Составные балки и перемещения при изгибе

Основная характеристика трехслойной балки прямоугольного поперечного сечения. Дифференциальное уравнение прямого изгиба призматического стержня. Главный анализ линеаризованного решения упругой кривой. Особенность кинематических граничных условий.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 22.10.2014
Размер файла 80,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Лекция

Составные балки и перемещения при изгибе

Понятие о составных балках

Работу составных балок проиллюстрируем на простом примере трехслойной балки прямоугольного поперечного сечения. Если слои между собой не связаны и силы трения между ними отсутствуют, то каждый из них деформируется как отдельная балка, имеющая свой нейтральный слой (рис. 1, а). Нагрузка между этими балками распределяется пропорционально их жесткостям при изгибе (в данном примере поровну). Это означает, что моменты инерции и моменты сопротивления трех независимо друг от друга деформирующихся балок должны быть просуммированы

Если скрепить балки сваркой, болтами или другим способом (рис. 1, б), то с точностью до пренебрежения податливостью наложенных связей сечение балки будет работать как монолитное с моментом инерции и моментом сопротивления, равным

а) несвязанная конструкция, б) связанная сварная конструкция

Рис. 1 - Расчетные схемы составных балок:

Как видно, при переходе к монолитному сечению жесткость балки возрастает в девять раз, а прочность--в три раза. В инженерной практике наиболее распространены сварные двутавровые балки.

Дифференциальное уравнение прямого изгиба призматического стержня

Определено, что мерой деформации призматического стержня при прямом чистом изгибе является кривизна нейтрального слоя. Можно показать, что с достаточной для инженерных расчетов точностью этим тезисом можно пользоваться и в случае прямого поперечного изгиба стержня. Однако для практических целей кроме кривизны необходимо определить вертикальные перемещения центров тяжести отдельных поперечных сечений -- прогибов балки v, а иногда и углы поворота этих сечений (рис. 2). Вследствие гипотезы плоских сечений угол поворота сечения ( оказывается равным углу наклона касательной к изогнутой оси балки, который в силу малости

Тогда возникает геометрическая задача: составить уравнение для функции прогиба , зная закон изменения ее кривизны.

Рис. 2 - Расчетная схема определения перемещений при изгибе

Воспользуемся известным из дифференциальной геометрии выражением для кривизны в прямоугольных декартовых координатах:

Однако, учитывая, что в инженерной практике применяются достаточно жесткие балки, для которых наибольший прогиб f (рис.2) мал по сравнению с длиной (f / l << 1), а первая производная от прогиба имеет порядок. балка сечение изгиб стержень

и, следовательно, величиной (dv / dz)2<<1, стоящей в знаменателе (2), можно пренебречь, выражение для кривизны упрощается

Тогда, подставив это выражение в полученную ранее связку кривизны и изгибающего мометна -- , условившись что ось Oy направлена вверх и согласовав знаки и Мх, приходим к дифференциальному уравнению прямого изгиба балки

известному также как дифференциальное уравнение упругой кривой.

Если учесть точное выражение для кривизны по формуле (2), то точное уравнение упругой кривой

является нелинейным дифференциальным уравнением. Поэтому линейное дифференциальное уравнение, описывающее малые прогибы балки, иногда называют линеаризованным уравнением упругой кривой.

Решение уравнения получаем путем двукратного почленного интегрирования. При первом интегрировании получаем выражение

которое с учетом , дает также закон изменения углов поворота поперечных сечений по длине балки. Повторным интегрированием получаем функцию прогиба

Постоянные интегрирования С и D должны быть найдены из граничных условий.

