поправка составит , т.е. уже 15%.
Вполне понятно, что влиянием собственного веса при растяжении и сжатии стержней можно пренебрегать, если мы не имеем дела с длинными стержнями или со стержнями из материала, обладающего сравнительно небольшой прочностью (камень, кирпич) при достаточном весе. При расчете длинных канатов подъемников, различного рода длинных штанг и высоких каменных сооружений (башни маяков, опоры мостовых ферм) приходится вводить в расчет и собственный вес конструкции.
В таких случаях возникает вопрос о целесообразной форме стержня. Если мы подберем сечение стержня так, что дадим одну и ту же площадь поперечного сечения по всей длине, то материал стержня будет плохо использован; нормальное напряжение в нем дойдет до допускаемого лишь в одном верхнем сечении; во всех прочих сечениях мы будем иметь запас в напряжениях, т. е. излишний материал. Поэтому желательно так запроектировать размеры стержня, чтобы во всех его поперечных сечениях (перпендикулярных к оси) нормальные напряжения были постоянны,
Такой стержень называется стержнем равного сопротивления растяжению или сжатию. Если при этом напряжения равны допускаемым, то такой стержень будет иметь наименьший вес.
Возьмем длинный стержень, подверженный сжатию силой Р и собственным весом (Рис.2). Чем ближе к основанию стержня мы будем брать сечение, тем больше будет сила, вызывающая напряжения в этом сечении, тем большими придется брать размеры площади сечения. Стержень получит форму, расширяющуюся книзу. Площадь сечения F будет изменяться по высоте в зависимости от , т. е. .
Установим этот закон изменения площади в зависимости от расстояния сечения от верха стержня.
Рис.2. Расчетная схема бруса равного сопротивления
Площадь верхнего сечения стержня определится из условия прочности:
и
где -- допускаемое напряжение на сжатие; напряжения во всех прочих сечениях стержня также должны равняться величине
Чтобы выяснить закон изменения площадей по высоте стержня, возьмем два смежных бесконечно близких сечения на расстоянии от верха стержня; расстояние между сечениями ; площадь верхнего назовем , площадь же смежного .
Приращение площади при переходе от одного сечения к другому должно воспринять вес элемента стержня между сечениями. Так как на площади он должен вызвать напряжение, равное допускаемому , то определится из условия:
Отсюда:
После интегрирования получаем:
При площадь ; подставляя эти значения, имеем:
и
Отсюда
,
Если менять сечения точно по этому закону, то боковые грани стержня получат криволинейное очертание (Рис.2), что усложняет и удорожает работу. Поэтому обычно такому сооружению придают лишь приближенную форму стержня равного сопротивления, например в виде усеченной пирамиды с плоскими гранями. Приведенный расчет является приближенным. Мы предполагали, что по всему сечению стержня равного сопротивления передаются только нормальные напряжения; на самом деле у краев сечения напряжения будут направлены по касательной к боковой поверхности.
В случае длинных канатов или растянутых штанг форму стержня равного сопротивления осуществляют тоже приближенно, разделяя стержень по длине на ряд участков; на протяжении каждого участка сечение остается постоянным (Рис.3) -- получается так называемый ступенчатый стержень.
Рис.3. Эквивалентный ступенчатый брус с приближением к модели бруса равного сопротивления
Определение площадей ... при выбранных длинах производится следующим образом. Площадь поперечного сечения первого нижнего участка будет по формуле равна:
Чтобы получить площадь поперечного сечения второго участка, надо нагрузить его внешней силой Р и весом первого участка:
Для третьего участка к внешней силе добавляются веса первого и второго участков. Подобным же образом поступают и для других участков.
Деформации при действии собственного веса
При определении влияния собственного веса на деформацию при растяжении и сжатии стержней придется учесть, что относительное удлинение различных участков стержня будет переменным, как и напряжение . Для вычисления полного удлинения стержня постоянного сечения определим сначала удлинение бесконечно малого участка стержня длиной , находящегося на расстоянии от конца стержня (Рис.4).
Рис.4. Расчетная модель бруса с учетом собственного веса.
Абсолютное удлинение этого участка равно
Полное удлинение стержня равно:
Величина представляет собой полный вес стержня. Таким образом, для вычисления удлинения от действия груза и собственного веса можно воспользоваться прежней формулой:
подразумевая под S внешнюю силу и половину собственного веса стержня.
Что же касается деформаций стержней равного сопротивления, то, так как нормальные напряжения во всех сечениях одинаковы и равны допускаемым , относительное удлинение по всей длине стержня одинаково и равно
Абсолютное же удлинение при длине стержня l равно:
где обозначения соответствуют приведенным на рис.1.
Деформацию ступенчатых стержней следует определять по частям, выполняя подсчеты по отдельным призматическим участкам. При определении деформации каждого участка учитывается не только его собственный вес, но и вес тех участков, которые влияют на его деформацию, добавляясь к внешней силе. Полная деформация получится суммированием деформаций отдельных участков.
Размещено на Allbest.ru
...Подобные документы
Определение напряжений при растяжении–сжатии. Деформации при растяжении-сжатии и закон Гука. Напряженное состояние и закон парности касательных напряжений. Допускаемые напряжения, коэффициент запаса и расчеты на прочность при растяжении-сжатии.
контрольная работа [364,5 K], добавлен 11.10.2013Расчет на прочность статически определимых систем при растяжении и сжатии. Последовательность решения поставленной задачи. Подбор размера поперечного сечения. Определение потенциальной энергии упругих деформаций. Расчет бруса на прочность и жесткость.
