Прямой поперечный изгиб стержня
Возникновение изгибающего момента и поперечной силы, которые связаны с нормальными и касательными напряжениями. Особенность параллельного сечения стержня. Анализ фрагмента расчетного элемента бруса. Рациональные формы пересекающих разрезов при изгибе.
Рубрика | Физика и энергетика |
Вид | лекция |
Язык | русский |
Дата добавления | 22.10.2014 |
Размер файла | 136,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Лекция
Прямой поперечный изгиб стержня
При прямом поперечном изгибе в сечениях стержня возникает изгибающий момент Мх и поперечная сила Qy рис. 1), которые связаны с нормальными и касательными напряжениями
Рис. 1 - Связь усилий и напряжений
а) сосредоточенная сила, б) распределенная
Рис. 2 - Модели прямого поперечного изгиба:
Выведенная в случае чистого изгиба стержня формула для прямого поперечного изгиба, вообще говоря, неприменима, поскольку из-за сдвигов, вызываемых касательными напряжениями , происходит депланация поперечных сечении (отклонение от закона плоских сечений). Однако для балок с высотой сечения h<l/4 (рис. 2) погрешность невелика и ее применяют для определения нормальных напряжений поперечного изгиба как приближенную. При выводе условия прочности при чистом изгибе использовалась гипотеза об отсутствии поперечного взаимодействия продольных волокон. При поперечном изгибе наблюдаются отклонения от этой гипотезы:
а) в местах приложения сосредоточенных сил. Под сосредоточенной силой напряжения поперечного взаимодействия могут быть достаточно велики и во много раз превышать продольные напряжения , убывая при этом, в соответствии с принципом Сен-Венана, по мере удаления от точки приложения силы;
б) в местах приложения распределенных нагрузок. Так, в случае, приведенном на рис. 2, б, напряжения от давления на верхние волокна балки . Сравнивая их с продольными напряжениями , имеющими порядок
,
приходим к выводу, что напряжения при условии, что h2 <<l2, так как
.
Получим формулу для касательных напряжений . Примем, методика расчета нормальных напряжений известна, что касательные напряжения равномерно распределены по ширине поперечного сечения (рис. 3). Эта предпосылка выполняется тем точнее, чем уже поперечное сечение стержня. Точное решение задачи для прямоугольного поперечного сечения показывает, что отклонение от равномерного распределения , зависит от отношения сторон b/h. При (b/h) =1,0 оно составляет 12,6%, при (b/h) =0,5 -- только 3,3%.
Рис. 3 - Расчетная модель поперечного прямого изгиба
Непосредственное определение напряжений затруднительно, поэтому находим равные им (вследствие закона парности) касательные напряжения , возникающие на продольной площадке с координатой у элемента длиной dz, вырезанного из балки, (рис. 3). Сам элемент показан на рис. 4. От этого элемента продольным сечением, отстоящим от нейтрального слоя на у, отсекаем верхнюю часть, заменяя действие отброшенной нижней части касательными напряжениями (индекс гу в дальнейшем опускаем), равнодействующая которых показана на рис. 5. Здесь, согласно второй предпосылке
Рис. 4 - Расчетный элемент бруса
Рис. 5 - Фрагмент расчетного элемента бруса
по ширине элемента b. Нормальные напряжения и , действующие на торцевых площадках элемента, также заменим их равнодействующими
,
Согласно первой предпосылке нормальные напряжения определяются уже известным способом, , где --статический момент отсеченной части площади поперечного сечения относительно оси Ох.
Рассмотрим условие равновесия элемента (рис. 5) составив для него уравнение статики :
откуда после несложных преобразований, учитывая, что
получаем формулу для касательных напряжений при нормальном поперечном изгибе призматического стержня которая называется формулой Журавского.
Рис. 6 - Распределение касательных напряжений по контуру прямоугольного сечения
В этой формуле by -- ширина сечения в том месте, где определяются касательные напряжения, а статический момент, подставляемый в эту формулу, может быть вычислен как для верхней, так и для нижней части (статические моменты этих частей сечения относительно его центральной оси Ох отличаются только знаком, так как статическим момент всего сечения равен нулю).
В качестве примера применения формулы Журавского построим эпюру касательных напряжений для случая прямоугольного поперечного сечения балки (рис. 6.). Учитывая, что для этого сечения
где F=bh--площадь прямоугольника.
Как видно из формулы, касательные напряжения по высоте сечения меняются по закону квадратичеокой параболы, достигая максимума на нейтральной оси. напряжение сечение изгиб стержень
Сделаем несколько замечаний, касающихся расчетов на прочность при прямом поперечном изгибе. В отличие от простых видов деформации, когда в поперечных сечениях стержня возникает лишь один силовой фактор, к которым относятся и изученные выше растяжение (сжатие) и чистый изгиб, прямой поперечный изгиб должен быть отнесен к сложным видам деформации. В поперечных сечениях стержня при поперечном изгибе возникают два силовых фактора: изгибающий момент Мх и поперечная сила Qy (рис. 7), напряженное состояние является упрощенным плоским, при котором в окрестности произвольно выбранных точек поперечного сечения действуют нормальные и касательные напряжения. Поэтому условие прочности для таких точек должно быть сформулировано на основе какого-либо уже известного критерия прочности.