Во всех приведенных выше уравнениях функция изгибающего момента Мх(г) предполагалась известной, что возможно лишь для статически определимых балок. Простейшие варианты статически определимых однопролетных балок и соответствующие граничные условия показаны на рис. 3. Условия, накладываемые на прогиб и угол поворота сечения, получили название кинематических граничных условий. Как видно, для шарнирно опертой балки требуется, чтобы прогиб на опорах v(0) =v(l) =0, а для консольной балки прогиб и угол поворота сечения в заделке

Рис. 3 - Примеры граничных условий: а) двухопорная, б) консольная балки

Дифференциальное уравнение неприменимо для расчета статически неопределимых балок, так как содержит неизвестный изгибающий момент Мx появившийся в результате двукратного интегрирования уравнения четвертого порядка

В этом уравнении нагрузка q известна, поэтому его можно получить, учитывая, что

При интегрировании уравнения необходимо задать четыре граничных условия (по два на каждом конце балки) в том числе так называемые силовые граничные условия -- условия, накладываемые на силовые величины (изгибающий момент и поперечную силу), которые выражаются через производные от прогиба. Так как

а с учетом дифференциального соотношения Qy=dMx/dz, получаем

Вернемся к интегрированию уравнения второго порядка. Если имеется несколько участков, для которых правая часть уравнения исходного f(z)=Mx/EJx, содержит разные аналитические выражения, то интегрирование усложняется. На рис. 4 приведена эпюра Мx, содержащая п участков. Для каждого участка независимое интегрирование дает по две константы, а при п участках требуется определить 2n постоянных. Добавляя к двум граничным условиям на опорах 2(n--1) условия непрерывности и гладкости упругой кривой на границе; смежных участков, заключающиеся в равенстве прогибов v и углов поворота сечений dv/dz на этих границах

получим 2п граничных условий, необходимых для нахождения постоянных интегрирования.

Рис. 4 - Расчетная схема балки, содержащая n углов

Рекомендую для практики решения дифференциальных уравнений второго порядка воспользоваться системой входных тестов Т-4.

Размещено на Allbest.ru

...

Подобные документы

  • Сущность дифференциальных зависимостей при поперечном изгибе, расчет касательного напряжения. Дифференциальное уравнение изогнутой оси балки. Теорема о взаимности работ и перемещений. Графоаналитический способ определения перемещения при изгибе.

    контрольная работа [1,9 M], добавлен 11.10.2013

  • Определение нормальных напряжений в произвольной точке поперечного сечения балки при косом и пространственном изгибе. Деформация внецентренного сжатия и растяжения. Расчет массивных стержней, для которых можно не учитывать искривление оси стержня.

    презентация [156,2 K], добавлен 13.11.2013

  • Проведение расчета площади поперечного сечения стержней конструкции. Определение напряжений, вызванных неточностью изготовления. Расчет балок круглого и прямоугольного поперечного сечения, двойного швеллера. Кинематический анализ данной конструкции.

    курсовая работа [1,0 M], добавлен 24.09.2014

  • Расчет статически определимого стержня переменного сечения. Определение геометрических характеристик плоских сечений с горизонтальной осью симметрии. Расчет на прочность статически определимой балки при изгибе, валов переменного сечения при кручении.

    курсовая работа [1,2 M], добавлен 25.05.2015

  • Построение эпюры нормальных сил и напряжений. Методика расчета задач на прочность. Подбор поперечного сечения стержня. Определение напряжения в любой точке поперечного сечения при растяжении и сжатии. Определение удлинения стержня по формуле Гука.

    методичка [173,8 K], добавлен 05.04.2010

  • Построение эпюры продольных сил, напряжений, перемещений. Проверка прочности стержня. Определение диаметра вала, построение эпюры крутящих моментов. Вычисление положения центра тяжести. Описание схемы деревянной балки круглого поперечного сечения.

    контрольная работа [646,4 K], добавлен 02.05.2015

  • Дифференциальное уравнение теплопроводности как математическая модель целого класса явлений, особенности его составления и решения. Краевые условия – совокупность начальных и граничных условий, их отличительные черты. Способы задания граничного условия.