курсовая работа [458,2 K], добавлен 20.02.2009Понятие растяжения как вида нагружения, особенности действия сил и основные характеристики. Различия между сжатием и растяжением. Сущность напряжения, возникающего в поперечном сечении растянутого стержня, понятие относительного удлинения стержня.
реферат [857,3 K], добавлен 23.06.2010Определение продольной силы в стержнях, поддерживающих жёсткий брус. Построение эпюры продольных усилий, нормальных напряжений и перемещений. Расчет изгибающих моментов и поперечных сил, действующих на балку. Эпюра крутящего момента и углов закручивания.
контрольная работа [190,3 K], добавлен 17.02.2015Преобразование источника тока в эквивалентный ему источник. Расчет собственного сопротивления контуров и сопротивления, находящиеся на границе. Расчет методом узловых потенциалов. Составление расширенной матрицы, состоящей из проводимостей и токов.
контрольная работа [45,4 K], добавлен 22.11.2010Внецентренное растяжение (сжатие). Ядро сечения при сжатии. Определение наибольшего растягивающего и сжимающего напряжения в поперечном сечении короткого стержня, главные моменты инерции. Эюры изгибающих моментов и поперечных сил консольной балки.
курсовая работа [2,1 M], добавлен 13.05.2013Методическое указание по вопросам расчётов на прочность при различных нагрузках и видах деформации. Определение напряжения при растяжении (сжатии), определение деформации. Расчеты на прочность при изгибе, кручении. Расчетно-графические работы, задачи.
контрольная работа [2,8 M], добавлен 15.03.2010Плоская система сходящихся сил. Момент пары сил относительно точки и оси. Запись уравнения движения в форме уравнения равновесия (метод кинетостатики). Принцип Даламбера. Проекция силы на координатную ось. Расчетная формула при растяжении и сжатии.
контрольная работа [40,6 K], добавлен 09.10.2010Гипотезы сопротивления материалов, схематизация сил. Эпюры внутренних силовых факторов, особенности. Три типа задач сопротивления материалов. Деформированное состояние в точке тела. Расчёт на прочность бруса с ломаной осью. Устойчивость сжатых стержней.
курс лекций [4,1 M], добавлен 04.05.2012Выбор шин и их проверка на устойчивость к токам короткого замыкания. Проверка шин по частоте собственных колебаний, по условиям короны и на механическую прочность. Определение нагрузок от гололеда и собственного веса. Расчет защитного заземления.
курсовая работа [1,6 M], добавлен 13.11.2015Отношение веса вещества к весу равного объема воды. История открытия закона Архимеда. Откуда берется выталкивающая сила. Основные приборы, использующие в своей работе закон Архимеда. Принцип действия пикнометра. Поплавковые плотномеры и ареометры.
реферат [1,4 M], добавлен 11.02.2012Построение эпюры нормальных сил и напряжений. Методика расчета задач на прочность. Подбор поперечного сечения стержня. Определение напряжения в любой точке поперечного сечения при растяжении и сжатии. Определение удлинения стержня по формуле Гука.
методичка [173,8 K], добавлен 05.04.2010Построение эпюра моментов, мощность на шкиве для стального трубчатого вала, оборачивающегося с постоянной угловой скоростью. Определение площади и размеры сечений участков бруса, эпюру продольных сил. Определение опорных реакций для двухопорной балки.
практическая работа [2,2 M], добавлен 22.10.2009Изучение понятия "вес тела" - силы, с которой это тело действует на опору или подвес, вследствие действия на него силы тяжести. Обозначение и направление веса тела. Характеристика принципа работы и видов динамометров – приборов для измерения силы (веса).
презентация [465,2 K], добавлен 13.12.2010Анализ прочности и жесткости несущей конструкции при растяжении (сжатии). Определение частота собственных колебаний печатного узла. Анализ статической, динамической прочности, а также жесткости печатного узла при изгибе, при воздействии вибрации и ударов.
курсовая работа [146,3 K], добавлен 11.12.2012Определение и уточнение диаметра вала с целью оценки статической нагрузки на брус. Произведение расчета вала на прочность и жесткость при крутящем ударе и при вынужденных колебаниях. Выбор эффективных коэффициентов концентрации напряжений в сечении.
контрольная работа [735,9 K], добавлен 27.07.2010Расчет статически определимой рамы. Перемещение системы в точках методом Мора-Верещагина. Эпюра изгибающих моментов. Подбор поперечного сечения стержня. Внецентренное растяжение. Расчет неопределенной плоской рамы и плоско-пространственного бруса.
курсовая работа [1,4 M], добавлен 04.12.2012Определение активной и реактивной составляющих напряжения короткого замыкания. Выбор конструкции и определение размеров основных изоляционных промежутков главной изоляции обмоток. Определение размеров пакетов и активных сечений, веса стержня и ярма.
дипломная работа [6,1 M], добавлен 28.09.2015Анализ зависимости веса тела от ускорения опоры, на которой оно стоит, изменения взаимного положения частиц тела, связанного с их перемещением друг относительно друга. Исследование основных видов деформации: кручения, сдвига, изгиба, растяжения и сжатия.
презентация [2,9 M], добавлен 04.12.2011Кручение как один из видов нагружения бруса, при котором в его сечениях возникает только один внутренний силовой фактор – крутящий момент. Условие прочности при кручении. Правило определения крутящего момента в произвольном сечении вала и правило знаков.
методичка [1,4 M], добавлен 05.04.2010