Однако учитывая, что наибольшие нормальные напряжения возникают в крайних волокнах, где касательные напряжения отсутствуют (рис. 7), а наибольшие касательные напряжения во многих случаях имеют место в нейтральном слое, где нормальные напряжения равны нулю, условия прочности в этих случаях формулируются раздельно по нормальным и касательным напряжениям
Рис. 7 - Распределение нормальных и касательных напряжений по контуру сечения
Рис. 8 - К сравнительной оценке модулей напряжения
Покажем, что доминирующая роль в расчетах на прочность балки, подвергнутой поперечному изгибу, будет принадлежать расчету по нормальным напряжениям. Для этого оценим порядок max и max на примере консольной балки, показанной на рис. 8:
откуда max <<max, а поскольку то доминирующим в этом случае будет расчет по нормальным напряжениям и условие прочности, например, для балки из пластичного материала, работающей на прямой изгиб, как и в случае чистого изгиба будет иметь вид:
Рациональные формы поперечных сечений при изгибе
Наиболее рациональным следует признать сечение, обладающее минимальной площадью при заданной нагрузке (изгибающем моменте) на балку. В этом случае расход материала на изготовление балки, будет минимальным. Для получения балки минимальной материалоемкости нужно стремиться к тому, чтобы по возможности наибольший объем материала работал при напряжениях, равных допускаемым или близким к ним. Прежде всего рациональное сечение балки при изгибе должно удовлетворять условию равнопрочности растянутой и сжатой зон балки. Иными словами необходимо, чтобы наибольшие напряжения растяжения (max ) н наибольшие напряжения сжатия (max ) одновременно достигали допускаемых напряжений и .
Поэтому для балки из пластичного материала (одинаково работающего на растяжение и сжатие: ), условие равнопрочности выполняется для сечений, симметричных относительно нейтральной оси. К таким сечениям относится, например, прямоугольное сечение (рис. 9, а), при котором обеспечено условие равенства . Однако в этом случае материал, равномерно распределенный по высоте сечения, плохо используется в зоне нейтральной оси. Чтобы получить более рациональное сечение, необходимо возможно большую часть материала переместить в зоны, максимально удаленные от нейтральной оси. Таким образом, приходим к рациональному для пластичного материала сечению в форме симметричного двутавра (рис. 9, б), у которого возможно большая часть материала сосредоточена на полках (горизонтальных массивных листах), соединенных стенкой (вертикальным листом), толщина которой назначается из условий прочности стенки по касательным напряжениям, а также из соображений ее устойчивости. К двутаврому сечению близко по критерию рациональности так называемое коробчатое сечение (рис. 9, в).
Рис. 9 - Распределение нормальных напряжений в симметричных сечениях
Рассуждая аналогично, приходим к выводу, что для балок из хрупкого материала наиболее рациональным будет сечение в форме несимметричного двутавра, удовлетворяющего условию равнопрочности на растяжение и сжатие (рис. 10):
которое вытекает из требования
Рис. 10 - Распределение напряжений несимметричного профиля сечения балки.
а) двутавр, б ) швеллер, в) неравнобокий уголок, г) равнобокий уголок
Рис. 11 - Используемые профили сечений:
Идея рациональности поперечного сечения стержней при изгибе реализована в стандартных тонкостенных профилях, получаемых методами горячего прессования или прокатки из рядовых и легированных конструкционных высококачественных сталей, а также алюминия и алюминиевых сплавов, получивших широкое распространение в строительстве, машиностроении, авиационном машиностроении. Широко распространены показанные на рис. 11: а--двутавр, б-- швеллер, в -- неравнобокий уголок, г--равнобокий уголок. Реже встречаются тавр, таврошвеллер, зетовый профиль и др. Употребляются также холодногнутые замкнутые сварные профили (рис. 12).
Рис. 12 - Замкнутые сварные профили
Поскольку по соображениям технологии сортамент стандартных профилей по размерам ограничен (например, наибольший прокатный двутавр согласно ГОСТ 8239--72 имеет высоту 550 мм), то для больших пролетов приходится применять составные (сварные или клепаные) балки.
Размещено на Allbest.ru
...Подобные документы
Расчет статически определимого стержня переменного сечения. Определение геометрических характеристик плоских сечений с горизонтальной осью симметрии. Расчет на прочность статически определимой балки при изгибе, валов переменного сечения при кручении.
курсовая работа [1,2 M], добавлен 25.05.2015Определение нормальных напряжений в произвольной точке поперечного сечения балки при косом и пространственном изгибе. Деформация внецентренного сжатия и растяжения. Расчет массивных стержней, для которых можно не учитывать искривление оси стержня.
презентация [156,2 K], добавлен 13.11.2013Понятие растяжения как вида нагружения, особенности действия сил и основные характеристики. Различия между сжатием и растяжением. Сущность напряжения, возникающего в поперечном сечении растянутого стержня, понятие относительного удлинения стержня.