    реферат [134,2 K], добавлен 08.02.2009

  • Определение равнодействующей плоской системы сил. Вычисление координат центра тяжести шасси блока. Расчёт на прочность элемента конструкции: построение эпюр продольных сил, прямоугольного и круглого поперечного сечения, абсолютного удлинения стержня.

    курсовая работа [136,0 K], добавлен 05.11.2009

  • Применение расчетных формул для определения собственных частот и форм колебаний стержня (одномерное волновое уравнение) и колебаний балки с двумя шарнирными заделками. Использование теоретических значений первых восьми собственных частот колебаний.

    контрольная работа [2,6 M], добавлен 05.07.2014

  • Знакомство с этапами разработки тензорезисторного датчика силы с упругим элементом типа консольной балки постоянного сечения. Общая характеристика современных измерительных конструкций. Датчики веса и силы как незаменимый компонент в ряде областей.

    курсовая работа [1,7 M], добавлен 10.01.2014

  • Определение положения центра тяжести сечения, момента инерции, нормальных напряжений в поясах и обшивке при изгибе конструкции. Выведение закона изменения статического момента по контуру разомкнутого сечения. Расчет погонных касательных сил в сечении.

    курсовая работа [776,9 K], добавлен 03.11.2014

  • Внецентренное растяжение (сжатие). Ядро сечения при сжатии. Определение наибольшего растягивающего и сжимающего напряжения в поперечном сечении короткого стержня, главные моменты инерции. Эюры изгибающих моментов и поперечных сил консольной балки.

    курсовая работа [2,1 M], добавлен 13.05.2013

  • Расчетная схема балки. Закон движения точки. Определение составляющих ускорения. Кинематические параметры системы. Угловая скорость шкива. Плоская система сил. Определение сил инерции стержня и груза. Применение принципа Даламбера к вращающейся системе.

    контрольная работа [307,9 K], добавлен 04.02.2013

  • Определение равнодействующей системы сил геометрическим способом. Расчет нормальных сил и напряжений в поперечных сечениях по всей длине бруса и балки. Построение эпюры изгибающих и крутящих моментов. Подбор условий прочности. Вычисление диаметра вала.

    контрольная работа [652,6 K], добавлен 09.01.2015

  • Методика численного решения задач нестационарной теплопроводности. Расчет распределения температуры по сечению балки явным и неявным методами. Начальное распределение температуры в твердом теле (временные граничные условия). Преимущества неявного метода.

    реферат [247,8 K], добавлен 18.04.2011

  • Особенности метода решения уравнения Пуассона, описывающего процессы, происходящие в диоде, методом распространения вектора ошибки. Пример решения разностного уравнения. Программа расчета потенциала в определённом узле сетки с учётом граничных условий.

    дипломная работа [596,3 K], добавлен 29.11.2011

  • Дифференциальные уравнения неустановившейся фильтрации газа. Основное решение линеаризованного уравнения Лейбензона. Исследование прямолинейно-параллельного установившегося фильтрационного потока несжимаемой жидкости по закону Дарси в однородном пласте.

    курсовая работа [550,5 K], добавлен 29.10.2014

  • Равновесное состояние упругой системы называется устойчивым, если оно мало изменяется при малых возмущениях. Явление потери устойчивости. Определение величины критической силы для стержня, теряющего устойчивость в упругой стадии, по формуле Эйлера.

    реферат [37,6 K], добавлен 08.01.2009

  • Дифференциальное уравнение теплопроводности. Условия однозначности. Удельный тепловой поток Термическое сопротивление теплопроводности трехслойной плоской стенки. Графический метод определения температур между слоями. Определение констант интегрирования.

    презентация [351,7 K], добавлен 18.10.2013

  • Дифференциальное уравнение теплопроводности. Поток тепла через элементарный объем. Условия постановка краевой задачи. Методы решения задач теплопроводности. Численные методы решения уравнения теплопроводности. Расчет температурного поля пластины.

    дипломная работа [353,5 K], добавлен 22.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.