реферат [857,3 K], добавлен 23.06.2010Построение эпюры нормальных сил и напряжений. Методика расчета задач на прочность. Подбор поперечного сечения стержня. Определение напряжения в любой точке поперечного сечения при растяжении и сжатии. Определение удлинения стержня по формуле Гука.
методичка [173,8 K], добавлен 05.04.2010Определение положения центра тяжести сечения, момента инерции, нормальных напряжений в поясах и обшивке при изгибе конструкции. Выведение закона изменения статического момента по контуру разомкнутого сечения. Расчет погонных касательных сил в сечении.
курсовая работа [776,9 K], добавлен 03.11.2014Расчет статически определимой рамы. Перемещение системы в точках методом Мора-Верещагина. Эпюра изгибающих моментов. Подбор поперечного сечения стержня. Внецентренное растяжение. Расчет неопределенной плоской рамы и плоско-пространственного бруса.
курсовая работа [1,4 M], добавлен 04.12.2012Сущность дифференциальных зависимостей при поперечном изгибе, расчет касательного напряжения. Дифференциальное уравнение изогнутой оси балки. Теорема о взаимности работ и перемещений. Графоаналитический способ определения перемещения при изгибе.
контрольная работа [1,9 M], добавлен 11.10.2013Вычисление напряжений, вызванных неточностью изготовления стержневой конструкции. Расчет температурных напряжений. Построение эпюр поперечной силы и изгибающего момента. Линейное напряженное состояние в точке тела по двум взаимоперпендикулярным площадкам.
курсовая работа [264,9 K], добавлен 01.11.2013Определение равнодействующей плоской системы сил. Вычисление координат центра тяжести шасси блока. Расчёт на прочность элемента конструкции: построение эпюр продольных сил, прямоугольного и круглого поперечного сечения, абсолютного удлинения стержня.
курсовая работа [136,0 K], добавлен 05.11.2009Определение реакции шарнира и стержня в закрепленной определенным образом балке. Расчет места положения центра тяжести сечения, составленного из прокатных профилей. Вычисление силы натяжения троса при опускании груза. Расчет мощности и вращающих моментов.
контрольная работа [85,6 K], добавлен 03.11.2010Особенность конструирования затвора, шпинделя и сальникового уплотнения. Расчет крутящего момента на ходовой гайке. Основной подбор электродвигателя. Анализ расчетного крутящегося момента и межосевого расстояния. Проверка прочности корпуса и крышки.
курсовая работа [562,9 K], добавлен 08.12.2017Решение задачи на построение эпюр продольных сил и нормальных напряжений ступенчатого стержня. Проектирование нового стержня, отвечающего условию прочности. Определение перемещения сечений относительно неподвижной заделки и построение эпюры перемещений.
задача [44,4 K], добавлен 10.12.2011Виды и категории сил в природе. Виды фундаментальных взаимодействий. Уравнения Ньютона для неинерциальной системы отсчета. Определение силы электростатического взаимодействия двух точечных зарядов. Деформация растяжения и сжатия стержня, закон Гука.
презентация [19,6 M], добавлен 13.02.2016Главные оси инерции. Вычисление момента инерции однородного стержня относительно оси, проходящей через центр масс. Вычисление момента инерции тонкого диска или цилиндра относительно геометрической оси. Теорема Штейнера и главные моменты инерции.
лекция [718,0 K], добавлен 21.03.2014Методические указания и задания по дисциплине "Сопротивление материалов" для студентов-заочников по темам: растяжение и сжатие стержня, сдвиг, кручение, теория напряженного состояния и теория прочности, изгиб прямых стержней, сложное сопротивление.
методичка [1,4 M], добавлен 22.01.2012Методика проведения испытаний древесного образца на статический изгиб и разрушение. Вид его излома. Расчет максимальной нагрузки. Определение пределов прочности образцов с поправкой на влажность и относительной точности определения среднего выборочного.
лабораторная работа [884,3 K], добавлен 17.01.2015Внецентренное растяжение (сжатие). Ядро сечения при сжатии. Определение наибольшего растягивающего и сжимающего напряжения в поперечном сечении короткого стержня, главные моменты инерции. Эюры изгибающих моментов и поперечных сил консольной балки.
курсовая работа [2,1 M], добавлен 13.05.2013Равновесное состояние упругой системы называется устойчивым, если оно мало изменяется при малых возмущениях. Явление потери устойчивости. Определение величины критической силы для стержня, теряющего устойчивость в упругой стадии, по формуле Эйлера.
реферат [37,6 K], добавлен 08.01.2009Понятие равновесного состояния, его виды. Пределы применимости формулы Эйлера. Влияние условий закрепления концов стержня на величину критической силы. Понятие коэффициента запаса на устойчивость. Энергетический способ определения критических сил.
курс лекций [888,8 K], добавлен 23.04.2009Построение эпюры продольных сил, напряжений, перемещений. Проверка прочности стержня. Определение диаметра вала, построение эпюры крутящих моментов. Вычисление положения центра тяжести. Описание схемы деревянной балки круглого поперечного сечения.
контрольная работа [646,4 K], добавлен 02.05.2015